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Abstract: Diabetes, which is a chronic disease with a high prevalence in people over 45 years old in
China, is a public health issue of global concern. In order to explore the spatiotemporal patterns of
diabetes among people over 45 years old in China, to find out diabetes risk factors, and to assess
its risk, we used spatial autocorrelation, spatiotemporal cluster analysis, binary logistic regression,
and a random forest model in this study. The results of the spatial autocorrelation analysis and
the spatiotemporal clustering analysis showed that diabetes patients are mainly clustered near
the Beijing–Tianjin–Hebei region, and that the prevalence of diabetes clusters is waning. Age,
hypertension, dyslipidemia, and smoking history were all diabetes risk factors (p < 0.05), but the
spatial heterogeneity of these factors was weak. Compared with the binary logistic regression
model, the random forest model showed better accuracy in assessing diabetes risk. According
to the assessment risk map generated by the random forest model, the northeast region and the
Beijing–Tianjin–Hebei region are high-risk areas for diabetes.

Keywords: spatiotemporal analysis; risk factors; binary logistic regression; random forest model

1. Introduction
1.1. Background

In the past few decades, diabetes has become one of the most common chronic noncom-
municable diseases in both developed and developing countries [1]. Diabetes is emerging as
an epidemic all over the world, and it is a common chronic disease that seriously threatens
human health [2]. It affects the quality of lives of many people around the world [3], and
the quality of life for Chinese residents is also affected by diabetes. China has a large and
rapidly growing elderly population. Studies have shown that diabetes may also lead to the
occurrence of other diseases, such as metabolic-associated fatty liver disease [4–8]. Diabetes
has become another serious health hazard, following cardiovascular and cerebrovascular
diseases and tumors. Half (50.1%) of the population does not even know if they are diabetic,
which greatly increases the global disease burden [9]. According to data published by the
International Diabetes Federation (IDF), the prevalence of diabetes is increasing rapidly
around the world. According to IDF estimates, the prevalence of diabetes in China has
reached 10.6%, with the proportion of undiagnosed diabetics as high as 51.7% [10].

Disease mapping has been historically considered one of the most important public
health issues, derived from an understanding of the relationship between health and lo-
cation. Understanding this relationship has been the goal of scientists and researchers for
decades [11]. Geographic information systems (GIS) are a type of computer software used
for data capturing, thematic mapping, updating, retrieving, structured querying, and ana-
lyzing the distribution and differentiation of various phenomena, including communicable
and non-communicable diseases across the world, with reference to various periods [12].
The most important characteristic of a geographic information system is its powerful spatial
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analysis function. Nowadays, geographic information systems have played an irreplaceable
role in many aspects of daily life. A GIS is, at its heart, a simple extension of statistical
analyses that joins epidemiological, sociological, clinical, and economic data with references
to space [13].

1.2. Research Status

The GIS approach has the potential for broader applications within public health
program evaluation [14,15]. With the rapid development of GIS systems and related
technologies, the advantages that GIS provides for the study of chronic diseases have
been gradually recognized, and the application scope has also transitioned from infectious
diseases to chronic diseases [16,17]. Some scholars have applied GIS to diabetes research
and proposed that geospatial methods should be a part of diabetes research because many
pathogenic pathways have inherent spatial properties [18]. GIS can be used to map the
geographical distribution of disease prevalence, the trend of disease transmission, and the
spatial modeling of environmental factors influencing disease occurrence [11].

Although diabetes is a health threat all over the world, its prevalence and trends in
various countries and regions are heterogeneous [19]. Previous studies have showed that
the prevalence of diabetes among middle-aged and elderly people in the central and eastern
regions is higher than in the western regions, but the gap was closing [20]. At present,
studies on diabetes in Chinese people over 45 years old are mostly regional or related to
a single province, but the number of nationwide studies is lacking [18]. Moreover, GIS is
seldom used to study the spatial patterns of diabetes [21]. Recent studies in the health field
have adopted machine learning and deep learning algorithms. Since machine-learning
approaches perform well in predicting diabetes, they are gaining traction in the health
profession [22,23]. This research hoped to analyze the regional differences of diabetes
among people over 45 years old in China, and to assess diabetes risk [24], thereby aiming
to provide reference for the formulation of diabetes prevention and treatment programs.

2. Materials and Methods
2.1. Data Source

This study is based on the baseline data of the China Health and Retirement Lon-
gitudinal Study (CHARLS). The China Health and Retirement Longitudinal Study is
part of a worldwide pension tracking survey. This database is one of the most com-
monly used databases in China to study the health of the middle-aged and older popula-
tion, and provides high-quality microdata representing households and individuals aged
≥45 years in China. Many scholars have obtained many reliable research results based
on CHARLS [25–28].

The China Health and Retirement Longitudinal Study (CHARLS) aims to collect
a high-quality nationally representative sample of Chinese residents ages 45 and older to
serve the needs of scientific research on the elderly. The baseline national wave of CHARLS
was established in 2011 and includes about 10,000 households in 125 prefecture-level city
and 450 villages/resident committees. CHARLS adopts multi-stage stratified probability-
proportional-to-size sampling. CHARLS is based on the Health and Retirement Study
(HRS) and on related aging surveys such as the English Longitudinal Study of Aging
(ELSA) and the Survey of Health, Aging and Retirement in Europe (SHARE) [29].

2.2. Diabetes Definition

Prevalence refers to the proportion of the total number of people who have the disease
at a specific point in time in a given place. Diabetes was defined as: fasting glucose
level ≥ 126 mg/dL (7.0 mmol/L), or 2-h glucose level ≥ 200 mg/dL (11.1 mmol/L), or on
medications for high blood sugar, or self-reported diagnosis of diabetes by a physician.
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2.3. Methods
2.3.1. Spatial Autocorrelation

Global Spatial Autocorrelation statistics are often expressed as Moran’s I (Equation (1)).
According to the literature, the classical Moran’s index of Spatial Autocorrelation has been
widely used in many knowledge fields, such as epidemiology, ecology, and economics [30].
The index was used to explore the overall spatial pattern of disease prevalence. When the
Moran index is between 0 and 1, it indicates that there is a positive correlation between
geographical entities. The larger the value, the more obvious the spatial correlation. When
the Moran index is between −1 and 0, there is a negative correlation. The smaller the
Moran index, the greater the spatial difference. A value of 0 indicates no correlation. In
addition, the value also needs to pass the hypothesis test, without which, the Moran index
is meaningless.

I =
∑i ∑j WijZiZj/S0

∑j Z2
i /n

(1)

where Zi = yi − ӯ, where ӯ is the mean of the variable y representing the observations under
study, Wij is the spatial weight between feature i and j, and S0 is the sum of all the elements
in the spatial weights matrix (S0 = ∑i∑j Wij) [31].

Getis and Ord’s G* assessed localized patterns of spatial association. Specifically, Getis
and Ord’s G* can indicate regions where low values are clustered (G* > 0) and regions where
high values are clustered (G* < 0) [32]. Local Spatial Autocorrelation can accurately indicate
the aggregation mode of each spatial unit [33]. Generally, Local Spatial Autocorrelation
analysis (LISA) is used. LISA had five results of “high-high” (H-H), “low-low” (L-L),
“low-high” (L-H), “high-low” (H-L), and no statistical significance [34]. Respectively, the
regions with high prevalence surround the regions with high prevalence, the regions with
low prevalence surround the regions with low prevalence, the regions with low prevalence
surround the regions with high prevalence and the regions with high prevalence surround
the regions with low prevalence. In this study, Moran’s I and LISA plots were calculated
for the prevalence of diabetes in members of the Chinese population over 45 years old in
2011, 2013, 2015, and 2018, respectively. ArcGIS 10.4 software (ESRI Inc., Redlands, CA,
USA) was used in this study.

2.3.2. Spatial Cluster Analysis

Temporal, spatial, and spatiotemporal scan statistics are now commonly used for dis-
ease cluster detection and assessment for a variety of diseases, including cancer, Creutzfeldt–
Jakob disease, granulocytic ehrlichiosis, sclerosis, and diabetes. Spatial clustering analysis
was performed using SaTScan software (Martin Kulldorff, Harvard Medical School, Boston
and Information Management Services Inc, Calverton, MD, USA) to detect spatially clus-
tered areas or high-risk areas of diabetes in members of the Chinese population over
45 years old. The “purely spatial analysis” and “space time analysis” were used to test
whether the prevalence of diabetes was randomly distributed in space. To avoid prese-
lection bias as described in the SaTScan User Guide (version 9.1) [35], a maximum spatial
cluster size of 10% of the population at risk was used.

2.3.3. Binary Logistic Regression

Binary logistic regression is a linear regression analysis in which the dependent vari-
able is a binary classification variable, requiring logit transformation of the target probability
first, so as to ensure that when the probability is at (0, 1), the logit transformation value
can be any real number, avoiding the structural defects of the linear probability model.
The probability of each classification of a classification variable can be predicted by logistic
regression. The dependent variable is a classification variable, and the independent variable
can be an interval variable, a classification variable, or a mixture of the interval and the
classification variable. Binary logistic regression model is a regression model established for
binary variables, such as Equation (2) [36], which can capably meet the modeling require-
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ments of classified data. It has become a commonly used modeling method for classifying
variables and has been widely used in many fields, such as medicine. We used IBM SPSS
Statistics 26 software(IBM Corp., Armonk, NY, USA) and the test level α = 0.05 was used in
this study.

ln
p

1 − p
= β0 + β1X1 + β2X2 + . . . βiXi (2)

Suppose a survey of diabetes for conditional probability Pi = P (Yi = 1|Xi), according
to the type of binary logistic regression model assumes that the probability expression as
shown in Equation (3).

Pi =
1

1 + e(β0+β1X1+β2X2+...βiXi)
=

1
1 + e−(β0+∑ βiXi)

(3)

2.3.4. Geographically Weighted Regression

The geographically weighted regression (GWR) (Equation (4)) is a statistical technique
that is used to model heterogeneous spatial processes. It has high accuracy in analyzing
location-affected relationships [37].

yi = β0(ui, vi) +
n

∑
k=1

βk(ui, vi)xik + εi (4)

where (ui, vi) denotes the coordinates of the i-th point in space, βk (ui, vi) is the regression
coefficient of each variable at point i, β0 (ui, vi) is a constant term, εi is the random error
term at point i, and n is the number of independent variables.

GWR is a local modeling tool based on the optimization of global regression models,
which complements the global model by providing a set of coefficients for each geographic
unit to determine the spatial variability of the observations [38]. GWR was used to explore
the spatial heterogeneity of risk factors in this study.

2.3.5. Random Forest Model

The random forest algorithm can deal with nonlinear problems, has good anti-noise
ability, and tends to avoid overfitting. Compared with the traditional multiple linear regres-
sion model, the random forest algorithm does not need to set the function form in advance
and overcome the complex interaction between covariables [39]. The building blocks of
the decision tree-based modeling approach, the random forest model, are bootstrapped
and are called bagged aggregates. Random forest models randomly use bagging to identify
features, thereby separating each node by selecting the most critical possible to assess or
predict variables, which will improve the model’s accuracy without causing overfitting.
At present, the random forest model has been widely applied to predict and assess soil
moisture, shallow water level, hydrology, and environmental management. In a random
forest, factors with a significant influence on logistic regression are included as indepen-
dent variables into random forest modeling [40], and the presence of diabetes is set as the
dependent variable. The total data are divided into a training set and test set according
to 7:3. The model parameters are trained through the training set for the assessment of
the test set.

3. Results
3.1. Statistical Analysis and Spatial Distribution

In 2011, a total of 20,525 samples were included, including 1088 cases, with a prevalence
of 5.30%. In 2013, a total of 20,525 samples were included, including 1333 cases, with
a prevalence of 6.49%; In 2015, a total of 20,525 samples were included, including 1766 cases,
with a prevalence of 8.60%. In 2018, a total of 18,174 samples were included, including
1032 cases, with a prevalence of 5.68%.
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As shown in Figure 1, the highest prevalence of diabetes was in 2015. The overall
prevalence of the respondents was 8.60%, of which, the prevalence of male respondents
was 7.44% and the prevalence of female respondents was 9.74%; the lowest prevalence of
diabetes was in 2011, when the overall prevalence of the respondents was 5.30%, of which,
the prevalence of male respondents was 4.68% and the prevalence of female respondents
was 5.91%. In addition, the survey data showed that the prevalence of female respondents
was higher than that of male respondents.
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Figure 1. Prevalence of diabetes by gender in 5-year age groups in the CHARLS 2011 national survey.

The survey respondents are stratified according to age groups, as shown in Figures 2–5,
which show that the age group with the lowest prevalence of respondents was 45 to 49 years
old, the age groups with the highest prevalence of respondents were 60 to 64 years old and
65–69 years old, and the prevalence of female respondents was higher than that of male
respondents in almost any age group.
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Figure 2. Prevalence of diabetes by gender in five-year age groups in the CHARLS 2013 national survey.
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Figure 3. Prevalence of diabetes by gender in five-year age groups in the CHARLS 2015 national survey.
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Figure 5. Prevalence of diabetes by age in 2011, 2013, 2015, and 2018.
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The prevalence of diabetes in 2011, 2013, 2015, and 2018 were calculated according to
the sampled 125 prefecture-level administrative regions, and visualized using ArcGIS 10.2.
The results are shown in Figure 6.
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Figure 6. Prevalence of diabetes visualized. (a) The prevalence of diabetes in 2011 was divided into
five classifications according to the natural breaks method; (b) The prevalence of diabetes in 2013 was
divided into five classifications according to the natural breaks method; (c) The prevalence of diabetes
in 2015 was divided into five classifications according to the natural breaks method; (d) The prevalence
of diabetes in 2018 was divided into five classifications according to the natural breaks method.
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In 2011, the prevalence of diabetes in the respondents was between 0.00% and 14.04%,
and the prefecture-level cities with higher prevalence were mainly located in the northeast
region and Beijing–Tianjin–Hebei region. In 2013, the prevalence of diabetes in the respon-
dents was between 0.00% and 14.74%, and the prefecture-level cities with higher prevalence
were mainly located in the central region, the northeast region and Beijing–Tianjin–Hebei
region. In 2015, the prevalence of diabetes in the respondents was between 1.55% and
22.36%, and the prefecture-level cities with high prevalence were mainly located in the
Beijing–Tianjin–Hebei region. In 2018, the prevalence of diabetes in the respondents was be-
tween 0.00% and 14.50%, and prefecture-level cities with high prevalence were distributed
in the central region and the northeast region. The prevalence of diabetes is generally
higher in the north than in the south, and in the coastal areas than in the inland [18].

3.2. Spatial Autocorrelation Analysis

Hotspot analysis was performed on the prevalence of diabetes of respondents in
prefecture-level cities in 2011, 2013, 2015, and 2018, and their LISA maps were also
made. The results are shown in Figures 7–10, combined with global spatial autocorre-
lation (Table 1), showing that in 2011, 2013, 2015 and 2018, the prevalence of diabetes was
clustered in China. The four-year prevalence hotspots appeared near the Beijing–Tianjin–
Hebei region, and the Beijing–Tianjin–Hebei region has experienced high-value clusters of
diabetes prevalence for four years according to LISA. However, Moran’s index decreased
after 2013. Many hot and cold spots became not significant after 2013. High-High or
Low-Low distribution areas also decreased slowly.
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Table 1. Global spatial autocorrelation.

Date Moran’s Index p-Value Z-Score Spatial Distribution Model

2011 0.103458 <0.001 7.139808 Cluster
2013 0.104485 <0.001 7.205062 Cluster
2015 0.067174 <0.001 4.835403 Cluster
2018 0.025585 <0.007 2.652944 Cluster

3.3. Analysis of Time and Space

Using SaTScan software to conduct a purely spatial analysis of the respondents in 2018
to accurately locate the spatial clustering area of diabetes, a Poisson distribution was used,
and we set a maximum of 10% of the population in the at risk group. The results showed
that the most likely clustering center appears in Cangzhou, Hebei Province. There were ten
cities are in the dangerous areas (Cangzhou, Tianjin, Dezhou, Baoding, Binzhou, Beijing,
Jinan, Shijiazhuang, Liaocheng, Weifang) (Table 2 and Figure 11), and 1899 respondents
at risk.

Table 2. Purely spatial analysis results by using SaTScan software.

Cluster Center Radius (km) Region Logarithmic
Likelihood Ratio

Relative
Risk Level p-Value

Cangzhou,
Hebei Province 270.98

Cangzhou, Tianjin, Dezhou,
Baoding, Binzhou, Beijing, Jinan,

Shijiazhuang, Liaocheng, Weifang
52.819422 1.54 <0.001

Tianjin 153.02 Tianjin, Cangzhou, Beijing, Baoding 41.161335 1.78 <0.001

Zhengzhou,
Henan Province 221.64

Zhengzhou, Jiaozuo, Luoyang,
Pingdingshan, Zhoukou, Anyang,

Puyang, Bozhou
39.852687 1.54 <0.001
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Figure 11. Three clusters were detected by purely spatial analysis.

In order to explore if diabetes had clustering characteristics in space and time,
a spatiotemporal analysis of respondents in 2011, 2013, 2015, and 2018 was performed
using SaTSca, with a maximum of 10% of the population at risk. The results showed that
the most likely agglomeration center appears in Dezhou, Shandong Province. There are
ten cities in the danger zone (Dezhou, Cangzhou, Jinan, Liaocheng, Binzhou, Shijiazhuang,
Baoding, Tianjin, Puyang, Anyang) (Table 3 and Figure 12), and 1931 respondents at risk.

Table 3. Spatiotemporal analysis results by using SaTScan software.

Cluster Center Radius (km) Region Logarithmic
Likelihood Ratio

Relative
Risk Level p-Value

Dezhou,
Shandong Province 229.44

Dezhou, Cangzhou, Jinan,
Liaocheng, Binzhou,

Shijiazhuang, Baoding, Tianjin,
Puyang, Anyang

163.632756 4.16 <0.001

Suqian,
Jiangsu Province 264.81

Suqian, Xuzhou, Lianyungang,
Suzhou, Linyi, Zaozhuang,

Yancheng, Huainan, Yangzhou,
Taizhou, Bozhou, Fuyang, Hefei

109.037860 3.39 <0.001

Weinan,
Shanxi Province 377.23

Weinan, Yuncheng, Baoji, Linfen,
Luoyang, Hanzhong, Pingliang,

Pingdingshan, Jiaozuo,
Xiangfan, Zhengzhou

94.209061 3.20 <0.001



Int. J. Environ. Res. Public Health 2022, 19, 9861 15 of 26Int. J. Environ. Res. Public Health 2022, 19, x 16 of 28 
 

 

 
Figure 12. Three clusters were detected by spatiotemporal analysis. 

3.4. Binary Logistic Regression 
In order to explore the factors that affect the occurrence of diabetes and assess the 

risk of diabetes, binary logistic regression was used for exploration based on the baseline 
data of 2018. The initial assignment of variables is shown in Table 4. 

Table 4. Variables and assignments. 

Variables Type Assignments 
Gender Integer 0 = Male; 1 = Female 

Age Integer 0 = 45–49; 1 = 50–54; 2 = 55–59; 3 = 60–64; 4 = 65–69;  
5 = 70 or more 

Location of Residential Address Integer 
0 = Central of City/Town; 1 = Urban-Rural  

Integration Zone; 2 = Rural; 3 = Special Zone 

Education Integer 

0 = Illiterate; 1 = Did not Finish Primary School;  
2 = Sishu/Home School; 3 = Elementary School;  

4 = Middle School; 5 = High School; 6 = Vocational School; 7 = 
Two-/Three-Year College/Associate Degree; 8 = Four-Year 

College/Bachelor’s Degree or more 

Marital Status Integer 

0 = Married with Spouse Present; 1 = Married but Not Living 
with Spouse Temporarily for Reasons Such as Work; 2 = Sep-

arated; 3 = Divorced;  
4 = Widowed; 5 = Never Married 

Nation Integer 

0 = Han Nationality; 1 = Zhuang Nationality;  
2 = Manchu; 3 = Hui Nationality; 4 = Miao  

Nationality; 5 = Uyghur Nationality; 6 = Tujia  
Nationality; 7 = Yi Nationality;  

8 = Other Nationality 
Hypertension Integer 0 = No; 1 = Yes 
Dyslipidemia Integer 0 = No; 1 = Yes 

Diabetes Integer 0 = No; 1 = Yes 

Figure 12. Three clusters were detected by spatiotemporal analysis.

3.4. Binary Logistic Regression

In order to explore the factors that affect the occurrence of diabetes and assess the risk
of diabetes, binary logistic regression was used for exploration based on the baseline data
of 2018. The initial assignment of variables is shown in Table 4.

Table 4. Variables and assignments.

Variables Type Assignments

Gender Integer 0 = Male; 1 = Female

Age Integer 0 = 45–49; 1 = 50–54; 2 = 55–59; 3 = 60–64; 4 = 65–69;
5 = 70 or more

Location of Residential Address Integer 0 = Central of City/Town; 1 = Urban-Rural
Integration Zone; 2 = Rural; 3 = Special Zone

Education Integer

0 = Illiterate; 1 = Did not Finish Primary School;
2 = Sishu/Home School; 3 = Elementary School;

4 = Middle School; 5 = High School; 6 = Vocational School;
7 = Two-/Three-Year College/Associate Degree;

8 = Four-Year College/Bachelor’s Degree or more

Marital Status Integer
0 = Married with Spouse Present; 1 = Married but Not Living with Spouse

Temporarily for Reasons Such as Work; 2 = Separated; 3 = Divorced;
4 = Widowed; 5 = Never Married

Nation Integer

0 = Han Nationality; 1 = Zhuang Nationality;
2 = Manchu; 3 = Hui Nationality;

4 = Miao Nationality; 5 = Uyghur Nationality;
6 = Tujia Nationality; 7 = Yi Nationality;

8 = Other Nationality
Hypertension Integer 0 = No; 1 = Yes
Dyslipidemia Integer 0 = No; 1 = Yes

Diabetes Integer 0 = No; 1 = Yes

Cancer Integer 0 = No; 1 = Yes
Liver Disease Integer 0 = No; 1 = Yes

Emotional Problems Integer 0 = No; 1 = Yes
Smoking History Integer 0 = No; 1 = Yes

Alcohol Use Integer 0 = No; 1 = Yes
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Table 5 shows the results of the chi-square test for single factors: age, location of
residential address, education, hypertension, dyslipidemia, cancer, liver disease, smoking
history, and alcohol use. A total of nine factors passed the chi-square test (p < 0.05) and
could be included in binary logistic regression.

Table 5. Chi-square test result.

Factors The Total Number
of Samples

Number
of Cases X2 p-Value

Gender 3.734 0.053
Male 8715 463 5.31%

Female 9459 569 6.02%
Age 37.133 <0.001

45–49 1307 53 4.06%
50–54 3173 120 3.78%
55–59 3135 181 5.77%
60–64 2856 192 6.72%
65–69 3063 207 6.76%
≥70 4640 279 6.01%

Location of
Residential Address 13.003 0.005

Central of City/Town 3486 232 6.66%
Urban-Rural Integration Zone 1270 90 7.09%

Rural 13,346 706 5.29%
Special Zone 72 4 5.56%

Education 17.018 0.03
Illiterate 4022 252 6.27%

Did not Finish Primary School 3764 208 5.53%
Sishu/Home School 41 2 4.88%
Elementary School 4030 221 5.48%

Middle School 4023 201 5.00%
High School 1503 81 5.39%

Vocational School 420 35 8.33%
Two-/Three-Year College/

Associate Degree 229 22 9.61%

Four-Year College/Bachelor’s
Degree or more 142 10 7.04%

Marital Status 3.355 0.645
Married with Spouse Present 14,281 820 5.74%

Married But Not Living with
Spouse Temporarily for Reasons

Such as Work
1214 63 5.19%

Separated 65 4 6.15%
Divorced 226 9 3.98%
Widowed 2280 133 5.83%

Never Married 108 3 2.78%
Nation 10.489 0.232

Han Nationality 17,077 975 5.71%
Zhuang Nationality 177 8 4.52%

Manchu 301 12 3.99%
Hui Nationality 107 12 11.21%

Miao Nationality 112 3 2.68%
Uyghur Nationality 81 6 7.41%

Tujia Nationality 25 1 4.00%
Yi Nationality 97 3 3.09%

Other Nationality 197 12 6.09%
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Table 5. Cont.

Factors The Total Number
of Samples

Number
of Cases X2 p-Value

Hypertension 161.428 <0.001
No 16,273 792 4.87%
Yes 1901 240 12.62%

Dyslipidemia 433.646 <0.001
No 16,601 739 4.45%
Yes 1573 293 18.63%

Cancer 8.651 0.003
No 17,946 1008 5.62%
Yes 228 24 10.53%

Liver Disease 12.350 <0.001
No 17,603 979 5.56%
Yes 571 53 9.28%

Emotional Problems 2.246 0.134
No 17,968 1015 5.65%
Yes 206 17 8.25%

Smoking History 19.540 <0.001
No 17,359 955 5.50%
Yes 815 77 9.45%

Alcohol Use 11.566 0.001
No 11,936 731 6.12%
Yes 6238 301 4.83%

Binary logistic regression took diabetes as the dependent variable, age, location of
residential address, education, hypertension, dyslipidemia, cancer, liver disease, kidney dis-
ease, smoking history, and alcohol use as independent variables. The Hosmer–Lemeshow
test of the model was greater than 0.05 (0.889), indicating that the model had fully utilized
the data and there was no very significant difference between the predicted value and
the true value. Meanwhile, the result of the Omnibus test indicated that the model was
statistically significant (p < 0.05). The established binary logistic regression can be expressed
as Equation (5), according to Table 6.

ln p
1−p = −3.549 − 0.062 ∗ Age(50 − 54) + 0.348 ∗ Age(55 − 59) + 0.488

∗Age(60 − 64) + 0.475 ∗ Age(65 − 69) + 0.389 ∗ Age(≥ 70)

+0.703 ∗ Hypertension + 1.302 ∗ Dyslipidemia + 0.373

∗Kidney Disease

(5)

Table 6. Binary logistic regression analysis.

Variables B SE Wald Df p-Value OR
95% CI

Lower Upper

Age (45–49) 31.808 5 0.000
50–54 −0.062 0.170 0.134 1 0.714 0.939 0.673 1.311
55–59 0.348 0.162 4.629 1 0.031 1.416 1.031 1.944
60–64 0.488 0.161 9.193 1 0.002 1.629 1.188 2.232
65–69 0.475 0.160 8.843 1 0.003 1.607 1.176 2.198
≥70 0.389 0.155 6.291 1 0.012 1.475 1.089 2.000

Hypertension 0.703 0.081 75.339 1 0.000 2.020 1.723 2.367
Dyslipidemia 1.302 0.076 295.059 1 0.000 3.676 3.169 4.265

Smoking
history 0.373 0.128 8.446 1 0.004 1.452 1.129 1.867

Constant −3.549 0.144 606.838 1 0.000 0.029
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The results showed that the occurrence of diabetes was significantly correlated with
age, hypertension, dyslipidemia, kidney disease, and smoking history. The risk was higher
in the 60–64 age group than in other age groups (OR = 1.635, p < 0.001). Patients with
hypertension had a significantly higher risk of diabetes than those with other chronic
diseases (OR = 2.004, p < 0.001). The highest risk was associated with dyslipidemia
(OR = 3.598, p < 0.001).

3.5. Geographically Weighted Regression

Figure 13 showed the local R2 by using GWR (AICc = 640.402523, R2 = 0.621877,
Adjusted R2 = 0.609018). The distribution of residuals of GWR in space was randomized
using Global Spatial Autocorrelation (p = 0.233661, spatial distribution model was random).
Table 7 shows the statistics of local coefficient variables, illustrating that none of the factors
exhibited significant spatial heterogeneity.
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Table 7. Coefficient of risk factors.

Variables Mean Max Min

Age 0.0571 0.057091 0.05713
Hypertension 0.007537 0.007361 0.00765
Dyslipidemia 0.265775 0.26573 0.265843

Smoking History 0.00879 0.008752 0.008823
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3.6. Disease Risk Assessment

Through binary logistic regression, we chose age, hypertension, dyslipidemia, cancer,
heart attack, stroke, kidney disease, smoking history, and alcohol use as independent
variables. We chose diabetes as the dependent variable to establish the binary logistic
model and random forest model. AUC (area under the ROC curve) was used to evaluate
the assessment model in this study. To verify whether the model’s expected risk result
is consistent with the actual prevalence of diabetes, ArcGIS 10.4 was used to visualize
the actual diabetes prevalence map and the diabetes risk assessment map (Figure 14), the
high-risk assessment areas are mainly located in the Beijing–Tianjin–Hebei region and the
northeast region. The random forest model’s assessment results are consistent with the
actual prevalence, while the binary logistic regression model’s assessment results are far
from the real incidence rate. Meanwhile, according to the ROC curve (Figures 15 and 16),
the accuracy of the random forest model (AUC = 0.7745) was higher than the binary logistic
model (AUC = 0.6677). However, the random forest model cannot explain the function
direction of independent variables and the relative risk degree of influencing factors, but
binary logistic regression analysis can define the model and variables well.

Int. J. Environ. Res. Public Health 2022, 19, x 20 of 28 
 

 

Table 7. Coefficient of risk factors. 

Variables Mean Max Min 
Age 0.0571 0.057091 0.05713 

Hypertension 0.007537 0.007361 0.00765 
Dyslipidemia 0.265775 0.26573 0.265843 

Smoking History 0.00879 0.008752 0.008823 

3.6. Disease Risk Assessment 
Through binary logistic regression, we chose age, hypertension, dyslipidemia, can-

cer, heart attack, stroke, kidney disease, smoking history, and alcohol use as independent 
variables. We chose diabetes as the dependent variable to establish the binary logistic 
model and random forest model. AUC (area under the ROC curve) was used to evaluate 
the assessment model in this study. To verify whether the model’s expected risk result is 
consistent with the actual prevalence of diabetes, ArcGIS 10.4 was used to visualize the 
actual diabetes prevalence map and the diabetes risk assessment map (Figure 14), the 
high-risk assessment areas are mainly located in the Beijing–Tianjin–Hebei region and 
the northeast region. The random forest model’s assessment results are consistent with 
the actual prevalence, while the binary logistic regression model’s assessment results are 
far from the real incidence rate. Meanwhile, according to the ROC curve (Figures 15 and 
16), the accuracy of the random forest model (AUC = 0.7745) was higher than the binary 
logistic model (AUC = 0.6677). However, the random forest model cannot explain the 
function direction of independent variables and the relative risk degree of influencing 
factors, but binary logistic regression analysis can define the model and variables well. 

 
(a) 

Figure 14. Cont.



Int. J. Environ. Res. Public Health 2022, 19, 9861 20 of 26
Int. J. Environ. Res. Public Health 2022, 19, x 21 of 28 
 

 

 
(b) 

 
(c) 

Figure 14. Assessment result. (a) The prevalence of diabetes in 2018 was divided into five classifi-
cations according to the natural breaks method. (b) The disease risk assessment result of binary 
logistic regression model was divided into five classifications according to the natural breaks 
method; (c) The disease risk assessment result of random forest model was divided into five clas-
sifications according to the natural breaks method. 

Figure 14. Assessment result. (a) The prevalence of diabetes in 2018 was divided into five classifica-
tions according to the natural breaks method. (b) The disease risk assessment result of binary logistic
regression model was divided into five classifications according to the natural breaks method; (c) The
disease risk assessment result of random forest model was divided into five classifications according
to the natural breaks method.
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4. Discussion
4.1. Innovation in This Study

Because the traditional data analysis method does not easily avoid interactions be-
tween the independent variables, as an emerging machine learning algorithm, the random
forest algorithm performs well in avoiding multicollinearity. Therefore, it is widely used
in the assessment of disease risk. The use of a random forest model to establish a concise
and accurate diabetes risk assessment model is an innovative way to assess the risk of
diabetes among people over 45 years old in China. Because the dataset does not always
contain complete information, the distribution between positive and negative classes is
mostly imbalanced, and some parameters are of low importance for the decision class,
the random forest model performed better in this situation. We used the random forest
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model to make our diabetes risk assessment map, compared it with the assessment results
of logistic regression, and noted that the assessment result was consistent with the actual
prevalence. Thus, we conclude that the random forest model can achieve greater accuracy
in assessing diabetes risk [41]. However, binary logistic regression analysis can intuitively
explain diabetes risk factors, which is a disadvantage of the random forest model. The
advantages of the two models should be combined in practical applications to allow them
to jointly play a valuable role in disease risk assessment.

4.2. Scale Effect

The selection of different observation and analysis scales will result in the detection of
different phenomena. This is known as the scale effect [42]. We took this into consideration
when conducting our research. Our preliminary experiments showed that the spatial
patterns obtained from the study at the prefecture-level city scale and the provincial scale
are basically the same. Therefore, in order to get more detailed spatial patterns, our
spatiotemporal analysis was based on the city-level prefecture scale.

4.3. Spatiotemporal Characteristic of Diabetes Prevalence

Diabetes prevalence remains high in China. According to the report from the Inter-
national Diabetes Federation, diabetes prevalence in China had increased from 8.8% in
2011 to 10.9% in 2018 in adults 20–79 years. The prevalence of diabetes among people over
45 years old increased from 0.00% to 14.04% in 2011 to 0.00% to 14.50% in 2018 in the study
area where the sample is located.

A significant Moran’s I test indicates that there is a presence of spatial autocorrelation,
Getis and Ord’s G* could identify the hot or cold spot areas. Identifying hot spots for
diseases is important for public health authorities who should adopt them for better-
targeted interventions [43]. To determine the spatial patterns of a disease, local indicators
of spatial association (LISA) in the environmental GIS are very helpful. This model is a set
of methods used to describe and visualize spatial distributions, identify atypical locations
or spatial outliers, determine patterns of spatial association, clusters, or hot-spots, and
propose spatial regimes or other shapes of spatial heterogeneity [44].

In 2011, 2013, 2015, and 2018, the Moran’s I coefficient of diabetes prevalence in China
was between 0.025585 and 0.104485, and showed non-random spatial distribution. Getis
and Ord’s G* showed that hot spots are mostly found in the eastern and central regions,
while cold spots are more common in southern regions. Local Spatial Autocorrelation
analysis found that the High-High distribution pattern of diabetes is mainly found in cities
close to the Beijing–Tianjin–Hebei region.

We also found that the spatial distribution model of diabetes was clustered, but that
the tendency to cluster is waning, as the Moran’s I decreased from 0.103458 in 2011 to
0.025585 in 2018, and the hot and cold spot areas were also conspicuously decreased. Many
areas also showed not significant High-High or Low-Low distributions.

The spatial scan statistic is a useful and widely used tool for detecting spatial or space–
time clusters in disease surveillance. The software SaTScan, available for free, enhances
this method’s ease-of-access for researchers [45]. We used SaTScan to accurately locate the
spatial clustering areas of diabetes and to explore if diabetes had clustering characteristics
in space and time.

Spatiotemporal clustering areas were detected by SaTScan software and they were
located near the Beijing–Tianjin–Hebei region.

Therefore, diabetes prevalence has obvious spatial distribution characteristics in the
population over 45 years old in China, that is, the north is higher than the south, the coast
is higher than the inland, and economically developed areas are higher than economi-
cally underdeveloped areas. The specific reasons for the patterns need further research,
but should be related to differences in eating habits and lifestyle changes caused by eco-
nomic development, and by glycemic control, which varied greatly across geographic
regions [46,47].
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4.4. Diabetes Risk Factors

Binary logistic regression is often used to explore diabetes risk factors [48,49]. Binary
logistic regression analysis showed that age, hypertension, dyslipidemia, and smoking
history were all diabetes risk factors in this study.

In China, diabetes poses a severe threat to the population. Age is a main factor
for diabetes [50]. In this study, especially after the age of 55, diabetes risk increased
significantly with age. Therefore, middle-aged and elderly residents in China should
always pay attention to their health, so as not to miss the best treatment time.

Besides, compared with other chronic diseases, hypertension and dyslipidemia are
more likely to lead to diabetes, and diabetes also likely leads to the occurrence of hyper-
tension or dyslipidemia [51–53]. As the main component of metabolic syndrome, diabetes,
hyperglycemia, and hyperlipidemia interconnect and influence each other, forming a com-
plex framework of chronic diseases [54]. With the prolongation of the disease’s course, the
patient’s body’s immune function becomes increasingly abnormal, the function of many
systems is weakened, and multiple diseases are prone to occur. With the prolongation of
the disease’s course, the function of many systems in the patient’s body is weakened, which
always leads to multiple diseases [55–58].

More and more studies show that smoking significantly increases the risk of dia-
betes [59]. Thus, diabetes patients with a history of smoking are reported to be at especially
increased risk of incidence and poor outcomes from severe acute respiratory syndrome
coronavirus [60]. China is one of the countries with the largest number of tobacco con-
sumers in the world [61,62], which may be one of the reasons for the high prevalence of
diabetes, and even of other chronic diseases, in China.

4.5. Spatial Heterogeneity of Diabetes Risk Factors

A GWR model is a simple and effective technology used to deal with spatial hetero-
geneity. Unlike traditional multiple linear regression, GWR lets regression parameters vary
across space [63]. A GWR model was used to explore the spatial heterogeneity of diabetes
risk factors. However, the results showed that there is no obvious spatial heterogeneity in
the four risk factors (age, hypertension, dyslipidemia, and smoking history). This might
be because this study did not incorporate socioeconomic and environmental factors into
the study [64,65].

4.6. Limitations and Future Research

There are still some deficiencies in this research. For example, environmental factors,
which are closely related to the prevalence of diabetes, have not been considered in this
study. Besides, our approach to spatiotemporal analysis in this study was still traditional,
and factors included in the model were not enough. In addition, there is still room for
improvement in the accuracy of the model, and we are also trying to add other classification
algorithms to our research. We will continue to advance this research, and it is believed
that our research will provide accurate data support for improving the living conditions of
people over 45 years old in China.

5. Conclusions

Firstly, in this paper, spatial autocorrelation and spatiotemporal clustering analysis
were used to analyze the spatial distribution characteristics of diabetes. Secondly, we used
the binary logistic regression model to explore the risk factors of diabetes in detail. Finally,
the logistic regression model and random forest model were used to assess the risk of
diabetes in people over 45 years old in China. The results showed that the clustering areas
of patients with diabetes were mainly in the Beijing–Tianjin–Hebei region. The tendency to
find clusters of diabetes prevalence among people over 45 years old in China is waning.
Age, hypertension, dyslipidemia, and smoking history all had effects on diabetes, but the
spatial heterogeneity of these factors were weak. Compared with the binary logistic model,
the random forest model showed better fitness in assessing diabetes risk, and showed
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that the high-risk regions are the northeast region and the Beijing–Tianjin–Hebei region.
Therefore, our method can analyze the spatial distribution characteristics and influencing
factors of diabetes, but there is still room for improvement in the accuracy of assessing the
risk of diabetes. We will continue to follow up on this study after the data of CHARLS is
updated, and we will explore more excellent methods in the following research.
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