
 

 

Section S1: Posterior model derivation  

Likelihood specification 

Let the LTFU counts follow a Poisson distribution with the following probability density function: 
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where itY  defines the observed LTFU counts at the region i  at the time t . The model assumes that 
the mean of the observed LTFU counts ( )itμ is a product of the expected count ( )itE  and the 
relative risk ( )itλ , i.e it it itEμ λ= .  

The likelihood of the data is defined as: 
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Taking the log-likelihood of equation 3, differentiation with respect to itλ  gives 
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Setting the derivative to zero gives a maximum likelihood estimate of the rate 
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This likelihood estimate defines the crude yearly Standardised Incidence Ratios (SIRs) of the 
LTFU counts region i  at the time t . The use of SIRs is the standard maximum likelihood 
approach which can be used to describe spatial heterogeneity of the outcome; however, in instances 
where very extreme values occur in regions with small populations due to the small sample sizes 
are involved; this may result in the overestimation or underestimation of the associated outcome 
risk.  Moreover, if the likelihood is complex and the number of parameters is large, this approach 
may become difficult to implement. To overcome this limitation, Bayesian inferential models are 
preferred to obtain the outcome risk estimates accounting for confounding factors; adjusting for 
the neighbouring areas' random effects and parameter estimates can be smoothed or shrunk to 
improve the precision [20].  

The linear predictor model specification 

The linear predictor model describes the underlying structure of the relative risk in relation to the 
fixed and random effects. The linear predictor model included the Spatio-temporal random effects 
as defined by the convolutional conditional autoregressive (CAR) model proposed by Besag-York-
Mollie`(BYM) [17] with separable spatial structured and spatial unstructured random effects; and 
temporal components. The model is specified as follows: 
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where α is the mean log overall LTFU risk over all regions, T
itX β  denotes the fixed effects 

regression coefficients ( )1 2, ,..., m= β β ββ  associated with explanatory variables

( )1 2, ,...,T
i mX X X=X . The spatial random effects iS  are partitioned into two components

( )i i iu v= +S were iu is structured spatial random effects that allow for smoothing amongst 
adjacent areas and iv  is unstructured spatial random effects. These spatial random effects 
accounted for the extra-Poisson variability in the observed LTFU counts data[20]. The component 

tγ defines the overall temporal random effects common to all regions. The itψ  defines the space-
time interaction that explains differences in the time trend of LTFU risk for different regions. 

Prior specification 

All unknown parameters and hyper-priors were assigned some prior information. The α
parameter was assumed to follow a Uniform distribution, i.e ( )~ ,Uα −∞ +∞ to have a “sum 



 

 

to zero” constraint for the structured spatial parameter. The regression coefficients,
( )1 2, ,..., m= β β ββ , were assumed to follow a non-informative Gaussian distribution with a mean 

( )0βμ =  and a wide variance, i.e ( )2~  ,m iid N β βμ σβ , with a precision of 2
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The unstructured spatial random effects were assumed Gaussian priors, ( )2~ ,
iid

i v vv N μ σ where 2
vσ  

is the variance component specified as a precision 2
1

v
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The BYM model assumes spatial dependence between neighbouring; hence, the spatial polygons 
were assumed to follow a Gaussian distribution, i.e, 
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where 
i

uδ is the mean parameter and 2
uσ  is the part of the variance parameter of the structured 

spatial component. The 
i

nδ  represents the number of neighbours and iδ  represents the sets of 
neighbours for the region i .  

The temporal random effects tγ were assumed first-order random walk priors ( )1 ~ 0,t t N γγ γ τ−−  

2,...,t Z=  with a precision of .  
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To investigate the space-time interaction, the itψ  was modelled as a Gaussian parameter with a 
precision matrix ψ ψτ R where ψτ  is an unknown scalar and ψR is the correlation structure matrix 
defining the temporal and/or spatial dependence between the elements of ψ .  

The posterior estimates 

The posterior estimates were obtained through the marginal distribution of each parameter to be 
estimated. In other words, the posterior estimates are obtained by multiplying the likelihood and 
the prior distributions.  
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Since this posterior function has no closed-form, we used the using R Integrated Nested Laplace 
Approximation (INLA) package, which is less computationally intensive compared to the Markov 
Chain Monte Carlo (MCMC) methods [6].  

Section S2: R code 

library(spdep) 
library(maptools) 
library(foreign) 
library(sp) 
library(rgdal) 
library(lattice) 
library(R2BayesX) 
library(R2WinBUGS) 
library(shapefiles) 
library(BayesX) 

############################################################################ 
####SPatio-temporal model 

 
model1<- inla(LTFU~TB_status+ WHO_stage+ Sex+ Time_since_ART_initiation+ 
Age_at_ART_initiation+  
               f(Year, model = "rw1",hyper = prec_period)+ 
               f(Time, model = "iid")+ 
               f(ID1, model = "besag", graph =ZimADM1adj.mat,hyper = prec_space),  
               data = DataProv, family ="poisson",E=Expected, 
              list(return.marginals.random=TRUE,return.marginals.predictor=TRUE), 
              control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE)) 
 
summary(model1) 



 

 

 
################################################################################ 
####Spatial and temporal are independent 
 
DataProv$ProvYear<-DataProv$Province*DataProv$Year 
 
model2<- inla(LTFU~TB_status+ WHO_stage+ Sex+ Time_since_ART_initiation+ 
Age_at_ART_initiation +  
                f(Year, model = "rw1",hyper = prec_period)+ 
                f(Time, model = "iid")+ 
                f(ProvYear, model = "iid")+ 
                f(ID1, model = "besag", graph =ZimADM1adj.mat,hyper = prec_space),  
              data = DataProv, family ="poisson",E=Expected, 
              list(return.marginals.random=TRUE,return.marginals.predictor=TRUE), 
              control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE)) 
summary(model2) 
 
################################################################################ 
##Interaction term is temporally correlated with each spatial unit 
#Time trends in different areas are independent 
 
Province.int <- DataProv$Province 
Year.int <- DataProv$Year2 
model3<- inla(LTFU~TB_status+ WHO_stage+ Sex+ Time_since_ART_initiation+ 
Age_at_ART_initiation +  
                f(Year, model = "rw1",hyper = prec_period)+ 
                f(Time, model = "iid")+ 
                f(Province.int,model="iid", group=Year.int,control.group=list(model="rw1"),hyper = 
prec_interact)+  
                f(ID1, model = "besag", graph =ZimADM1adj.mat,hyper = prec_space),  
              data = DataProv, family ="poisson",E=Expected, 
              list(return.marginals.random=TRUE,return.marginals.predictor=TRUE), 
              control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE)) 
summary(model3) 
################################################################################## 
###Unstructured temporal effects with a spatial structured effect 
 
model4<- inla(LTFU~TB_status+ WHO_stage+ Sex+ Time_since_ART_initiation+ 
Age_at_ART_initiation + 
                f(Year, model = "rw1",hyper = prec_period)+ 
                f(Time, model = "iid")+ 
                f(Year.int,model="iid",group=Province.int, 
                  control.group=list(model="besag", graph=ZimADM1adj.mat),hyper = prec_uspace)+  
                f(ID1, model = "besag", graph =ZimADM1adj.mat,hyper = prec_space),  
              data = DataProv, family ="poisson",E=Expected, 
              list(return.marginals.random=TRUE,return.marginals.predictor=TRUE), 
              control.compute=list(dic=TRUE,cpo=TRUE,waic=TRUE)) 
summary(model4) 



 

 

 
Figure S1: Temporal maps showing the observed LTFU rates at the district level in Zimbabwe, 
2009-2016 
 
 

 
Figure S2: Temporal maps showing the predicted LTFU rates using the Poisson model at the 
district level in Zimbabwe, 2009-2016 
 
 
 


