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Abstract: Processes and services undertaken in smart primary healthcare building facilities capture
operational data through advanced monitoring and enable experts to use these building facilities for
efficient healthcare service delivery. This study assessed the impact of Internet of Things (IoT) services
on achieving efficient primary healthcare in the rural areas of South Africa. The study identified three
(3) basic constructs of IoT services. They include IoT location recognition and tracking services, the
application of the IoT high-speed communication network-based services, and the application of IoT-
based services. The study is quantitative, and a questionnaire was used to collect data from the project
managers and healthcare practitioners working with the primary healthcare agency in South Africa.
The study found a variable degree of impact between the three (3) IoT constructs and the successful
development of primary healthcare building facility services in South Africa. The study recommends
adopting IoT essential services for achieving efficient primary healthcare services in the rural areas of
South Africa and other developing countries facing similar primary healthcare delivery challenges.
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1. Introduction

With recent advances in information technology (IT), smart healthcare buildings have
gradually come to the fore. Smart healthcare building facilities use a new generation
of technologies such as the Internet of Things (IoT). These technologies are capable of
addressing challenges faced by traditional medical service delivery, making them more
efficient, convenient, and personalized. The concept of a smart healthcare building facility
services entails the application of smart technologies to support healthcare services and
introduce smart healthcare [1].

Most studies on smart healthcare have focused on the benefits, barriers, and determi-
nants of adopting information and communication technology (ICT)-based solutions within
healthcare building facilities. However, understanding the impact of essential IoT services
regarding the achievement of efficient primary healthcare remains problematic considering
the issues associated with traditional healthcare service delivery in developing countries.
Health facilities in developing countries are characterised by dilapidated building facilities
and the poor coordination of healthcare services, among other challenges [2].

Most studies tend to adopt methods of data collection and analysis that are barely
credible. Jaafar et al. [3] noted that healthcare building facility services are globally charged
with multiple inherent risks. Similarly, Yuan et al., (2022) [1] noted that healthcare buildings
have no capacity, especially in developing countries, and are faced with the problems of
capturing data for indoor environments, air quality and thermal comfort.

A study conducted on healthcare organization performance factors in private clinics of
Addis Ababa in Ethiopia by Wassie et al. [2] found that 61.2% of the clinics experienced poor
healthcare waste management services. Another study found that 56.8% of the clinics had
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poor waste segregation services, and 55.0% of the clinics had poor waste collection methods. In
addition, this study also found that clinics’ handling of waste was poor: waste transportation
methods, storage services, treatment methods and disposal systems were all inadequate.

However, there are now opportunities to change the status quo. In the UK, Wani-
garathna et al. [4] noted that building information modelling (BIM) and the IoT have the
potential to enable better and well-versed decision-making concerning the built asset. Built
asset management (BAM) is now achieved through the integration of a variety of data
that are related to the physical condition of the built facility. However, the significant
shortcomings of using BIM for data collection are its incompatibility, i.e., it is not commonly
and universally used among construction professionals, and there are legal issues with its
software applications. Equally, the cost of the software requires considerable investment.

In Philippines, Dela Cruz and Tolentino [5] stated that the problems associated with
poor information gathering in the management of public healthcare facilities originated
mainly because of poor financial resources allocation, improper deployment of the right
materials, and technologies such as IoT. Additionally, the problem of the planning pro-
cess is another major factor influencing the effective management of healthcare building
facilities [1].

Similarly, Jia et al. [6] examined the process of implementing IoT for the management
of healthcare building facilities. This study aimed to enhance the management process
of healthcare construction and operation and the impact of the built facility on services,
efficient functionalities, and enhancing sustainability. However, the study did not look at
assessing the extent to which technology enabled data gathering and analysis for primary
healthcare facilities in developing countries.

Moreover, Zhao and Jiang [7] introduced Insect Intelligent Building (I2B), which
operates based on IoT. The main features of the technologies were developed from agent
models. The I2B used space units and control devices that were developed from the model.
This connects between the devices and the surrounding spaces, i.e., the control devices
(insect) for each space unit or each control device have six data ports (legs). The control
devices communicate with each other via the data ports based on the developed model. The
network performs various operations within the building facility and computes tasks that
run on smart controllers, depending on the associations among neighbouring controllers to
achieve the desired effects of the commands. The main shortcomings of this system are
the problems associated with the standard description of the device and the unit space.
Then, there is the issue of the systematic process that changes the facility control programs
into parallel computing tasks, which are successively used on the smart nodes and in the
communication procedures.

Therefore, the current paper assesses the impacts of IoT on achieving smart primary
healthcare building facility services through the assessment of technologies suitable for
achieving smart primary healthcare building facilities with a view to enhance healthcare
delivery in the rural areas of South Africa.

The following objectives of the paper are:

1. To explore the major IoT technologies fostering smart primary healthcare building
facility services;

2. To assess the impact of the IoT technology services on the successful development
smart primary healthcare buildings.

1.1. Literature Review

In this section, a detailed discussion of the smart technologies employed in primary
healthcare facilities is presented. The literature review was carried out on smart building
facilities, technologies influencing smart healthcare building facilities and IoT technologies
fostering smart healthcare buildings.
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1.2. Smart Building Facilities

Globally, the smart building market is rapidly expanding, largely driven by the IoT
and new types of technologies. The healthcare building facilities remain an essential com-
ponent in improving healthcare services. A smart healthcare building facility provides
a healthier energy efficiency and controls the safety aspects of the healthcare facility, in-
cluding the framework for the comfortability of residents and enhanced quality of life
and serviceability [8]. Definitions of smart building facilities were proposed and mainly
focused on energy features linked to the concept of a “smart grid”. A healthcare building
facility that incorporates smart management systems and huge storage of data and ana-
lytics that facilitates easy management of energy in the facility. The electrical facilities on
the grid that determine the pattern and behaviours within the facility are regarded as a
smart/intelligent building facility system. Consequently, the management process of such
devices is smart/intelligent via the adoption of IoT technologies [9].

Generically, a smart healthcare facility comprises of three (3) levels, including: The
level of the infrastructural data inputs, which embodies all sources of the data collected by
the devices, such as consumed energy, level of humidity, indoor/outdoor temperatures,
safety alarm activation and deactivation and so on. Then, the level of the facility system
signifies the fundamental of the smart system, because this permits the gathering, process-
ing, assembling and storage of the information in a Not Only Structured Query Language
(NoSQL) database system. Accordingly, the system permits the utilization of the collected
data for the extraction of knowledge by data mining systems and the process of automatic
learning through artificial intelligence (AI) algorithms [10].

In the age of IoT, Khan and Salah [11] described the basic features of a smart healthcare
building facility as any healthcare building with interoperable building facilities and a
mobile integrated solution, while Wassie et al. [2] added that smart healthcare building
facilities should have features such as the digitisation of information and established unified
systems of communication [9]. Smart building facilities are linked online. Greater attention
is also being paid to integrated building automation in the renovation and construction of
new buildings. Buildings for which smart technology is applied are called smart buildings.

Moreover, the acronym “SMART”, meaning “Self-Monitoring Analysis and Reporting
Technology”, is a technology that provides reasoning alertness to objects, by using innovative
technologies such as IoT, artificial intelligence (AI), machine learning (ML) and an extensive
analysis of the collected data, providing an intellectual understanding of the facilities that
were earlier regarded as useless [12]. Smart technologies are networks of devices that use
IoT sensor devices and software and are connected online. This system brings static physical
facilities to life. The highly valuable devices are sustainable, mountable, and automated.

1.3. Technologies Influencing Smart Healthcare Building Facilities (SMAHEAL)

IoT is a significant technological network of devices that uses the internet connectivity
of sensor devices and software that animate static physical facilities [13]. Baqer et al. [14]
described smart appliances within healthcare building facilities as critical IoT technologies
that can support the achievement of primary healthcare building facilities in developing
countries. Smart connected devices in primary healthcare building facilities can be remotely
controlled with long-term evolution (LTE), Bluetooth, cellular connectivity and Wireless
Fidelity (Wi-Fi) [1].

According to Kwon et al. [9], smart primary healthcare building facilities are commonly
categorized into three (3) constructs: Services based on location recognition and tracking
technology, which evaluates and monitors the location of any data in the facility based on
short-range communication technology; the high-speed communication network-based
services, which is an installed wireless communication technology; and the construct
of IoT-based services, which are used to link IoT devices embedded with sensors and
communication functions to the internet.
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1.4. IoT Location Recognition and Tracking Services (IoT-LORE)

IoT facility services are usually achieved by measuring and monitoring the location-
based information of any functional facility within a healthcare building space, with the aid
of location recognition and tracking technology constructed on short-range communication
technology [9,15]. The major technologies associated with IoT in the management of health-
care building facilities are Bluetooth technologies, beacons technologies, Wi-Fi technologies,
Zigbee technologies, radio frequency identification (RFID) and global positioning system
(GPS) technologies, assisted global positioning system (A-GPS) technologies, barcodes
and quick response (QR) codes technologies and the ultra-wideband and communication
technologies, e.g., 5th Generation (5G) technology [9]. With the introduction of a tracking
system within the healthcare building facility for real-time assets in healthcare services
using IoT devices, medical institutions can enhance the effectiveness of logistics manage-
ment, which is related to healthcare building facilities, and hence improves the workflows
of medical staff in the facility [16]. A smart infusion pump involving RFID was first intro-
duced in the US healthcare system, where this technology enhanced the productivity and
effectiveness of healthcare building facility through the reduction of about 80% in the time
taken by the medical staff to locate any facility within the healthcare centre. The location
system utilised real-time location monitoring [9].

1.5. IoT High-Speed Communication Network-Based Services (IoT-HISB)

IoT-HISB, such as 5G networks and Wi-Fi 6 networks, can help deliver healthcare
building facilities with internet services. If such a technology is utilised, the shortcomings of
real data collection and analysis processes can be eliminated. These systems of communica-
tion are constructed on wireless communication technology, such as the Wi-Fi 6 technology,
as one of the highspeed communication network services. This is mainly used in healthcare
buildings where there is high traffic involving regular changes in the environment [17,18].
The introduction of orthogonal frequency-division multiple access (OFDMA) technologies,
which combine multiple users with different times and requirements to simultaneously
gain access to a single-access point in a healthcare building, reduces the transmission
waiting time.

The application of Wi-Fi 6 technologies helps with the accurate analysis of the records
of patients within the building facility. These real-time data also help to improve treatment
outcomes through the precise administration of medication. This is achieved by an objective
decision-making procedure according to the accurate and current patient database [2]. The
technology of Wi-Fi 6 aids medical devices, such as infusion pumps with adjustable data to
transfer times and reduce usage overlap, improving the efficiency of facility operation and
maintenance. This is also achieved through OFDMA by allowing about thirty (30) different
facility devices to use the same infusion pump and channel without changing orders (Yan,
2019 [7,19]).

1.6. IoT-Based Services (IoT-BAS)

IoT-BAS is a technology that links different facilities entrenched in sensor devices and
communication connected to the internet. This technology entails facility identification,
construction of the network and attaching sensor devices and controls [9]. The introduction
of IoT in healthcare building facilities for a smart healthcare building could be achieved
via leveraging sensor devices, cloud computing, methods of connection, databases, inter-
net protocols, and analytics as infrastructure, using different systems together [2]. IoT
technologies and smart healthcare building facilities are used for different reasons, includ-
ing the reduction in the maintenance costs of healthcare building facilities, reduction in
operating costs of machinery and equipment in the healthcare services, enhancement of
patient treatments through the reduction in diagnostic delays, increase in staff and patients
comfortability, early detection of deterioration in the healthcare buildings, improvement in
general safety for both patients and staff, provision of energy efficiency in the healthcare
buildings, and general improvement in the profitability [9].
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IoT enables the automation and detection of various defects in healthcare buildings for
prompt measurement and remedial services. IoT-based vital measurement sensor devices
have been developed and attached to building facilities to measure any identified defects [9].
Kang et al. [20] stated that barcodes technologies, RFID technologies, fingerprint/iris/face
recognition technologies, and ultrasound-based recognition technologies are used in smart
healthcare buildings to deliver better and faster services. The most commonly used IoT-
based system is RFID technology, which is used for healthcare building facility management
and medical services [21].

The flowchart for the systematic literature review procedure is presented in Figure 1.
The initial search yielded 2470 studies. After eliminating duplicates, 1765 remained. Fol-
lowing an initial check of the titles and abstracts, 581 studies were removed, as they did
not meet the inclusion criteria, leaving 56 studies to be read thoroughly. Finally, 17 studies
met all of the inclusion criteria and formed the basis for the review.
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• Authors, year of publication and country of data collection.
• Area of study, i.e., smart building infrastructure in relation to the healthcare

building infrastructure.
• Applications of technologies such as IoT towards achieving smart building infrastruc-

tural facilities.
• Measured variables used in the studies and their outcomes.
• The main findings of the studies and the implications of the results.

2. Materials and Methods

This study reviewed papers exploring the relationship between IoT and smart building
infrastructure applications. In addition, this study aimed to assess the impact of different
IoT services towards achieving smart healthcare building facilities. Subsequently, based
on the literature, a conceptual framework that binds the relationship between different
IoT services and smart primary healthcare building facilities was developed. Hence, the
questionnaire used to collate the data for this study had four (4) study constructs. The
constructs consisted of three (3) constructs of IoT services and one (1) construct of the
factors of the smart primary healthcare building facility. Hence, this study adopted a
quantitative design [22]. The area of this study is smart healthcare building facilities.

A randomly selected group of 750 project managers and healthcare practitioners work-
ing within the primary healthcare sector in Gauteng province, South Africa, were asked
to complete the administered questionnaires. These questionnaires were administered
to the respondents through WhatsApp. About 420 questionnaires were retrieved and
400 were used, while 20 were rejected because of inconsistencies in the responses. The
analysis represents 56% and 53% return and response rates, respectively [23].

The main instrument for this research was an online administered questionnaire
(Supplementary Materials), and the questionnaire contains only closed-ended questions [24].
The adapted questions used in the questionnaire were captured by four (4) study constructs
of smart healthcare building facilities (SMAHEAL)-related factors, used as a dependent
variable, and IoT location recognition and tracking services (IoT-LORE), IoT high-speed
communication network-based services (IoT-HISB), and IoT-based services (IoT-BAS) were
the independent variables, respectively. All the constructs used were measured using a
5-point Likert scale through the development of a model. Partial least squares structural
equation modelling (PLS-SEM) was used for data analysis.

Hair et al. [25] suggested that the PLS-SEM software (WarpPLS 8.0, ScriptWarp Sys-
tems, Laredo, TX, USA.) can be used to enable the development of theories through the
establishment of causal relationships among the study constructs. Contrarily, covariance-
based structural equation modelling (CB-SEM) is commonly used to confirm relationships
and theories among constructs [25]. Furthermore, PLS-SEM software is used for data
analysis due to its high predictive capability, and it is used to assess the validity of the
measured constructs [25]. The measurement model of this study was shown in Figure 1.
This indicated the number of items in each study construct. Similarly, Table 1 shows the
sources from which the items of each construct were adapted.
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Table 1. The sources of items in the study constructs.

Khan and
Salah (2018)

[11]

Wassie et al.,
(2022) [2]

Kwon et al.,
(2022) [9]

Birje and
Hanji (2020)

[16]

Verdejo et al.,
(2021) [15]

Schuchat
et al., (2020)

[17]

Zhao and
Jiang (2018)

[7]

Yan (2019)
[19]

Singh and
Mahapatra
(2020) [18]

Wassie B.
et al., (2022)

[2]

de la Torre,
D. (2019) [21]

Kwon et al.,
(2022) [9]

Kang (2019)
[20]

SMAHEAL

Interoperability
of the

building
facilities

√ √

Mobile
integrated
solution

√ √

Digitisation
of

information

√

A unified
system of

communica-
tion

system

√ √

Stable core
infrastructure

facilities

√ √

System
automation

√ √

IoT-LORETS

Beacons
technologies

√ √ √ √

Bluetooth
technologies

√

Wi-Fi
technologies

√ √

Zigbee
technologies

√ √

RFID
technologies

√

GPS and
A-GPS

Technologies

√ √
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Table 1. Cont.

Khan and
Salah (2018)

[11]

Wassie et al.,
(2022) [2]

Kwon et al.,
(2022) [9]

Birje and
Hanji (2020)

[16]

Verdejo et al.,
(2021) [15]

Schuchat
et al., (2020)

[17]

Zhao and
Jiang (2018)

[7]

Yan (2019)
[19]

Singh and
Mahapatra
(2020) [18]

Wassie B.
et al., (2022)

[2]

de la Torre,
D. (2019) [21]

Kwon et al.,
(2022) [9]

Kang (2019)
[20]

Barcodes and
QR codes

√ √

Ultra-
wideband

communica-
tion

√ √ √

IoT-HISBAS

Integrating
IoT into 5G

and B5G
high-speed
communica-

tion

√ √

Wi-Fi 6
√ √

OFDMA
technology

√ √

infusion
pump

√ √

Sensors and
wearables for

IoT-based
wireless
health

√ √

Facility-to-
facility

connectivity
with high
mobility

√ √ √

IoT-BAS

Facilities
identification

√ √ √

Network
construction

√ √ √

Sensor
attachment

√ √

Sensor
control

√ √

Cloud
computing

and analytics

√ √ √



Int. J. Environ. Res. Public Health 2022, 19, 11147 9 of 17

Theoretical Frameworks

This study adopted two (2) theories: the scientific management theory and Schum-
peter’s innovation theory. The two (2) theories tend to explain the relationship between
the application and use of technology in minimizing the causal effect of variables., i.e.,
the application of technology such as IoT services to achieve enhanced building facilities
services at the primary healthcare units for healthcare delivery services.

The scientific management theory was developed by Frederick Taylor [26] and sug-
gests that scientific and technological methods should be used to perform tasks in the
workplace, as opposed to leaders relying on their judgments or the personal discretion of
team members. This theory was adopted because it reveals that scientific and technological
methods, such as the application of IoT services towards enhancing smart building facility
services, would result in the most productive workplace.

While Schumpeter’s innovation theory [27] is in line with other business investment
theories, which assert that the change in business investment accompanied by monetary
expansion is the major factor behind business improvement. Schumpeter’s theory posits
that business innovation is the major reason for enhancing service delivery, therefore
improving the productivity in investments and business success. These two theories
explain the relationship between the study constructs. Accordingly, the theories advocate
for the adoption of technology to enhance service delivery in healthcare building facilities.

The research constructs cover the IoT service factors that enable the achievement of
smart primary healthcare building facility services. The IoT services comprise three (3)
constructs: IoT-LORE, IoT-HIBS, and IoT-BAS, while the dependent variable is a smart
primary healthcare building facility (SMAHEAL). All four constructs, i.e., dependent and
independent variables were rated using a 5-point Likert scale. This scale concerns uni-
dimensionality and is the most common scaling process used in engineering management
research [28]. The operationalization of the independent variables was achieved by rating
the scales from a very low to a very high impact rating. In contrast, the dependent variable
was rated from a very low-level to a very high-level rating for the healthcare facility. The
operationalization process was adapted from Gambo and Musonda’s [29] studies. The data
were collected by online administered questionnaires, which were retrieved and analysed
using PLS-SEM algorithms.

According to the measurement model presented in Figure 2. The following directional
alternate hypotheses were developed:

HA1: There is a significant positive impact between the application of IoT location recognition and
tracking services and the achievement of smart primary healthcare building facilities.

HA2: There is a significant positive impact between the application of IoT high-speed communication
network-based services and the achievement of smart primary healthcare building facilities.

HA3: There is a significant positive impact between the application of IoT-based services and the
achievement of smart primary healthcare building facilities.
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Figure 2. Measurement model.

3. Results
3.1. Respondents’ Demographic Information

Table 2 indicates the demography of the respondent groups. The respondent group
comprises experienced project managers and healthcare practitioners working within the
public sector in Gauteng, South Africa. The statistics indicate that about 51.75% of the
respondents were project managers, while the remaining 48.27% were primary healthcare
practitioners. The results further show that 10.00% held PhDs, 40.25% held M.Sc., and
the remaining 49.75% held BSc. The average working experience of the respondents was
approximately thirteen (13) years, indicating that the respondents were experienced enough
with primary healthcare building provision.

Table 2. Information on respondents’ demography.

Project
Managers No. % Cumulative %

Project
Managers 207 51.75 51.75

Healthcare
Practitioners 193 48.25 100

Total 400 100

Educational Qualifications

PhD 40 10.00 10.00
MSc 161 40.25 50.25
BSc 199 49.75 100

Total 400 100

Experience of Respondents (Year)

Years Mid Value (x) Frequency (f) % of Frequency Fx
5–10 7.5 85 21.25 637.50
10–15 12.5 109 27.25 1362.50

15 and above 15.0 206 51.50 3090.00
Total 400 100 5090.00

Calculated mean (average) years of working experience of the respondents Σfx/Σf = 5090.00/400 = 12.73 ≈ 13
mean years of working experience.
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3.2. Indicators of the Model Fits

Past studies focused on some essential sets of guidelines that use confirmatory factor
analysis (CFA) as the primary statistical analysis technique. The statistical indicators
include the following: alike information criteria and chi-square (χ2), parsimonious fit,
comparative fit, goodness-of-fit index, standardized root mean square residual (SRMR),
root means square error (RMSE), and Bentler–Bonett or Normed fit index [25].

Moreover, Kock [24] differentiated that there is a philosophically forthright distinction
between CB-SEM and PLS-SEM. This study used PLS-SEM based on the objective of the
study. The research objectives of this study are intended for theory development and
testing. In this case, the best method to use is PLS-SEM. Therefore, the research objectives
are intended for the prediction and development of theories. Therefore, the present study
entails theory development and prediction. Conceptually, PLS-SEM is similar to a multiple
regression analysis of data.

Based on the interpretation of the model fits, when the target of the research is to test
the developed hypotheses, if the position of each arrow in the conceptual model signifies
a hypothesis, then the fit indices are less important. However, if the intention is to assess
how the collated data fit into the developed model, then the indices of the model fits are
vital indicators of the quality of the model [24].

However, the Warp PLS-SEM algorithms indicated the following indices that compare
the indicators of the correlation matrices and include: the standardised mean absolute resid-
ual (SMAR), standardised root means squared residual (SRMR), standardised chi-square
(SChS), standardised threshold difference count ratio (STDCR), and standardised threshold
difference sum ratio (STDSR). However, some classic model fits and the explanation of their
indices depends on the aim of the study. Subsequently, the indices denote the fits between
the empirical indicator correlation matrices and implied model. The indices become more
expressive when the aim is to assess whether the model fits better with the collated data
than the other, mainly when used together with the common indices [24].

An analysis of the model fits indicated the following statistics: the average path
coefficient (APC) was 0.308 with a significant p-value < 0.001; the average R-squared had a
statistics value of 0.635 with a p-value < 0.001; and the average adjusted R-squared (AARS)
had a statistical value of 0.632 with a p-value < 0.001. The statistics of average block VIF
(AVIF) was 1.686, which is regarded as acceptable since it is ≤5. Ideally, this value should
be ≤3.3 for the AVIF in this model is regarded as ideal. The average full collinearity VIF
(AFVIF) had a statistical value of 2.090, regarded as acceptable since it is ≤5. Ideally, this
value should be≤3.3 for the AFVIF in this model to be regarded as ideal. The VIF measures
are used when indicators are formative.

The model fits also indicated that the Tenenhaus GoF (GoF) had a statistical index of
0.522, regarded as small if it is≥0.1, medium if it is≥0.25, and large if it is≥0.36. Therefore,
the GoF value in this study was regarded as significant, and the GoF is the geometric
average of the commonality. The average R2 of endogenous variables signifies the index
for validating the PLS model. Generally, it is a compromise between the performance of
the instrument and the developed structural model.

The results further indicate that the Simpson’s paradox ratio (SPR) had a value of
1.000, regarded as acceptable if greater than or equal to 0.7 and ideal if it is 1.00. Therefore,
the SPR in this model is ideal. The R-squared contribution ratio (RSCR) has a statistic of
1.000, regarded as acceptable if it is ≥0.9. Ideally, this value should be =1; therefore, the
RSCR of this model was regarded as an ideal. The statistical suppression ratio (SSR) had a
statistical value of 1.000, which was considered acceptable if greater than or equal to 0.7;
therefore, it is acceptable in this model. The nonlinear bivariate causality direction ratio
(NLBCDR) had a statistical value of 1.000, regarded as acceptable if it is greater or equal to
0.7; therefore, it is seen as acceptable. Hence, based on the above statistical indices, this
model is considered to have good fit indices [24].
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3.3. Measurement Model

Table 2 indicates an assessment of the model, which commonly follows two stages:
the evaluation of the measurement and the structural model parameters [25]. The measure-
ment model estimates determine the instrument’s validity and reliability, including the
correlations among the indicators. Thus, the model has four (4) constructs: SMAHEAL,
IoT-LORE, IoT-HIBS, and IoT-BAS.

The measurement model appraises the model’s reliability and validity, which have
the following two criteria: composite reliability (CR) and the average variance extracted
(AVE) [25]. Moreover, earlier studies involved internal consistency to test the reliability of
the instrument. According to Sijtsma [30], Cronbach’s alpha (α) tests the consistencies of
the questionnaire and the level of the random error. Using Cronbach’s alpha allows for a
quick detection of negative factors and their removal, with positive values ranging from
0.0 to 1.0 [25]. The minimum suitable value of Cronbach’s alpha is 0.6 [31]. Once an item is
used as a scale, the item is required to be within the benchmark (0.60 and above) for the
values of the reliability indicators. Ho [31] stated that the reliability of an instrument is
defined as its capability to quantify the circumstance it is intended to accurately measure.

Construct reliability refers to a test of consistency. The significance of reliability is a
precondition for the validity of the study instrument. The consistency test encompasses an
item analysis, split-half technique, and Cronbach’s alpha method. The main inadequacy of
Cronbach’s alpha test is that it underestimates the consistency of a variable with smaller
sample sizes of less than a hundred (100) units. Nonetheless, a construct with a large
sample size of more than a hundred (100) units is considered exceptional. Cronbach’s
alpha is employed to examine the internal consistency of variables [25]. Moreover, Ho [31]
suggested Cronbach’s alpha test to be dependable in comparison to other tests. The
Cronbach’s alpha test delivers an exclusive estimation of a scale’s internal consistency.

Consequently, study indicators and construct reliability are examined to evaluate the
consistencies of the measurement model. Two tests are used to assess the reliability of the
construct, i.e., the composite reliability (CR) and Cronbach’s alpha tests. Hair et al. [25]
suggested using CR for PLS-SEM software. On the other hand, validity was assessed
by double-checking the loading of the indicator on its related construct, and the loading
should be 0.70 and higher before accepting the validity of the indicator [25].

Table 3 shows the results of the measurement model. The results indicate a high
validity and internal consistency among the indicators in the model. All the factor loadings
were greater than the benchmark of 0.70, whereas the CR and Cronbach’s alpha ranged
from 0.702 to 0.846 and 0.718 to 0.775, respectively. This shows that all the indicators
and the reliabilities were adequate. The discriminant and convergent validities were also
considered in the validation of the measurement model. The AVE values of the constructs
should be 0.50 and higher for a recognized convergent validity test [25]. The AVE is only
used for models with reflective indicator variables. The AVE assesses the entire variance of
a construct over its indicators [31]. The AVE figures of this model oscillated from 0.500 to
0.585, indicating that they were within the acceptable benchmark of 0.500, thus indicating
the acceptability of the convergent validity of the instrument.
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Table 3. Assessment of the study measurement.

Construct Indicators Indicator
Loading CR Cronbach’s

α
AVE

SMAHEAL

SMAHEAL1 0.832

0.846 0.775 0.500

SMAHEAL2 0.824

SMAHEAL3 0.754

SMAHEAL4 0.856

SMAHEAL5 0.275

SMAHEAL6 0.719

IoT-LORE

IoT-LORE1 0.793

0.702 0.730 0.524

IoT-LORE2 0.870

IoT-LORE3 0.873

IoT-LORE4 0.768

IoT-LORE5 0.784

IoT-LORE6 0.774

IoT-LORE7 0.726

IoT-LORE8 0.733

IoT-HISB

IoT-HISB1 0.759

0.753 0.718 0.585

IoT-HISB2 0.768

IoT-HISB3 0.768

IoT-HISB4 0.761

IoT-HISB5 0.730

IoT-HISB6 0.721

IoT-BAS

IoT-BAS1 0.769

0.837 0.756 0.508

IoT-BAS2 0.795

IoT-BAS3 0.725

IoT-BAS4 0.795

IoT-BAS5 0.770
Note: α-alpha; CR—composite reliability; AVE—average variance extracted.

Table 4 shows the measurement model’s discriminant validity. The validity is the
degree to which the construct is distinguished from other constructs in the model. This
is attained by double-checking the AVE of the construct, which must be greater than the
largest squared correlation of the construct. Alternatively, the loading of the construct must
be greater than the other constructs in the model [25]. These results show that the square
root of AVE for the construct and its relationship with another construct is an acceptable
discriminant validity. Based on the above results, the questionnaire was regarded as valid
and reliable for its intended purpose.

Table 4. Results of discriminant validity.

SMAHEAL IoT-LORE IoT-HISB IoT-BAS

SMAHEAL 0.707

IoT-LORE 0.133 0.570
IoT-HISB 0.656 0.018 0.620
IoT-BAS 0.701 0.098 0.621 0.712

Note: Discriminant validity showing AVE.
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3.4. The Measures of the Path Coefficients of the Developed Model

Figure 3 shows the coefficient of determination (R2) as the measure of the endoge-
nous variables and the path coefficients of the developed model. This is appraised as a
component of an initial evaluation of the structural relationships, i.e., the inner developed
model from the conceptual/hypothetical framework of this study [25]. Thus, Chin [32]
suggested that a R2 value of 0.67 was substantial, while 0.33 was moderate, and a value of
0.19 was weak. In the current study, the value of R2 was determined to be 0.635, indicating
a significant and moderate relationship between the criterion (IoT services) and predictor
variables (SMAHEAL). The path coefficients between IoT-LORE, IoT-HABS, IoT-BAS and
the dependent variable SMAHEAL were 0.090, 0.265, and 0.570, which were all significant
at a P0.05 level of significance, respectively.
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Figure 3. Structural model of the constructs.

Table 5 shows the effect significance (f2) of an independent variable on dependent
variables forecasted by the path coefficients. The effect was described as either low for
the value of 0.02, moderate for the value of 0.15, or high for the value of 0.35 [33]. The
value of f2 shows that the impact of a specific construct on the dependent variable is con-
siderable [32]. The values of f2 between IoT-LORE, IoT-HIBS, IoT-BAS, and the dependent
variable SMAHEAL were 0.018, 0.178, and 0.439, indicating low, moderate, and high ef-
fects, respectively. Similarly, the predictive capability of the endogenous constructs in the
relationship was assessed using Stone–Geisser’s cross-validated redundancy (Q2). The
predictive ability of the relationship was 0.635, based on the generated value in the model
Q2 [24]. However, Hair et al. [25] found that Q2 values show the predictive significance as
either weak for the value of 0.02, moderate for the value of 0.15, and strong for the value
of 0.35. Consequently, this model shows a robust predictive significance because Q2 > 0:
0.635 to be precise. Therefore, the path model’s predictive significance to the construct was
determined to be strong. This implies that the predictors (IoT-LORE, IoT-HIBS, IoT-BAS)
predicted about a 64% achievement of SMAHEAL whenever adopted.

Table 5. Testing of the study hypotheses.

Hypotheses Path
Coefficient p-Value Effect Size (f2) Stone–Geisser’s Q2 R2 Supported

IoT-LORE→SMAHEAL 0.090 0.035 0.018
0.635 0.635

Yes
IoT-HIBS→SMAHEAL 0.265 <0.001 0.178 Yes
IoT-BAS→SMAHEAL 0.570 <0.001 0.439 Yes

Note: Level of significance (p) ≤ 0.05; Q2—cross-validated redundancy.
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3.5. Discussion of Results

This study assessed the impact of IoT services on achieving smart primary health-
care building facilities. This study theorized four (4) constructs: SMAHEAL (dependent
variable), IoT-LORE, IoT-HIBS, and IoT-BAS. The constructs were adapted from previous
studies on IoT and smart healthcare buildings.

The study measurement model indicates that the research instrument was highly
reliable and valid for the intended purpose, therefore demonstrating the reliability and va-
lidity of the results. This study found significant variable impacts between the IoT services
(IoT-LORE, IoT-HIBS, and the IoT-BAS) and SMAHEAL. The impact of the SMAHEAL and
the IoT-LORE equally indicated that a significant but low impact (0.018) existed between the
two constructs [33]. The findings support the hypothesis that a significant positive impact
existed between the application of IoT location recognition and tracking services and the
achievement of smart primary healthcare building facility services. These findings agree
with those of Jia et al. [6], who argued for the need of adopting IoT for the development of
smart buildings. This also indicates a small impact between the IoT location recognition
and tracking services for the smart infrastructure. However, the study contradicts the
findings of Bagheri and Movahed [34] on the effect of IoT on the education business model,
where a moderate relationship was found. This is because the study considered general
learning and educational environments without infrastructure facilities.

Similarly, the results show that there is a significant and moderate impact (0.178)
between IoT-HIBS and SMAHEAL [33], which supports the hypothesis that there is a
significant positive impact between the application of IoT high-speed communication
network-based services and the achievement of smart primary healthcare building facil-
ity services. This is in line with Ramesh et al. [35], who evaluated the achievement of
sustainability through smart city applications, protocols, systems and solutions using IoT
and wireless sensor networks. Their research found a moderate relationship between
sustainable smart cities and high-speed communication network protocols. In addition,
the current study builds on the study by Ahad et al. [36], which assessed the technological
trend toward 5G networks for smart healthcare using IoT services, in which one indicator
of IoT-HIBS, 5G networks, was considered.

Lastly, the results also indicated a high impact (0.439) between IoT-BAS and SMA-
HEAL [33]. The findings supported the hypothesis that there is a significant positive
relationship between the application of IoT-based services and the achievement of smart
primary healthcare building facility services. This is in line with the study of Lawal and
Rafsanjani [37], which assessed the trends, benefits, risks, and challenges of IoT imple-
mentation in residential and commercial buildings and concluded that IoT-based services
significantly improve the smartness of building infrastructure. Contrarily, the results of
this study contrast with those of Jia et al. [6], who studied the adoption of IoT for the
development of smart buildings and found a weak relationship between IoT-based services
and the development of smart cities.

4. Conclusions

This study aimed to assess the impact of IoT services (IoT-LORE, IoT-HIBS, and IoT-
BAS) on achieving smart primary healthcare building facility services (SMAHEAL). With a
view to improve the delivery of primary healthcare building facility services in developing
countries. The study identified three (3) basic constructs of IoT services comprising the
application of IoT location recognition and tracking services (IoT-LORE), the application of
IoT high-speed communication network-based services (IoT-HIBS), and the application of
IoT-based services (IoT-BAS), which are designed to help achieve smart primary healthcare
building facility services for rapid healthcare delivery in rural areas of developing countries.

This study found that there are variable effects between the three (3) IoT services
and achieving smart primary healthcare building facility services. The results indicate
low-, moderate-, and high-impact changes for IoT-LORE, IoT-HIBS, and IoT-BAS with
SMAHEAL, respectively. The findings implied that positive variable degrees of impacts
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existed between the exogenous and the endogenous variables and that the application of
IoT services positively and variably aided the achievement of smart primary healthcare
building facility services, which in turn could enhance primary healthcare service delivery
in developing countries.

Therefore, this study recommends adopting IoT services towards achieving primary
healthcare services in rural areas of South Africa and other developing countries with
similar challenges regarding primary healthcare building facility services such as South
Africa. Consequently, this study recommends further research on the adoption of IoT
services for achieving smart primary healthcare services to fully realize the potential that
these technologies can offer for rural communities.

Limitations

• This paper used a Likert scale approach for it analysis, relying on the personal ex-
periences of respondents in primary healthcare building delivery rather than actual
surveys of the facilities in the buildings, and participants may be reluctant to express
their true views due to social expectations and moral pressures; therefore, findings
should be treated with caution.

• The survey design used a cross-sectional approach, so it is only able to capture experi-
ence, beliefs and behavioural intentions at a single point in time. Given that experience,
beliefs and behavioural intentions change over time, future research could explore this
from a para-experimental perspective or use a longitudinal approach or time series
data for follow-up studies.

• This study is based on the assessment of the impact of IoT on smart primary healthcare
building facilities, but IoT is not the only technology used for the assessing smartness
of infrastructure facilities. Other technologies such as artificial intelligence (AI) and
virtual and augmented realities should also be applied in further studies to consider
the effects of different technologies on achieving smartness in building facilities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph191811147/s1, Questionnaire on: Impact of IoT Towards
Achieving Smart Primary Healthcare Building Facilities in Gauteng, South Africa.
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