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Abstract: An increased land use intensity due to rapid urbanization and socio-economic development
would alter the structure and function of regional ecosystems and cause prominent environmental
problems. Revealing the impact of land use intensity on ecosystem services (ES) would provide
guidance for more informed decision making to promote the sustainable development of human and
natural systems. In this study, we selected the Hanjiang River Basin (HRB) in Hubei Province (China)
as our study area, explored the correlation between land use intensity and ecosystem Services’ Value
(ESV), and investigated impacts of natural and socio-economic factors on ESV variations based on the
Geographical Detector Model (GDM) and Geographically Weighted Regression (GWR). The results
show that (1) from 2000 to 2020, land use intensity in HRB generally showed an upward trend, with
a high spatial agglomeration in the southeast and low in the northwest; (2) the total ESV increased
from 295.56 billion CNY in 2000 to 296.93 billion CNY in 2010, and then decreased to 295.63 CNY
in 2020, exhibiting an inverted U-shaped trend, with regulation services contributing the most to
ESV; (3) land use intensity and ESV had a strong negative spatial correlation, with LH (low land use
intensity vs. high ESV) aggregations mainly distributed in the northwest, whereas HL (high land
use intensity vs. low ESV) aggregations were located in the southeast; (4) natural factors, including
annual mean temperature, the percentage of forest land, and slope were positively associated with
ESV, while socio-economic factors, including GDP and population density, were negatively associated
with ESV. To achieve the coordinated development of the socio-economy and the environment, ES
should be incorporated into spatial planning and socio-economic development policies.

Keywords: ecosystem services’ value (ESV); land use intensity; spatiotemporal characteristics; spatial
correlations; driving factors; Hanjiang River Basin (HRB)

1. Introduction

Land provides space for human activities and supports terrestrial ecosystem services
(ES) that are essential for human survival and development. ES are the goods (e.g., food,
water, etc.) and services (e.g., air purification, waste treatment, etc.) that ecosystems
provide to human society, which can be broadly classified into four categories, i.e., supply
services, regulation services, support services, and cultural services [1,2]. During the
process of rapid urbanization and industrialization, humans have drastically transformed
the landscape from natural surfaces (such as forest land and water areas) to surfaces
employed for artificial uses (such as cultivated land and built-up areas), and the land
use intensity has substantially increased, which greatly weakens the provision of vital ES
by ecosystems [3,4]. In light of this, promoting the coordination between humans and
ecosystems has become a hot topic for both governments and academia. For example, the
United Nations identified Goal 7: Ensure environmental sustainability as an indicator of
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the Millennium Development Goals and suggested that it be incorporated into country
policies and programs to reverse the loss of ES. Faced with prominent environmental issues,
the 18th National Congress of the Communist Party of China (CPC) in 2012 proposed the
ecological civilization construction strategy, which emphasized harmony between human
and nature [5].

Research on ES has begun to flourish since Costanza et al. (1997) published the fa-
mous paper, “The Value of the World’s Ecosystem Services and Natural Capital”, which
classified the global ES into 17 types and estimated their economic values [1]. Xie et al.
(2003 and 2008) [6,7] built upon Costanza et al. (1997) and proposed an evaluation method
suitable for assessing the economic value of terrestrial ES in China based on surveys of over
200 Chinese ecologists [8]. Much of the literature on ES has focused on the evaluation of ES
value (ESV) [9–11], the driving mechanism of ES variation [12–14], the integration of ES in
landscape planning and decision making [15,16], and analysis of ES synergies and trade-
offs [17,18]. Recent research has begun to investigate the coupling coordinative relationship
between ES and socio-economic development, such as sustainable development [19,20],
human activities’ intensity [21], urbanization [22], etc.

From the perspective of land use, Xi, et al. [23] analyzed the spatiotemporal character-
istics of the ESV of island cities based on land use/cover and predicted future ESV. Rahman
and Szabó [24] analyzed the impact of land use/cover change (LUCC) on the value of
urban ES in Dhaka, Bangladesh, and found that water areas contributed the most to ESV.
However, less attention has been drawn to the relationship between land use intensity and
ESV. Land use intensity reflects the extent to which land has been developed and utilized
by human activities. Some studies take it as an indicator of land use efficiency [25], while
others use it to measure the development of regional land parcels [26]. This study uses it
to measure the degree to which different land uses are developed by human beings. The
existing research on land use intensity has been widely studied in the literature, including
the intensity of cultivated land use [27], the response of land use intensity to urbaniza-
tion [26], and the relationship between land use intensity, the ecological environment [28],
and biodiversity [29]. In this study, we aim to explore spatial correlations between land use
intensity and ESV.

According to previous studies on the driving mechanism of ES change, the evolution
of regional ES is affected by a combination of natural and human factors [30]. Natural
factors include precipitation, temperature, and vegetation coverage [31]. The anthropogenic
aspect comprises the effects of human-induced climate change and LUCC, as well as the
effects of economic development and human activities [32,33]. The selected anthropogenic
factors primarily consist of population, urbanization rate, GDP, etc. The impacts of these
factors vary widely due to regional differences [34,35]. Understanding the influencing
factors and driving mechanisms of regional ES in different locations is essential for targeted
plans and measures to achieve environmental protection and sustainable development [36].

As the largest tributary of the Yangtze River, the socio-economic position of the
Hanjiang River Basin (HRB) is crucial for the Yangtze River Basin. With the development
of the Yangtze River Economic Belt, especially the opening of the middle route of the
South-to-North Water Diversion Project, the ecosystem of the Hanjiang River is under great
threat [37]. The reduction in the water volume and the destruction of vegetation in the upper
reaches of the Hanjiang River directly affect the water quality and hydrological conditions in
the middle and lower reaches, i.e., the HRB in Hubei Province. The Danjiangkou Reservoir
in Hubei Province is the core water source of the middle route of the South-to-North Water
Diversion Project [38], and the water transfer has a great impact on the production and
ecology of the middle and lower reaches of the Hanjiang River. Furthermore, the HRB in
Hubei Province plays a very important role in the development of the province, with more
than 50% of its population and GDP being distributed in the HRB. Hence, decision makers
attach great importance to the development and implementation of policy in Hubei Section
of HRB. Over the past two decades, rapid urbanization and over-reclamation of cultivated
land have resulted in an imbalance of land use structure in the HRB of Hubei Province.
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This imbalance is primarily manifested by the continuous expansion of built-up land at the
expense of high-quality cultivated land, forest land, and water area, resulting in resource
depletion and environmental pollution [39]. Due to increased human activities, the ability
of ecosystems in HRB to self-regulate has degraded.

Some scholars have investigated the ES of the HRB. For example, Li, et al. [40] took
the upper Hanjiang River as their study area and examined the changes of water-related
ES, such as soil conservation and flood control services, as a result of climate change.
Qi et al. [41] explored the role of forest restoration in ES in the HRB and found a positive
impact. Yu, et al. [42] explored the evolution of the social-ecological system in the Hubei
Section of the HRB and found that resources and the economy were important driving
forces of the change in social-ecological systems, and that human activity played a leading
role in its evolution. Existing studies in the HRB have focused on a single type of ES from
a micro perspective, and the majority of the study areas are located in the upper reaches.
Few studies have examined the overall ES in the basin and the correlation between land
use intensity and ES, as well as the driving force of ES, particularly in the middle and
lower HRB reaches. Additionally, as one of the most representative human activities, the
South-to-North Water Diversion Project has put great pressure on the environment and
society in the middle and lower reaches of the Hanjiang River. Our study period ranged
from 2000 to 2020, which allowed us to examine changes in the regional environmental
conditions before and after the implementation of the South-to-North Water Diversion
Project in 2014. It is of great value to investigate the relationship between land use intensity
and ES in this region for the sustainable development of human and the environment.
Thus, in this study, we selected the HRB in Hubei Province as our study area to investigate
the responses of ESV to changes in land use intensity. This study has four specific research
objectives: (1) to identify the spatiotemporal changes of land use intensity, (2) to assess the
spatiotemporal evolution of ESV, (3) to analyze the spatial correlations between land use
intensity and ESV, and (4) to reveal the driving factors affecting ESV changes in the Hubei
section of the HRB from 2000 to 2020.

2. Materials and Methods
2.1. Study Area

The Hanjiang River originates in the Qinling Mountains; flows primarily through
Shaanxi, Henan, and Hubei provinces, and has a total length of 1567 km and a total
area of 15.9 × 104 km2. It joins the Yangtze River from west to east and is the largest
tributary of the Yangtze River. The landform of the HRB descends a total of 1964 m from
mountains to plains [43]. Located in the subtropical monsoon climate zone, the HRB has an
annual average precipitation of 700–1800 mm, an annual average temperature of 14 ◦C, and
a relatively high vegetation coverage rate [44]. After passing through Baihe County, the
Hanjiang River enters Hubei Province from Yunxi County, turns southeast at Danjiangkou,
and passes through Xiangyang, Yicheng, Zhongxiang, and other counties on its way to
Wuhan City, where it joins the Yangtze River. The HRB in Hubei Province, encompassing
nearly the middle and lower reaches of the Hanjiang River, was selected as our study
area (Figure 1).

2.2. Data Sources

The land use raster dataset with a 100 m resolution for the years 2000, 2010, and 2020
was downloaded from the Data Center for Resources and Environmental Sciences, at the
Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 5 May 2022).
Annual mean temperature, annual mean precipitation, slope, GDP, and population density
were also obtained from RESDC. The distances to the county center, water system, and
road system were calculated using the Euclidean distance tool in ArcGIS 10.3 software
(ESRI, Environmental Systems Research Institute, Redlands, CA, USA). ArcGIS 10.3 was
also used to calculate the area of different land use types in each county. All datasets were
converted into the same coordinate system and the same pixel size (100 m × 100 m).

http://www.resdc.cn
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Figure 1. Location of the study area.

2.3. Methods
2.3.1. Calculation of Land Use Intensity

Land is the material basis for the survival and development of human society. Land
use intensity reflects the extent to which land resources are developed and utilized by
human beings [45]. Referring to the method of land use intensity proposed by Zhuang
et al. [46] and the graded assignments of land use type (Table 1), the land use intensity can
be calculated with the following formula:

L = 100×
n

∑
i=1

Ri ×Ai/At (1)

where L is the land use intensity, n is the number of land use types, Ri is the grade factor of
the i-th land use type, Ai is the area of the i-th land use type, and At is the total area of all
land use types.

Table 1. Graded assignments of land use intensity.

Types and
Grades

Unused
Land

Forest, Grassland,
and Water Land Agricultural Land Urban Settlement

Land

Land use
types Unused land

Forest land,
Grassland, Water

area

Cultivated land,
Garden

Land, Artificial
grassland

Towns, residential
areas, industrial

and mining,
transportation

land
Grade factor 1 2 3 4

2.3.2. Assessment of Ecosystem Services’ Value

The evaluation method proposed by Costanza et al. [1] and adapted by Xie et al. [6,7]
for China’s ecosystems has been widely adopted due to its high operability and convenient
method of data acquisition [8]. In general, ES is classified into four categories, i.e., supply
services, regulation services, support services, and cultural services, which can be further
divided into nine subtypes (Table 2). Based on the equivalent value per-unit area of ES pro-
posed by Xie et al. in 2008, we adjusted the economic value of a standard equivalent factor
and calculated the ESV of the study area. According to the functions and characteristics
of land use types, we matched forest land with forest in Xie et al.’s classification system,
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cultivated land with farmland, water area with rivers/lakes, unused land with desert, and
assigned built-up land an ESV of zero [47]. It should be noted that the economic value of
a standard equivalent factor equals 1/7 of the average market value of grain production.
Considering the grain yield per-unit area of the study area and the average grain prices in
2000, 2010, and 2020, the equivalent factor value was calculated as 1881.45 CNY/hm2. The
formula for estimating the total ESV in the study area is as follows:

ESV = ∑ k·Ei ×Ai (2)

where k is the equivalent factor value of ES; Ei is the ESV per-unit area of the i-th land use
type; Ai is the area of the i-th land use type.

Table 2. Equivalent value per-unit area of ES by land use type in the HRB of Hubei Province (Unit:
CNY/hm2).

Categories
of ES Subtypes Cultivated

Land Forest Land Grassland Water Area Unused
Land

Built-Up
Land

Supply
services

Food production 1881.45 620.88 809.02 997.17 37.63 0.00
Raw material
production 733.77 5606.72 677.32 658.51 75.26 0.00

Regulation
services

Gas regulation 1354.64 8127.87 2822.18 959.54 112.89 0.00
Climate regulation 1825.01 7657.51 2935.06 3875.79 244.59 0.00

Hydrological
regulation 1448.72 7695.14 2859.81 35314.84 131.70 0.00

Waste disposal 2615.22 3236.10 2483.52 27,939.55 489.18 0.00
Support
services

Soil conservation 2765.73 7563.43 4214.45 771.39 319.85 0.00
Biodiversity 1919.08 8485.34 3518.31 6453.38 752.58 0.00

Cultural
services

Aesthetic
landscape 319.85 3913.42 1636.86 8353.64 451.55 0.00

2.3.3. Hot Spot Analysis

Getis–Ord Gi* is an index of local spatial autocorrelation used to explore the spatial
clustering of high values (hot spots) or low values (cold spots) of spatial variables [48].
The output can be represented with Z-score, p-value, and confidence level. We used the
Getis–Ord Gi* tool in ArcGIS 10.3 software to analyze the hot spots and cold spots of ESV
in the study area. See Appendix A.1.1 for more detailed description of the hot spot analysis
method.

2.3.4. Bivariate Spatial Autocorrelation Model

Spatial autocorrelation refers to the statistical correlation of a certain attribute value of
geographic objects with spatial location differences. Generally, the closer the two values
are, the greater the correlation. Spatial autocorrelation analysis is an important indicator
to measure the aggregation or discrete distribution of spatial elements, and is generally
described by global Moran’s I and local Moran’s I [49]. The global autocorrelation tests the
spatial vergence pattern of the spatial variables over the entire research range, while the
local spatial autocorrelation captures the correlation of the variables in different regional
units [50]. In this study, the bivariate spatial autocorrelation model was used to investigate
the spatial correlation between land use intensity and ESV using GeoDa 1.18 software.
Moran scatter plots and LISA cluster maps were adopted to analyze local spatial correlation
and reflect the significance level of spatial correlation. See Appendix A for a more detailed
description of the spatial autocorrelation model (Appendix A.1.2).

2.3.5. Analysis of the Driving Mechanism

It is well-established in the literature that changes in ES are driven by both natural
and human factors. The natural dimension includes climate factors (e.g., temperature and
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precipitation), topography (e.g., slope), and vegetation (e.g., the proportion of forest land),
which are found to directly affect ES supply and demand [51]. Human activities can be
represented by socio-economic factors, including GDP, population density, and percentage
of built-up land [35], which are often used to measure regional economic development and
urbanization level. In general, the higher the GDP, population density, and percentage of
built-up land, the higher the degree of human interference with the ecosystem. In addition,
geographic locations, such as distance to the county center, road, and water system, also
have impacts on ES, mainly affecting the spatial patterns of ESV [52].

Based on the above analyses, ten driving factors were selected as potential drivers
of ESV change (Table 3). Then, Geographical detector model (GDM) and Geographically
Weighted Regression (GWR) were used to detect and analyze the driving forces that affect
the ESV. GDM can detect not only the influence of driving factors but also their interactions.
The GWR model can be used to explore the directions and spatial distributions of the
impacts of each driving factor.

Table 3. Details of the driving factors.

Factors Type Indicator Description Calculation Reference

Natural

Temperature (X1) Annual mean temperature (◦C) ArcGIS raster statistics

[51]
Precipitation (X2) Annual mean precipitation (mm) ArcGIS raster statistics

Slope (X3) Slope (◦) ArcGIS raster statistics
Percentage of forest

land (X4) The percentage of forest land (%) Forest land area/total
land area

Distance to water
system (X5) Distance to the water system (m) ArcGIS raster statistics

and Euclidean Distance [52]

Socio-economic

GDP (X6) GDP per unit area (104 CNY/km2) ArcGIS raster statistics
[51]

Population density
(X7)

Number of people per square kilometer
(person/km2) ArcGIS raster statistics

Distance to the county
center (X8) Distance to the county center (m) ArcGIS raster statistics

and Euclidean Distance
[52]

Distance to road (X9) Distance to road (m) ArcGIS raster statistics
and Euclidean Distance

Percentage of built-up
land (X10) The percentage of built-up land (%) Built-up land area/total

land area [35]

Geographical Detector Model

GDM is comprised of risk detection, factor detection, ecological detection, and in-
teractive detection, which can be used to detect spatial variation and identify potential
influencing factors [53]. The GDM has been widely used in many fields, including social-
economy and the ecological environment [51,54]. See Appendix A.1.3 for a more detailed
description of the GDM.

Geographically Weighted Regression

GWR is an extension of the traditional regression analysis method that can estimate
data with spatial autocorrelation and reflect the spatial heterogeneity of parameters [55].
The GWR can reveal the direction and magnitude of influence of each factor in different
locations [56]. See Appendix A.1.3 for more detailed description of the GWR model.

The flow chart of the study is illustrated in Figure 2.



Int. J. Environ. Res. Public Health 2022, 19, 10950 7 of 22

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 23 
 

 

GDM is comprised of risk detection, factor detection, ecological detection, and inter-
active detection, which can be used to detect spatial variation and identify potential influ-
encing factors [53]. The GDM has been widely used in many fields, including social-econ-
omy and the ecological environment [51,54]. See Appendix A.1.3 for a more detailed de-
scription of the GDM.  

Geographically Weighted Regression 
GWR is an extension of the traditional regression analysis method that can estimate 

data with spatial autocorrelation and reflect the spatial heterogeneity of parameters [55]. 
The GWR can reveal the direction and magnitude of influence of each factor in different 
locations [56]. See Appendix A.1.3 for more detailed description of the GWR model. 

The flow chart of the study is illustrated in Figure 2. 

 
Figure 2. The framework of this study. 

3. Results 
3.1. Spatiotemporal Characteristics of Land Use Intensity 

Figure 3 depicts the land use intensity for each county in the HRB in Hubei Province 
from 2000 to 2020. High-value areas of land use intensity were primarily concentrated in 
the southeast, where economic development was relatively advanced, whereas low-value 
areas were primarily distributed in the northwest, where the ecological environment was 
superior and development was relatively lagging. This result indicates that land use in-
tensity has a spatial pattern of “centralized distribution”. A high-value central area was 
formed by Jianghan, Hanyang, and Qiaokou districts of Wuhan City. Other counties close 
to the high-value area also had higher levels of land use intensity. The land use intensity 
decreased gradually from the county center to the county periphery as the distance in-
creased. 

Overall, land use intensity showed a slight upward trend from 2000 to 2020. The 
counties with the most notable increases were located in the southeast of the study area. 
For example, the land use intensity of Caidian District changed from weak to medium, 
and Hanyang District and Qiaokou District changed from strong to strongest. In addition, 

Figure 2. The framework of this study.

3. Results
3.1. Spatiotemporal Characteristics of Land Use Intensity

Figure 3 depicts the land use intensity for each county in the HRB in Hubei Province
from 2000 to 2020. High-value areas of land use intensity were primarily concentrated in the
southeast, where economic development was relatively advanced, whereas low-value areas
were primarily distributed in the northwest, where the ecological environment was superior
and development was relatively lagging. This result indicates that land use intensity has
a spatial pattern of “centralized distribution”. A high-value central area was formed by
Jianghan, Hanyang, and Qiaokou districts of Wuhan City. Other counties close to the high-
value area also had higher levels of land use intensity. The land use intensity decreased
gradually from the county center to the county periphery as the distance increased.

Overall, land use intensity showed a slight upward trend from 2000 to 2020. The
counties with the most notable increases were located in the southeast of the study area.
For example, the land use intensity of Caidian District changed from weak to medium, and
Hanyang District and Qiaokou District changed from strong to strongest. In addition, the
disparity in land use intensity between counties was narrowing, and land use intensity in
the whole study area remained relatively stable.

3.2. Spatiotemporal Characteristics of ESV
3.2.1. Temporal Change of ESV

Forest land and cultivated land in the study area constituted the largest share of
the landscape, accounting for 48.88% and 38.71% of the total area in 2020, respectively,
followed by water area and grassland (Table 4). From 2000 to 2020, the area of cultivated
land and forest land decreased the most, by 1119.04 km2 and 245.83 km2, respectively. The
total ESV of the HRB in Hubei Province was 2955.62 × 108 CNY, 2969.34 × 108 CNY, and
2956.30 × 108 CNY in 2000, 2010, and 2020, respectively (1 CNY = 0.1450 US dollar in 2020),
with an inverted U-shaped trend of first increasing and then decreasing. Overall, the total
ESV increased by 68 million CNY, representing a change rate of 0.02%. Table 4 shows that
the ESV of forest land accounted for the largest proportion, greater than 70% throughout
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the study period, followed by cultivated land and water area, with the highest proportions
in 2000 and 2020, respectively, being 16.24% and 12.14%.
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Table 4. ESV of different land use types in the HRB of Hubei Province from 2000 to 2020.

Land Use Types Cultivated
Land

Forest
Land Grassland Water

Area
Unused

Land
Built-Up

Land Total

2000
Areas (km2) 32,289.44 39,609.20 2364.14 3843.85 87.14 2336.39 80,530.16

ESV (108 CNY) 479.93 2095.58 51.91 327.97 0.23 0.00 2955.62

2010
Areas (km2) 31,786.21 39,546.33 2357.83 4132.90 86.27 2620.62 80,530.16

ESV (108 CNY) 472.45 2092.25 51.77 352.63 0.23 0.00 2969.34

2020
Areas (km2) 31,170.40 39,363.37 2334.04 4207.03 84.04 3371.28 80,530.16

ESV (108 CNY) 463.30 2082.57 51.25 358.96 0.22 0.00 2956.30

2000–2010
Areas (km2) −503.23 −62.87 −6.31 289.05 −0.87 284.23 0.00

ESV (108 CNY) −7.48 −3.33 −0.14 24.66 0.00 0.00 13.72

2010–2020
Areas (km2) −615.81 −182.96 −23.79 74.13 −2.23 750.66 0.00

ESV (108 CNY) −9.15 −9.68 −0.52 6.33 −0.01 0.00 −13.04

2000–2020
Areas (km2) −1119.04 −245.83 −30.10 363.18 −3.10 1034.89 0.00

ESV (108 CNY) −16.63 −13.01 −0.66 30.99 −0.01 0.00 0.68

Figure 4 exhibits the changes in the ESV of different categories of ES in the study
area from 2000 to 2020. These changes were minor, and the structure of the ESV re-
mained relatively stable. The regulation services provided the largest value, reaching up to
1589.89 × 108 CNY in 2020. The ESV of cultural services was the lowest, at only 203.02
× 108 CNY in the same year. Among the nine subtypes of ES, the value of hydrological
regulation services was the largest, at 503.32 × 108 CNY in 2020, followed by biodiversity,
soil conservation, and climate regulation services, with values of 429.25 × 108 CNY, 397.04
× 108 CNY, and 381.49 × 108 CNY, respectively. During the study period, the hydrological
regulation and waste disposal services increased by 9.23 × 108 CNY and 6.35 × 108 CNY,
respectively, whereas all other types of ES showed a slight decline.
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Figure 4. ESV of different ecosystem service types from 2000 to 2020.

3.2.2. Spatial Distribution Characteristics of ESV

We used the ArcGIS 10.3 software to spatially visualize ESV and then classified
it into five grades using the natural breaks method. As shown in Figure 5, the ESV
exhibited clear spatial differentiation. From 2000 to 2020, the high-value areas of ESV
were mainly distributed in the west and northwest of the study area, especially in Maojian,
Fangxian, Baokang, and Shennongjia. The higher value of ESV was the result of the presence
of water bodies, forests, and vegetation in these counties. The low-value areas were
mainly distributed in the southeastern areas, where cultivated land and the economically
developed areas were concentrated. Overall, the spatial distribution of ESV was high in
the northwest and low in the southeast. Figure 5d depicts the spatial distribution of ESV
change rates from 2000 to 2020, indicating that the ESV decreases in the majority of counties
within the study area, with change rates ranging from −3.18% to 0.80%. The Qiaokou,
Jianghan, and Hanyang districts experienced the largest declines in ESV, with respective
change rates of −17.92%, −14.53%, and −12.75%; Xiantao witnessed the largest growth in
ESV, which was up to 14.23%. The spatial distribution of the ESV change rates was closely
related to the land use structures and regulation policies of different counties.

Based on a hot spot analysis, we further revealed the spatial agglomeration character-
istics and evolution of ESV in the HRB of Hubei from 2000 to 2020 (Figure 6). The spatial
agglomeration of ESV was insignificant in nearly two-thirds of the study area, and the
significant regions were mainly distributed in the northwest and southeast. The high-value
(hot spot) agglomeration areas of ESV were mainly distributed in the northwest, whereas
the low-value (cold spot) agglomeration areas were mainly distributed in the southeast,
forming the spatial pattern of high in the northwest and low in the southeast. From 2000
to 2020, the range of hot spot and cold spot agglomerations remained stable, with the
confidence level of hot spots for several counties reducing from 99% to 95%, while the
strength of the significance weakened.
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3.3. Spatial Correlations between Land Use Intensity and ESV

The results from the global bivariate Moran’s I revealed significant negative spatial cor-
relations between land use intensity and ESV, regardless of the ES type
(all Moran’s I values < 0) (Figure 7). The global bivariate Moran’s I in 2000, 2010, and 2020
was −0.63, −0.65, and −0.66 respectively; the majority of the values are in the second and
fourth quadrants. The absolute values of Moran’s I from 2020 to 2020 also indicated that the
negative correlation was becoming increasingly stronger. This strongly demonstrates that
the deepening of land use intensity will lead to the decrease in ESV in the HRB. Figure 8
presents the bivariate local spatial autocorrelation LISA aggregation maps between land
use intensity and ESV at the county level for the years 2000, 2010, and 2020. The clustering
pattern of the correlation between land use intensity and ESV was obvious, and there
were only two types of spatial correlations between the two, namely, LH (low land use
intensity vs. high ESV) and HL (high land use intensity vs. low ESV). The LH areas were
mainly concentrated in the northwest of the study area, and the HL areas were in the
southeast. During the study period, the spatial correction between land use intensity and
ESV exhibited a slight shift in its clustering pattern. From 2000 to 2010, both Qianjiang
and Xiantao cities changed from HL to insignificant, and the changes in Shayang County
and Qiaokou District exhibited the opposite change pattern (Figure 8a,b). Tianmen City
changed from HL to not-significant land use during 2010–2020 (Figure 8c).
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3.4. Spatial Variability of Driving Factors on ESV Changes
3.4.1. Results of GDM

The factor detection module of the GDM was used to quantify the impacts of natural
and socio-economic factors on ESV (Table 5). Among the natural factors, the percentages
of forest land (X4) and slope (X3) had the greatest explanatory power (with q values of
0.87 and 0.81, respectively) for ESV spatial variation. Regarding the socio-economic factors,
the explanatory power of the percentage of built-up land (X10) and GDP (X6) on ESV
variations was 0.74 and 0.65, respectively, and both were significant at the 1% level. Only
the precipitation (X2) and distance to the water system (X5) did not have significant effects
on ESV.

Table 5. Factor detection results of driving factors of ESV.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q statistic 0.75 0.19 0.81 0.87 0.27 0.65 0.55 0.41 0.50 0.74
p value 0.00 *** 0.37 0.00 *** 0.00 *** 0.13 0.00 *** 0.00 *** 0.03 ** 0.00 *** 0.00 ***

rank 3 10 2 1 9 5 6 8 7 4

Note: *** and ** represent that p is significant at the 0.01 and 0.05 levels, respectively.

According to the results of the interaction detector (Table 6), there was no mutual
weakening in the 45 pairs of interaction combinations, indicating that the impact of multiple
driving factors on ESV is greater than that of a single factor. Except for the interaction
results of the precipitation (X2) and the distance to a water system (X5), which are of the
nonlinear enhancement type, the interaction results of the other bivariate combinations
were enhanced. For example, the interaction between the percentage of forest land (X4) and
the distance to a road (X9) explained the ESV changes with the greatest explanatory power
(q value = 0.94), followed by the interaction between the percentage of forest land (X4) and
the distance to a water system (X5), as well as the percentage of forest land (X4) and GDP
(X6), with a q value of 0.92. The results of the interactive detection further verify that the
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percentage of forest land played a leading role in the spatial distribution of regional ESV
changes.

Table 6. Interaction detection results of driving factors of ESV.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.75
X2 0.84 0.19
X3 0.83 0.84 0.81
X4 0.83 0.60 0.89 0.87
X5 0.87 0.75 # 0.87 0.92 0.27
X6 0.86 0.80 0.89 0.92 0.81 0.65
X7 0.88 0.69 0.89 0.90 0.61 0.82 0.55
X8 0.83 0.64 0.85 0.90 0.65 0.83 0.66 0.41
X9 0.78 0.69 0.85 0.94 0.80 0.82 0.76 0.71 0.50

X10 0.86 0.79 0.90 0.90 0.85 0.85 0.75 0.83 0.80 0.74

Note: # denotes nonlinear enhancement of any two factor; without # denotes enhancement of any two factor.

3.4.2. Results of GWR

Table 7 depicts the performance parameters of the GWR and the ordinary least squares
regression (OLS) model, which suggest that the GWR model has a better predictive ability
than the OLS, as it had higher R2 and adjusted R2 values, and a lower AICc value.

Table 7. Statistic coefficients for GWR and OLS.

R2 Adjusted R2 AICc

GWR 0.93 0.90 49.52
OLS 0.88 0.84 248.48

Since the GDM found that precipitation (X2) and the distance to a water system (X5)
have no significant impact on ESV, we removed these two factors and only explored the
spatial distribution of regression coefficients for the remaining eight factors. As illustrated
in Figure 9, each driving factor had an obvious spatial heterogeneity, indicating that the
same factor had different impacts on the ESV at different spatial locations, and there
was a significant spatial non-stationarity. Among the natural factors, ESV had a signifi-
cant positive correlation with temperature, slope, and the percentage of forest land, with
a higher correlation coefficient in the southeast and a lower correlation coefficient in the
northwest (Figure 9a–c). This indicates that the enhancement of these factors contributes
to the improvement of ESV. In terms of socio-economic factors, the regression coefficients
of GDP and population density were both negative, demonstrating that an increase in
these factors will weaken the ESV. The distance to the county center and the distance to
a road had negative correlations with ESV in most regions, and only a few counties in
the southeast had a positive correlation. The absolute values of the influence of GDP and
percentage of built-up land were consistent, with high values in the southeast and low
values in the northwest, which were spatially similar to the driving forces of natural factors.
The effects of population density, distance to county center, and distance to a road on ESV
were not only consistent in their correlation but were also similar in distribution, showing
values of high in the northwest and low in the southeast (Figure 9d–h). In conclusion,
the order for the size of the impacts of the eight driving factors on ESV was as follows:
percentage of forest land > population density > percentage of built-up land > slope >
temperature > GDP > distance to a road > distance to the county center (Figure 9).
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4. Discussion
4.1. Spatial Relationship between Land Use Intensity and ESV

From 2000 to 2010, ESV experienced an inverted U-shaped trend. The changes in ESV
were mainly due to unreasonable land use planning and low land utilization rate, which
led to the rapid growth of built-up land at the expense of forest land, cultivated land, and
grassland. Land use intensity has a significant negative relationship with ESV [57]. Socio-
economic development led to dramatic changes in land use structure, and the increase in
land use intensity was the direct cause of ESV degradation [58,59]. To further explore the
characteristics of the spatial correlation between land use intensity and ESV, we used the
bivariate spatial autocorrelation method to study the spatial relationship between the two.
During the study period, the Moran’s I was entirely negative, and its absolute value showed
a trend of increasing (Figure 7). This indicated that the negative correlation between land
use intensity and ESV in the study area had become more pronounced over time, which
was in line with prior studies on the relationship between LUCC and ESV [60,61]. The
intensification of land use was mainly manifested in the increasing expansion of built-up
land; the continuous occupation of cultivated land, forest land, and grassland; the extensive
land utilization; and the low land utilization. Consequently, the ES provided by ecosystems
was deteriorating. The LISA cluster maps revealed a significant spatial correlation between
land use intensity and ESV (Figure 8). The LH areas were mainly distributed in the hilly
and mountainous areas with higher terrain and steeper slopes in the northwest of the study
area (such as the Shennongjia Mountain, Wudang Mountain, etc.), while HL areas were
mainly distributed in the middle and lower reaches of the Yangtze River with flat terrain
and dense lakes in the southeastern part of the study area, particularly in Wuhan—which
is known as the “city of a thousand lakes”—and the surrounding cities. This was due to
the mountainous and hilly terrain in the northwest region, which made land development
difficult and costly. In addition, the area of forest land in this region is large, which provides
human society with crucial ES such as biodiversity maintenance, climate regulation, and
ecological conservation; thus, the ESV was high. The situation in the southeast was the
opposite of that in the northwest. The unique natural environment created the conditions
for high-density population agglomeration and high-intensity land development, resulting
in the disorderly spread of built-up land and the occupation of ecological lands, especially
water bodies and cultivated land; thus, the ESV in this region was at a low level.

For the ecosystem in the HRB of Hubei Province, the middle route of the
South-to-North Water Diversion Project is undoubtedly one of the most representative
human activities. The opening of the project had a great impact on the aquatic ecological
environment, climate conditions, and people’s production and life in this area. Due to the
reduction in the water volume in the basin, there are problems such as the decline in the
water purification capacity, the reduction of aquatic organisms, the decrease in aquatic
environmental carrying capacity, and the deterioration of the aquatic ecological environ-
ment. At the same time, the industrial and agricultural sectors—with a great demand
for water—are facing a water shortage, and the industrial structure is changing, which
will affect the production and lifestyles of people in the region [62]. The construction of
the project also brought about the problem of immigration. The change from farmland
to settlement and the establishment of new residential areas for immigrants are among
the reasons for the expansion of built-up land and the reduction of cultivated land and
forest land [63].

4.2. Identifying Driving Factors Affecting ESV

According to the Geographical Detector Model (GDM) (Tables 5 and 6), the percentage
of forest land had the largest positive effect on ESV, which was consistent with previous
studies where regions with a large forest area provided greater regulation and support
services and had higher ESV [64,65]. Thus, strengthening the protection of forest land and
increasing the forest coverage rate of each county is of great significance for promoting
regional climatic improvement and alleviating the greenhouse and heat island effect. The
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results of the Geographically Weighted Regression (GWR) analysis further revealed the
dominant role of natural factors with respect to ESV and the growing trend of socio-
economic factors (Figure 9). Natural factors had positive impacts on ESV and the regions
with more favorable natural conditions had larger ESVs. However, the areas with high
driving coefficients of natural factors were concentrated in the economically developed
counties in the southeast. This was because better economic conditions in many regions
come at the expense of environmental degradation. Therefore, if the protection of the
natural environment of counties in this region is enhanced, based on the same input
conditions, the increase in ESV must be much higher than those of the regions with
relatively poor socio-economic conditions but a superior ecological environment. This
can also explain the “high in the northwest and low in the southeast” distribution of
socio-economic factors such as GDP. Nevertheless, not all socio-economic factors had the
same distribution of driving forces as GDP. For example, the distribution of the driving
coefficients of population density, the distance to the county center, and the distance
to a road was “low in the northwest and high in the southeast”. This indicated that
the improvement of socio-economic conditions had less of an effect on the ESV of the
undeveloped counties in the northwest. For these regions, the improvement in socio-
economic conditions would not result in a substantial decrease in ESV. However, for the
more economically developed and densely populated southeastern regions, the lack of
environmental protection would increase regional environmental pressure and lead to
a rapid decline in ESV [66]. The influence of the distance to the county center and the
distance to a road on ESV was predominantly negative, except for a few northwest counties.

In conclusion, ESV was influenced by both natural and socio-economic factors in
an interactive way [67]. Although multiple types of ES are provided by natural systems
to maintain human welfare, human activities have altered the structure and function of
ecosystems, which further affect the provision of vital ES by ecosystems [68]. Therefore,
it is important to protect and restore the crucial ecosystems through landscape planning,
regulative policies, and environmental programs.

4.3. Policy Implications

The increased land use intensity during rapid urbanization and social-economic de-
velopment has inevitably degraded the ecological environment [69,70], as evidenced by the
reduction of forest land and cultivated land, air pollution, severe climate change, waste
of land resources, etc. The existing land use planning and policies have not adequately
recognized the negative impact of land use intensification on ESV [71]. With a greater
emphasis on the sustainable development of humans and the environment in the future,
the protection of ecosystems will inevitably become the core of social and economic devel-
opment. Therefore, we should adhere to the developmental idea of “ecological priority”
and attach importance to the rational use of land to enhance ESV. This study proposes
the following practical policy recommendations for the Hanjiang River Basin in Hubei
Province. First, since the study area is a river basin, its regulation and support services are
particularly prominent. Therefore, the sustainability of the river basin should be based on
the protection of forest land and water areas [72,73]. Decision makers should increase the
vegetation coverage of river basins through forest restoration and reforestation programs,
increase the supervision of the aquatic environment, and moderately restore farmland to
forests and grasslands. Second, due to the imbalanced regional development, counties
with varying levels of socio-economic development should adopt locally differentiated
regulation policies and regulation measures. For mountain counties, ecological compen-
sation policies should be implemented to improve local economic and social conditions,
while for plain counties, it is necessary to strictly control the expansion of built-up land
and strengthen the protection of ecological land. It is possible to establish a long-term
cross-regional ecological compensation and monitoring mechanism between mountain
and plain counties. Third, to achieve the coordinated development of the socio-economy
and the environment, future decision-making should incorporate ES into spatial-planning
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and socio-economic development policies. The ESV should be evaluated before projects
progress to construction to mitigate the negative effects of human activities on ecosystems.

4.4. Limitations and Future Work

This study has several limitations. First, due to the opening of the middle route of the
South-to-North Water Diversion Project, the natural and socio-economic environment of
the HRB has been greatly affected by the change in water resources. However, the impacts
of the project on local ecosystems could not be fully revealed in this study. The ESV in this
study was estimated based on land use/cover data and their equivalent values proposed
by Xie et al. (2003 and 2008). The change in land use/cover area cannot fully reflect the
impact of the South-to-North Water Diversion Project on the ecosystem. Second, this study
mainly evaluated the ecosystem as a whole, without considering the in-depth analysis of
the primary and secondary services of the ecosystem. Furthermore, driving factors were
selected at the macro level, such as the annual mean temperature, slope, and GDP, without
considering the interactions with micro factors such as soil, the sediment concentration,
microelements, etc. Our future research will improve the assessment method of ESV and
evaluate ESV at the township level or grid scale [74], and the land types will be subdivided
to obtain a more accurate estimation of ESV.

5. Conclusions

The change in ESV is the result of the joint action of natural and human forces.
Exploring the temporal and spatial variation of ESV and revealing its driving factors
is crucial for promoting the harmonious coexistence between human and nature. Our study
analyzed how ESV changed over time due to the change in land use intensity. From 2000 to
2020, the area of built-up land increased from 2336.39 km2 to 3371.28 km2, while the area
of cultivated land, grassland, and forest land decreased. The ESV of the Han River Basin
in Hubei Province experienced an inverted U-shaped trend, with an increase followed by
a decrease, and had the spatial distribution characteristics of high in the northwest and low
in the southeast. The counties with larger forest land and water areas tended to have higher
ESVs. Additionally, there was a significant negative correlation between land use intensity
and ESV, which was most prominent in the northwest (LH type) and southeast (HL type)
of the study area. From the analysis of the driving forces, it was found that the interaction
between driving factors had a greater impact on the spatial variability of ESV than that
of single factors. The spatial regression results indicated that natural factors, such as the
percentage of forest land, temperature, and slope, have positive impacts on ESV, and their
influence gradually increased from northwest to southeast. There was a significant spatial
differentiation between socio-economic factors, i.e., both positive and negative relationships
existed, and the spatial distributions of the influence coefficients were opposite to those of
natural factors. In general, the influence of natural factors on ESV was greater and more
significant than that of socio-economic factors, while the impact and spatial heterogeneity
of socio-economic factors on ESV tended to increase. The findings in this study could
provide implications for spatial planning towards promoting the sustainable development
of ecosystems.
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Appendix A.

The detailed description of the methods used in this study can be found in Appendix A.

Appendix A.1. Methods

Appendix A.1.1. Hot Spot Analysis

Getis–Ord Gi* is an index of local spatial autocorrelation used to explore the spatial
clustering of high values (hot spots) or low values (cold spots) of spatial variables [48]. The
output can be represented with the Z-score, p-value, and confidence level. We used the
Getis–Ord Gi* tool in the ArcGIS 10.3 software to analyze the hot spots and cold spots of
ESV in the study area. The expression is as follows [75]:

G∗ =
∑n

j=1 WijXj − X ∑n
i=1 Wij

s

√[
n ∑n

j=1 Wij
2 −

(
∑n

j=1 Wij

)2
]

/(n− 1)

(A1)

X =
1
n ∑n

i=1 Xi (A2)

s =

√
1
n ∑n

i=1 Xi
2 − 1

X2 (A3)

where G* is the Z-score; n is the number of units; Xi and Xj represent the observations of
variable X in i and j space units, respectively; Wij is a spatial weight matrix; and X and
s are the average value and standard deviation, respectively. The higher the Z-score, the
denser the high-values (hot spots) are, which means the higher the attribute value around
the unit, and vice versa.

Appendix A.1.2. Bivariate Spatial Autocorrelation Model

Spatial autocorrelation refers to the statistical correlation of a certain attribute value of
a geographic object with spatial location differences. Generally, the closer the two values
are, the greater the correlation. Spatial autocorrelation analysis is an important indicator
to measure the aggregation or discrete distribution of spatial elements, and is generally
described by global Moran’s I and local Moran’s I [49]. The Moran’s I value is expressed as
follows:

Moran′s I =
n ∑n

i=1 ∑n
j 6=1 Wij·

(
Xi − X

)
·
(
Xj − X

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

i=1
(
Xi − X

)2 (A4)

where n is the number of the geographic unit (i.e., 39 counties in this study); Xi and Xj

denote the actual attribute values in the sampling plots i and j, respectively; X is the average
value of X; and Wij is a spatial weight matrix. When Moran’s I < 0, it indicates a negative
correlation; when Moran’s I = 0, it indicates no correlation; and when Moran’s I > 0, it
indicates a positive correlation. The greater the value, the larger the correlation between
the observed values in the spatial distribution and the stronger the aggregation.

The global autocorrelation tests the spatial vergence pattern of the spatial variables
over the entire research range, while the local spatial autocorrelation captures the correlation
of the variables in different regional units [50]. The formula is as follows:

Ii
kl = zi

k

n

∑
j=1

Wijz
j
l (A5)
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where zi
k =

Xi
k−Xk
ek

, zj
l =

Xi
l− Xl

el
; Xi

k is the value of attribute k of sampling plot i; X j
l is the

value of attribute l of sampling plot j; Xk and Xl is the average values of attributes k and l,
respectively; and ek and el are the variances of attributes k and l, respectively.

Appendix A.1.3. Analysis of the Driving Mechanism

Geographical Detector Model

The GDM comprises risk detection, factor detection, ecological detection, and in-
teractive detection, which can be used to detect spatial variation and identify potential
influencing factors [53]. The GDM has been widely used in many fields, including social
economy and ecological environments [51,54]. The expression of the GDM is as follows:

q = 1− 1
Nσ2

L

∑
j=1

Njσ
2
j (A6)

where q represents the explanatory ability of the independent variable (including natural
and socio-economic factors) towards the dependent variable (ESV), and q ∈ [0, 1]; N is the
total sample size in the study area; σ2 is the variance; and j represents partition (j = 1,2,
. . . , L). When q is closer to 1, it indicates that the driving factor has a greater impact on the
independent variable and that the spatial heterogeneity is stronger, and vice versa.

Geographically Weighted Regression

The GWR is an extension of the traditional regression analysis method that can es-
timate data with spatial autocorrelation and reflect the spatial heterogeneity of parame-
ters [55]. The GWR can reveal the direction and magnitude of influence of each factor in
different locations [56]. The expression is as follows:

yk = β0(uk, vk) + ∑n
i=1 βi(uk, vk)xki + ck (A7)

where yk is the weighted regression value of k-th sample; β0 is the intercept; (uk, vk) is the
geographic center coordinate of the k-th sample; β0(uk, vk) is the constant term; βi(uk, vk)
is the coefficient of the k-th independent variable of i-th driving factor; xki is the i-th
independent variable of the k-th sample; and ck is the error term. In this study, ESV is the
dependent variable, and natural and socio-economic factors are the independent variables.
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