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Abstract: To study the influence of traffic signs information volume (TSIV) on drivers’ visual char-

acteristics and driving safety, the simulation scenarios of different levels of TSIV were established, 

and 30 participants were recruited for simulated driving tests. The eye tracker was used to collect 

eye movement data under three-speed conditions (60 km/h, 80 km/h, and 100 km/h) and different 

levels of TSIV (0 bits/km, 10 bits/km, 20 bits/km, 30 bits/km, 40 bits/km, and 50 bits/km). Principal 

component analysis (PCA) was used to select indicators sensitive to the influence of TSIV on the 

drivers’ visual behavior and to analyze the influence of TSIV on the drivers’ visual characteristics 

and visual workload intensity under different speed conditions. The results show that the fixation 

duration, saccade duration, and saccade amplitude are the three eye movement indicators that are 

most responsive to changes in the TSIV. The driver’s visual characteristics perform best at the S3 

TSIV level (30 bits/km), with the lowest visual workload intensity, indicating that drivers have the 

lowest psychological stress and lower driving workload when driving under this TSIV condition. 

Therefore, a density of 30 bits/km is suggested for the TSIV, in order to ensure the security and 

comfort of the drivers. The theoretical underpinnings for placing and optimizing traffic signs will 

be provided by this work. 

Keywords: traffic signs; TSIV; simulation; visual characteristics; visual workload intensity; driving 

safety 

 

1. Introduction 

As the most prevalent traffic engineering facility, traffic signs provide visual infor-

mation and route assistance to drivers by using information such as words, symbols, and 

graphics. For efficient and safe traffic flow, traffic signs are essential. However, the arbi-

trary placement of traffic signs has become more prevalent as a result of the accelerated 

development of road building and the growing congestion of the road network. The un-

reasonable traffic signs information volume (TSIV), which includes both insufficient in-

formation and information overload, is the most noticeable issue among them. The driver 

may experience slower cognitive reaction times, decreased cognitive efficiency, and 

greater visual workload due to information overload [1,2]. Insufficient information can 

lead to greater reliance on the driver’s judgment and even poor coping mechanisms rang-

ing from distraction to aggression. Both insufficient and overloaded information have a 

negative impact on driving safety [3]. Therefore, a reasonable and appropriate TSIV is 

conducive to drivers to complete their driving tasks and ensure safe driving. 

Many factors, including the sign’s size, words, color, reflectivity, and angle of incli-

nation, must be considered when designing and installing traffic signs, but the most cru-

cial one is whether the driver will accept and use the information [1]. The ability of hu-

mans to receive information in a short time is limited [4]. When the TSIV is excessive, the 

driver’s short-term memory will rapidly get overloaded, making it difficult to complete 
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driving tasks and threatening traffic safety. Additionally, drivers primarily rely on their 

vision to collect information when driving [5]. As a result, the drivers’ visual characteris-

tics will be impacted by the overload or insufficiency of TSIV [6]. 

On the TSIV, academics have conducted a great deal of studies and produced a great 

deal of findings. Lyu et al. [7] found that the drivers’ reaction time increased with the 

increase of the TSIV and proposed that the information contained in individual sign 

should be kept at an appropriate level so that drivers have enough time to identify the 

signs and thus ensure driving safety. To ensure driving safety, Guo et al. [8] proposed that 

the information volume on expressway traffic signs should be limited to 194 bits and no 

more than seven pieces of information based on the analysis of various indicators. Xu et 

al. The authors of [9] made a comprehensive evaluation of the graphical variable message 

sign from five aspects: legibility speed, legibility distance, legibility time, comprehension 

accuracy, and subjective scoring, and suggested that the upper limit of the information 

displayed on the graphical variable message sign was five road names. Liu et al. [10] 

found that simpler contents and larger contrast between the background colors and fore-

ground colors of traffic signs would make the human brain respond faster. Lyu et al. [11] 

found that driving workload was closely related to TSIV and that speed maintenance and 

lane deviation was significantly different at different cognitive workload levels. Liu [1] 

found that the TSIV had a significant impact on the visual search performance of drivers, 

and the more TSIV, the less the efficiency of the visual search was. Liu et al. [12] investi-

gated the effect of the TSIV on driver’s recognition time and showed that the TSIV explains 

61% of driver’s recognition time. The more information is conveyed by road traffic signs, 

the longer the recognition time. The threshold value of TSIV is 642 bits, and exceeding this 

value will result in information overload. 

In studies of traffic signs and drivers’ visual recognition, cognition, and driving be-

havior, it is well established that traffic sign information affects the drivers’ visual charac-

teristics, cognitive abilities, and driving performance. Liu et al. [13] analyzed the infor-

mation transmission system of the traffic signs combination from the perspective of cog-

nitive psychology, constructed its information transmission model, and explored the re-

lationship between the driver identification time in the process of different traffic sign 

combinations. Schnell et al. [14] found that larger and brighter signs are more effective in 

delivering information to drivers, either by reducing information acquisition time or by 

improving transmission accuracy. In return, reducing sign viewing duration and improv-

ing reading accuracy may improve road safety. According to Borteorte et al. [15], road 

users do perceive and process information differently. These differences are influenced 

by factors like gender, age, and experience, and the TSIV has an impact on how safe they 

perceive the road to be. The drivers significantly reduced their speed to read four-line 

monolingual and four-line bilingual signs, which was accompanied by an increase in 

headway to the vehicle in front, according to research by Jamson et al. [16] on the impact 

of bilingual traffic guide signs on driver attention at various length and complexity levels. 

Through the simulated driving test, Huang et al. [17–20] examined how the complexity of 

diagrammatic guide signs affected the drivers’ eye movements and driving behavior, em-

phasized the need for evaluating and optimizing complex diagrammatic guide signs, and 

suggested the ideal design scheme for advanced guide signs on the urban expressway. 

The impact of the layout form and information volume of the intersection guidance signs 

on the driver’s driving behavior was examined by Wei et al. [21] and Yao et al. [22]. The 

guide signs’ quantitative evaluation results reveal that visual safety reduces as infor-

mation volume on the signs rises. Topolšek et al. [23] compared and analyzed the visual 

performance differences of billboards and traffic signs between drivers of various ages 

and discovered that the number of roadside objects detected was not correlated with the 

driver’s age and that those drivers who noticed more traffic signs also paid more attention 

to visual advertising. Younger drivers considerably outperformed older drivers in terms 

of accuracy and response time, according to Ben-Bassat et al. [24]. The older drivers had 

an average reaction time that was roughly twice as fast as the younger drivers. However, 
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neither group’s comprehension of traffic signs was impacted by the presentation style 

(with or without context). 

The aforementioned literature concentrated more on the evaluation of a specific road 

section or one traffic sign and mainly examined the effects of variables such as the infor-

mation volume, layout form, and setting form of traffic signs on the driver’s visual char-

acteristics, cognitive ability, and driving behavior. The reasonableness of the density of 

TSIV in road networks, which is one of the beginning grounds for this research endeavor, 

has not, however, received much attention. The objective of this study is to identify the 

ideal TSIV range for safe driving by analyzing how the density of road TSIV affects the 

drivers’ visual characteristics and visual workload. 

It is anticipated to aid in assessing the TSIV’s rationalism and offer a theoretical 

framework for the logical placement of traffic signs. Additionally, several questions were 

addressed: 

(1) Which visual indicators of drivers are most significantly and sensitively affected by 

the TSIV? 

(2) How does the different TSIV affect the visual characteristics and visual workload of 

drivers? 

(3) What is the appropriate range of TSIV that will ensure the safety and comfort of driv-

ing? 

2. Quantification of TSIV 

The transmission and feedback of traffic information is achieved in large part by the 

use of traffic signs. The primary purposes of traffic signs are to notify drivers of the current 

traffic situation in a clear, timely, and appropriate manner; to direct and organize the flow 

of traffic; and to promote the safe, orderly, and efficient operation of vehicles. As a result, 

the safety of road operations directly depends on the logic of traffic sign information. 

Among these, the information volume of the traffic signs can have a major impact on the 

drivers’ cognitive function and workload while driving, meaning that different traffic 

signs will have varied information workloads for the drivers. As a result, we must first 

quantify the information contained in traffic signs. 

Shannon first proposed the concept of information theory in 1948 and defined “in-

formation entropy” [8]. Information theory explains that the volume of information con-

tained in a certain given background and condition is closely related to the probability of 

each element in the information [25]. The TSIV calculation formula is as follows, in ac-

cordance with Shannon Information Theory: 

( ) ( ) ( )i
m

i

i XPXPXH 2

1

log
=

−=

, 
(1) 

where H(X) indicates the information volume of the traffic signs (bits), m is the total num-

ber of possible states for the event X, Xi represents the i state of the event, P(Xi) represents 

the probability of the i state. 

Assuming that the event in each state occurs with the same probability, that is, P(Xi) 

= 1/m, the calculation method of information volume is reduced to: 

( ) mXHi 2log= , (2) 

According to the Chinese national standard “Road Traffic Signs and Markings” 

(GB5768-2022) [26], the information elements of traffic signs mainly include seven types: 

Chinese characters (3500 commonly used Chinese characters), English characters (26 Eng-

lish letters from A to Z), Arabic numerals (10 Arabic numerals from 0 to 9), geometric 

figures (six geometric shapes including circles, triangles, etc.), colors (11 colors including 

red, white, blue, etc.), pointing symbols (including 30 different direction pointing arrows 

or symbols), and graphic symbols (including 50 different types of graphic symbols). The 
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information volume of different information elements can be calculated by the Formula 

(2). 

The weight of the traffic sign information elements must be established because when 

drivers notice traffic signs while driving, their perception and attention to various types 

of traffic sign information and elements varies. The weight of seven different types of el-

ements was ultimately determined using the Analytic Hierarchy Process (AHP), which 

was used to assess the significance of the traffic sign information elements [27]. This pro-

cess involved 30 experienced drivers and 30 traffic engineers comparing the traffic sign 

information elements pair by pair. The consistency index (CI = 0.0238) and consistency 

ratio (CR = 0.0267 < 0.1) show that the results of the hierarchical analysis have satisfactory 

consistency and the weight values of each element are valid. Therefore, the information 

volume and weight of each traffic sign information element were obtained, and the results 

are shown in Table 1. 

Table 1. Information volume and weight of each traffic sign information element. 

Information Elements Information Volume (Bits) Weight 

Chinese character 11.8 0.25 

English character 4.7 0.06 

Arabic numeral 3.3 0.15 

Geometric figure 2.6 0.11 

Color 3.6 0.12 

Pointing symbol 4.9 0.22 

Graphic symbol 5.6 0.09 

After comprehensively considering the information volume and weight of each ele-

ment, the information volume of traffic signs can be calculated by the Formula (3): 

( ) ( )
1

m

i i i

i

H X H n
=

=  (3) 

where: εi is the weight of i element, Hi is the basic information volume of the i element, ni 

is the number of i element in traffic signs. 
The information volume of traffic signs is quantified in this study using the afore-

mentioned computation approach to produce different levels of TSIV, which are then uti-

lized to examine the visual characteristics and driving workload of drivers at various TSIV 

levels. 

3. Experimental Design 

3.1. Participants 

For this study, 30 participants—21 males and 9 females—were recruited based on the 

gender ratio of Chinese drivers (7:3 for men to women) [28]. Additionally, the number of 

participants was chosen using examples from previous similar studies [1,9,12] that fol-

lowed customary procedures. Each participant has at least three years of driving experi-

ence and a Chinese statutory class “C” driver’s license. With a standard deviation of 7.6 

years, the participants’ average age was 32, and their average amount of driving experi-

ence was 9 years, with a 5.4-year standard deviation. No one was color blind, and every-

one had normal vision. Before the test started, each participant signed an “Informed Con-

sent to the Test,” and they each received RMB 200 thereafter. 

3.2. Apparatus 

The motion-based driving simulator used in this study has six degrees of freedom 

(DOF), as illustrated in Figure 1 (produced by OKTAL-SE, France). As a test vehicle, a real 

BYD F3 model automobile was employed. The driving simulator has a vision system with 
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three projectors that projects the road model onto a spherical drape in front of the car, 

giving the driver a 300-degree horizontal field of view. The drivers can access actual roads, 

traffic signs and markings, and a variety of road environments through the driver simu-

lator. The motion system, feedback system, and cockpit performance of the simulator have 

all improved to an advanced degree on a global scale. 

The SMI iView XTM HED helmet eye movement tracking device, developed and 

manufactured by SMI (Senso Motoric Instruments) of Germany, was the eye tracker uti-

lized in this examination. The driver’s whole of eye movement data while looking for and 

viewing various traffic environment details can be collected by the eye tracker. The eye 

tracker weighs 450 g, has a sampling frequency of 50 Hz or 200 Hz, a fixation position 

accuracy of 0.5° to 1.0°, and a tracking range of −30° to +30° and −25° to +25° in both the 

horizontal and vertical directions. In this study, the participants’ fixation, saccade, and 

blinking during the test were tracked using an eye tracker, and the data were recorded 

and saved on a laptop computer. 

  

(a) (b) 

Figure 1. Apparatus of study. (a) The driving simulator; (b) the eye tracker. 

3.3. Driving Scenarios 

First of all, the traffic signs designed in the test scenarios must comply with the cur-

rent relevant standards in China, and the setting of the traffic signs must also meet the 

actual conditions and requirements of the road. More importantly, in order to fulfill the 

purpose of the experiment, the traffic signs set up in different sections should reflect the 

differences in the information volume. 

The traffic signs set up in the test scenarios met the requirements of the relevant 

standards according to the actual conditions of the road. The traffic signs in the test sce-

narios were considered in terms of their type and structural form, in addition to the dif-

ferences in information volume. 

These traffic signs contained regulatory signs, warning signs, and guide signs. At the 

same time, the structural forms of the traffic signs included single vertical, double vertical, 

and cantilever structures. The diversity of forms of traffic signs was fully guaranteed.  

In order to determine the features of the kind, density, and distribution of the infor-

mation volume on traffic signs along these highways, we performed field surveys on a 

number of China’s monotonous and non-monotonous highways. The distribution of TSIV 

varied significantly, as we discovered, and the findings were consistent with those of Lyu 

et al. [7]. The findings of the final investigation revealed that the TSIV increment was 

roughly 10 bits/km. Based on this, we assigned S0, S1, S2, S3, S4 and S5 as the five levels 

of the density distribution of TSIV in the test situations, and Table 2 displays the classifi-

cation findings. 
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Table 2. The levels of the TSIV in the test scenarios. 

Level S0 S1 S2 S3 S4 S5 

Information vol-

ume (bits/km) 
0 10 20 30 40 50 

The following examples serve as illustrations of the simulated driving scenario cre-

ated for this study: 

(1) The secondary road in the driving simulation has one lane in each direction, a lane 

width of 3.75 m, and a designed speed of 80 km/h. The road’s design specifications 

all adhere to current Chinese regulations. 

(2) The roads in the study’s simulated driving scenarios are all straight roads to prevent 

the impact of alignment changes on the experimental results. 

(3) To prevent affecting the trial results, no traffic flow and a distinct scenery are set in 

the simulated driving environment. 

The setting of part of traffic signs in the test scenarios is shown in Figure 2. It should 

be noted that the pictures displayed in Figure 2 only select representative types of traffic 

signs and do not represent the corresponding TSIV levels in the experiment because it is 

challenging to show all traffic signs of each level in one picture. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Part of traffic signs of simulated driving scenarios. (a) No traffic signs; (b) add warning 

signs; (c) add regulatory signs; (d) add guide signs. 

3.4. Experimental Procedure 

The experimental design in the paper involved participants driving a simulated ve-

hicle in a driving simulator, where participants were required to operate and maneuver 

the car at three speeds to complete the driving task. Then, we evaluated the visual char-

acteristics of the drivers when recognizing different levels of TSIV under different speed 

conditions. 
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The road length in the simulated driving scenarios is about 20 km, and the duration 

for drivers to complete the tests at three different speeds was different, but the drivers 

will not experience driving fatigue during the tests to avoid affecting the test results. 

The experimental process is as follows: 

(1) An “Informed Consent Form” and a “Personal Information Registration Form,” 

which recorded the participant’s basic information, were distributed to each partici-

pant to read, sign, and submit. 

(2) Started the system of simulating driving, ensured that each component was function-

ing properly, and fixed the simulated scenarios. 

(3) Participants initially performed a 5- to 10-min adaptive driving simulation fitness test 

to determine whether participants were maladaptive. In such case, the participant 

was changed. If not, the formal test continued. 

(4) The tester gave the participants an explanation of the simulation driving test’s pro-

cedure and safety considerations. 

(5) Following proper preparation, the participants wore the eye tracker, made necessary 

adjustments and corrections, verified that the eye tracker was connected to the com-

puter, and calibrated the eye tracker. 

(6) The participant started the car, started the test, and drove at the specified speed while 

collecting data on eye movements. 

(7) The participants went through three simulated driving tests in order, moving at 

speeds of 60 km/h, 80 km/h, and 100 km/h. The subject needed to maintain outstand-

ing mental and physical health for 30 min following the conclusion of each experi-

ment by resting or moving around. 

(8) Following the completion of the test, the participant’s eye tracker was removed from 

the driving simulator and the data on their eye movements was preserved. 

(9) Participants completed a subjective survey questionnaire. 

(10) Replaced the participants and repeated the above steps. 

(11) All the tests were completed. 

Figure 3 depicts how the paper’s simulated driving tests were conducted. 

Test starts

Participants undergo adaptation 

training for driving simulation

The tester explaines the precautions to the 

participants

Participants wear the eye tracker and make 

adjustments for calibration

The test starts and data recording begins

Ending the test and saving the test data

Participants fill in a subjective questionnaire

Is the test complete?

Test ends

Yes

Changing 

participants

No

 

Figure 3. The process of simulated driving tests. 
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4. Selection of Eye Movement Indicators Based on PCA 

The error of the eye movement data obtained in this trial is highly random [12], and 

therefore, the outliers in the eye movement data need to be removed to ensure the accu-

racy and rationality of the data analysis. In this paper, all anomalous data are removed 

using the method of PauTa Criterion [29,30], of which the basic formula is: 

3− xxi ,
 

(4) 

where: xi is each sample data; x  indicates the average value of all the sample data; σ 

denotes the standard deviation of all sample data. Sample data outside this range were 

removed. 
There will ineluctably be certain correlations among the numerous eye movement 

indicators of drivers, which will in turn cause the information indicated by these indica-

tors to accumulate and overlap. Due to this, the established index evaluation system must 

eliminate the redundant and repeated information indicators in order to achieve the goal 

of reducing the dimension of the data, which is to reduce the number of linearly related 

indicators to a manageable number of irrelevant index systems. 

The basic idea of principal component analysis (PCA) is to try to replace a large num-

ber of correlated indicators with a new set of uncorrelated composite indicators [31–33]. 

The following is a brief description of the calculation steps for PCA: 

Suppose that there are n samples, each with p variables, and they form a matrix of 

order n × p. 
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(1) Calculation of the correlation coefficient matrix: 
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The correlation coefficient is calculated as follows: 
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(2) Solving for the eigenvalues and the eigenvectors. 

Solving the eigenequations 0=− Ri , the eigenvalues are obtained, and it ar-

ranges the feature values in descending order 021  p  ; then, the eigenvec-

tor corresponding to the eigenvalues is solved: ei(i = 1, 2,…, p), and makes 1
1

2
=

=

p

j

ije . 
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(3) Calculation of principal component contribution rates and cumulative contribution 

rates. 

The contribution rate of the sample principal component Fi is: 

( )pi
p

k

ki ,,2,1
1

=
=

 , the cumulative contribution of the principal component sam-

ple F1,…, Fk is ),,2,1
11

pi
p

k

k

i

k

k =
==

（ . 

Finally, the eigenvectors corresponding to eigenvalues with a cumulative contribu-

tion rate of 85% or more and an eigenroot greater than 1 are generally selected to form the 

principal components. 

The process of selecting indicators using PCA is shown in Figure 4. 

Standardisation of sample data

Calculating the correlation coefficient matrix

Solving for eigenvalues and eigenvectors

Calculating the cumulative contribution of the sample

Cumulative contribution rate greater 

than or equal to 85%

Screening to obtain indicators
 

Figure 4. The process of selecting indicators by PCA. 

The default Kaiser–Meyer–Olkin (KMO) test and the Barlett Test of Sphericity are 

chosen here to test the correlation between the original indicators before the PCA. The 

value of the KMO statistic ranged from 0 to 1, and the larger the value, the better the result 

of PCA. It is generally considered that the value of the KMO statistic less than 0.5 is not 

suitable for PCA. The Barlett Test of Sphericity is used to test whether the correlation co-

efficient matrix of the variables is a unit matrix. The test statistic obeys χ2, and if the test 

rejects the original hypothesis, i.e., p < 0.05, it is suitable for PCA. 

Three frequently used indicators of driver’s visual behavior were chosen: fixation, 

saccade, and blink: blink duration (BD), fixation duration (FD), pupil diameter (PD), sac-

cade duration (SD), saccade amplitude (SA), saccade peak velocity (SPV), and saccade 

average velocity (SAV). These indicators were chosen based on the requirements for PCA 

as well as the methods and findings of research on drivers’ visual behavior in the field of 

traffic safety. Additionally, standardizing these data, the correlation coefficient and p-

value of the matrix was solved for the standardized data, and the KMO test and Barlett 

Test of Sphericity were done, the results of which are shown in Tables 3 and 4. 

Table 3. Correlation matrix of eye movement indicators. 

 Indicators BD FD PD SD SA SPV SAV 

Correlation 

coefficients 

BD 1.000 0.531 0.250 −0.151 −0.350 −0.255 −0.227 

FD 0.531 1.000 0.128 −0.084 −0.410 −0.256 −0.348 

PD 0.250 0.128 1.000 0.019 −0.629 −0.589 −0.594 

SD −0.151 −0.084 0.019 1.000 0.238 −0.192 −0.378 

SA −0.350 −0.410 −0.629 0.238 1.000 0.875 0.801 
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SPV −0.255 −0.256 −0.589 −0.192 0.875 1.000 0.951 

SAV −0.227 −0.348 −0.594 −0.378 0.801 0.951 1.000 

p-value for 

significance 

test 

BD  0.008 0.144 0.263 0.065 0.139 0.168 

FD 0.008  0.296 0.363 0.036 0.138 0.066 

PD 0.144 0.296  0.468 0.001 0.003 0.003 

SD 0.263 0.363 0.468  0.156 0.208 0.050 

SA 0.065 0.036 0.001 0.156  0.000 0.000 

SPV 0.139 0.138 0.003 0.208 0.000  0.000 

SAV 0.168 0.066 0.003 0.050 0.000 0.000  

Table 4. KMO test and Barlett Test of Sphericity for eye movement indicators. 

Kaiser–Meyer–Olkin Statistic 0.548 

Barlett Test of Sphericity 

χ2 137.480 

df 21 

Sig. 0.000 

Table 4 shows that the KMO statistic for the eye movement indicators is 0.548 > 0.5, 

and the result of the Barlett Test of Sphericity is p = 0.000 < 0.05, so the driver’s eye move-

ment indicators are suitable for the PCA. The results of the PCA are shown in Table 5. 

Table 5. Cumulative contribution rates of variance of eye movement indicators. 

Components 

Initial Eigenvalues Contribution Rates of Variance  

Eigenroots 
Contribution Rates 

of Variance (%) 

Cumulative 

Contribution 

Rates (%) 

Eigenroots 
Contribution Rates 

of Variance (%) 

Cumulative Contri-

bution Rates (%) 

1 3.558 50.825 50.825 3.558 50.825 50.825 

2 1.459 20.846 71.671 1.459 20.846 71.671 

3 0.991 14.154 85.825 0.991 14.154 85.825 

4 0.576 8.232 94.056    

5 0.387 5.535 99.591    

6 0.022 0.313 99.904    

7 0.007 0.096 100.000    

The eigenroots, the contribution rates, and the cumulative contribution rates of each 

principal component are ranked from largest to smallest in Table 5. The first principal 

component has an eigenvalue of 3.558 and a contribution rate of 50.825%, which explains 

50.825% of the total variation, while the second principal component has an eigenroot of 

1.459, explaining 20.846% of the total variation. The eigenroots of the first two principal 

components are greater than 1, and the cumulative variance contribution rate has reached 

70.214%. Since the eigenroot of the third principal component is 0.991, which is close to 1, 

and the variance contribution rate is 14.154%, which is close to the second principal com-

ponent, the cumulative contribution rate of the variance reached is 85.825%, that is, the 

three principal components are able to explain 85.825% of the total variance, indicating 

that the first three principal components essentially contained all the information availa-

ble for the eye movement indicators. The principal component matrix for the eye move-

ment indicators is shown in Table 6. 

Table 6. Matrix of eye movement indicators components. 

Indicator 
Components 

1 2 3 

BD −0.469 0.618 0.358 
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FD −0.497 0.547 0.807 

PD −0.525 −0.114 0.632 

SD −0.082 −0.857 −0.321 

SA 0.959 −0.134 0.293 

SPV 0.727 0.251 0.075 

SAV 0.623 0.334 −0.110 

Thus, these three principal components can be expressed as: 

F1 = −0.469BD − 0.497FD − 0.725PS − 0.082SD + 0.959SA + 0.727SPV + 

0.623SAV, 
(8) 

F2 = 0.618BD + 0.547FD − 0.114PS − 0.857SD − 0.134SA + 0.251SPV + 

0.334SAV, 
(9) 

F3 = 0.358BD + 0.807FD + 0.632PS − 0.321SD + 0.293SA + 0.075SPV − 

0.110SAV, 
(10) 

We define the first principal component as an evaluation indicator characterizing the 

driver’s search efficiency, the second principal component as an evaluation indicator of 

the driver’s capacity for information reception, and the third principal component as an 

evaluation indicator of the driver’s effort to acquire and perceive information by combin-

ing the meaning and weighting of each eye-movement indicator. The eye movement in-

dicator with the highest weight in each principal component is chosen to replace the re-

duced dimensional composite indicator after taking into account the correlation between 

each eye movement indicator and each principal component. Finally, the three-eye move-

ment sensitive indicators that are influenced by the TSIV throughout the driving process 

are identified as fixation duration (FD), saccade duration (SD), and saccade amplitude 

(SA). 

5. Results and Analysis 

5.1. Analysis of the Fixation Duration 

The fixation duration of the participants at three speeds of 60 km/h, 80 km/h, and 100 

km/h was counted by an interval time period of 50 ms. Figure 5 shows the statistical re-

sults of the fixation duration and fixation frequency ratio when the driver recognizes the 

different levels of TSIV under the three-speed conditions, respectively. 
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(c) 

Figure 5. Distribution of driver’s fixation durations at different TSIV of the three speed conditions. 

(a) 60 km/h; (b) 80 km/h; (c) 100 km/h. 

From the statistical results of the driver’s fixation duration at the three-speed condi-

tions of 60 km/h, 80 km/h, and 100 km/h, the following results can be obtained: 

(1) Under the three-speed conditions, when recognizing different levels of TSIV, the fre-

quency change law of fixation behavior in each fixation duration is highly consistent, 

showing a gradual downward trend of the driver in the fluctuation, and eventually 

tends to stabilize. 

(2) The duration of the driver’s single fixation at different levels of TSIV under three-

speed conditions is mostly concentrated in the range of 50–400 ms, with a fixation 

frequency of over 70%. 

(3) The highest percentage of single fixation duration occurs in the time periods of 50–

100 ms, 150–200 ms, and 100–150 ms, respectively, when drivers recognize different 

levels of TSIV under three-speed conditions, and the total percentage of fixation fre-

quency in these three time periods exceeds 40%, indicating that drivers primarily 

perceive and obtain relevant information through the occurrence of shorter fixation 

behavior when recognizing different TSIV under three-speed conditions. 
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(4) When drivers recognize different levels of TSIV under three-speed conditions, the 

frequency of fixation behaviors with a single fixation duration of less than 50 ms and 

more than 800 ms is relatively low, indicating that the drivers’ visual recognition of 

information while driving rarely results in a single fixation that lasts too little or too 

long. 

5.2. Analysis of the Saccade Duration 

The saccade duration of the participants at three speeds of 60 km/h, 80 km/h, and 100 

km/h was counted by an interval time period of 30 ms. Figure 6 shows the statistical re-

sults of the saccade duration and saccade frequency ratio when the driver recognizes the 

various levels of TSIV under the three-speed conditions, respectively. 
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Figure 6. Distribution of driver’s saccade durations at different TSIV of the three-speed conditions. 

(a) 60 km/h; (b) 80 km/h; (c) 100 km/h. 

The following findings can be drawn from counting the participants’ saccade fre-

quency ratios over each time period at the three different speeds of 60 km/h, 80 km/h, and 

100 km/h. 

(1) Under the three-speed conditions, the change law of the saccade frequency in each 

saccade duration interval is highly constant when the driver identifies the various 

levels of TSIV. The fraction exhibits a tendency of initially growing and then declin-

ing with an increase in saccade duration. 

(2) The single saccade duration of drivers in the three-speed conditions, when they rec-

ognize the different levels of TSIV, is mainly concentrated in the time period of 30–

120 ms, accounting for more than 90% of the saccade frequency. The highest percent-

age of single saccade occurs in the 60–90 ms time frame, followed by 30–60 ms and 

90–120 ms, respectively, suggesting that the duration of saccade behaviors when 

drivers are searching for information is generally not excessively long. 

5.3. Analysis of the Saccade Amplitude 

The saccade amplitude of the participants at three speeds of 60 km/h, 80 km/h, and 

100 km/h was counted by an interval time period. Figure 7 shows the statistical results of 

the saccade amplitude and saccade frequency ratio when the driver recognizes the various 

levels of TSIV under the three-speed conditions, respectively. 
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(c) 

Figure 7. Distribution of driver’s saccade amplitude at different TSIV of the three-speed conditions. 

(a) 60 km/h; (b) 80 km/h; (c) 100 km/h. 

By analyzing the driver’s saccade amplitude at 60 km/h, 80 km/h, and 100 km/h, the 

following results can be identified. 
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(1) Under the three-speed conditions, when the driver recognizes the TSIV at different 

levels, the change law of the proportion of the saccade amplitude in each section is 

very consistent. With the increase of the saccade amplitude, the proportion gradually 

decreases and eventually stabilizes. 

(2) The single saccade amplitude of the driver when recognizing the TSIV at different 

levels under the three-speed conditions is mainly concentrated in the range of 0°–4°, 

accounting for more than 80%. Among them, the occurrence frequency of a single 

saccade in the range of 0°–1° is the highest, as high as more than 50%, followed by 

1°–2° and 2°–4°, accounting for about 20% and 10%, respectively. In addition, the 

percentage of saccade amplitude greater than 8° is very small. In general, the saccade 

behavior of drivers when searching and obtaining information is mainly the small 

saccade amplitude behavior, and the large saccade amplitude behavior rarely occurs. 

6. Discussion 

6.1. Differences in the Average Fixation Duration 

The trend in the average fixation duration of drivers when recognizing different lev-

els of TSIV at the three-speed conditions is shown in Figure 8. 
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Figure 8. The comparison of average fixation duration for each TSIV at the three speeds. 

Combined with the previous analysis, the following results can be obtained from Fig-

ure 8. 

(1) When drivers recognize different levels of TSIV under the three-speed conditions, 

the average fixation duration of the drivers changes in a manner that is essentially 

similar. They have a pattern of first reducing and then increasing as TSIV rises. Ad-

ditionally, the S3 TSIV level has the shortest average fixation duration of drivers in 

all three-speed conditions. This shows that the average fixation duration of drivers is 

greatly impacted by the fluctuation in the TSIV. On roads with insufficient or exces-

sive TSIV, drivers show longer average fixation duration, indicating that they are 

more mentally and visually taxed under these circumstances and are less able to 

gather and process pertinent information. They also have more trouble processing 

the intended information [34,35]. 

(2) The average fixation duration of drivers in all three-speed conditions is the smallest 

in the S3 TSIV level, and the standard deviation of the average fixation duration in 

the S3 TSIV level is smaller than in the other information conditions, which also in-

dicates that drivers in the S3 TSIV level are more capable of perceiving and acquiring 

information about the road traffic environment, can process the target information 
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efficiently, have better visual coordination and less visual load, and this state is con-

ducive to drivers ensuring normal and safe driving [36]. 

(3) The driver’s average fixation duration varies from 418 ms to 478 ms at 60 km/h, 478 

ms to 518 ms at 80 km/h, and 473 ms to 546 ms at 100 km/h. It can be found that the 

value and range of average fixation durations become significantly longer as the 

speed increases for the same TSIV level. This shows that with the increase in speed, 

the driver’s ability to perceive and acquire information about the road traffic envi-

ronment begins to decrease. The driver’s dynamic field of vision becomes smaller as 

the driving speed increases, that is, the area of the useful field of vision becomes 

smaller, which results in a smaller recognition and visual search range for the driver 

as well [27]. At the same time, with the increasing speed, the density and frequency 

of road traffic environment information also increase sharply, which requires the 

driver to identify and process more information in a shorter period of time. As a re-

sult, it is more difficult for drivers to process information [35]. The average fixation 

duration and its range of drivers are significantly increased in order to ensure that 

sufficient valid traffic information is obtained [37]. 

6.2. Differences in the Average Fixation Duration 

The trend in the average saccade duration of drivers when recognizing different lev-

els of TSIV at the three-speed conditions is shown in Figure 9. 
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Figure 9. The comparison of average saccade duration for each TSIV at the three speeds. 

Combined with the previous analysis, the following results can be obtained from Fig-

ure 9. 

(1) When drivers recognize various levels of TSIV under the three-speed conditions, the 

changing trend of the average saccade duration of the drivers is essentially the same. 

They exhibit the tendency of initially growing, then declining, and finally climbing 

once again as TSIV increases. Additionally, in a TSIV-enabled road environment, 

drivers’ average saccade time under three-speed conditions is shortest at the S3 TSIV 

level. This suggests that changes in TSIV have a significant impact on changes in the 

average saccade duration of drivers. The average saccade duration of drivers is 

higher on roads with too little and too much TSIV, reflecting that drivers spend more 

time searching for target information, as well as reflecting the complexity of drivers 

in processing information, the longer saccade duration means that drivers are less 

able to recognize useful information [38]. 
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(2) Under speeds of 60 km/h and 80 km/h, the drivers’ average saccade duration is 

shorter in the S0 TSIV level than in the other TSIV levels, suggesting that drivers may 

be visually distracted as a result of the monotonous road traffic environment and 

weak information stimulus. In other words, when this happens, the drivers’ visual 

attentiveness is low, making it challenging for them to react to and handle crises as 

they arise in a timely manner, perhaps endangering their safety. The average saccade 

duration of a motorist who is speeding, however, is much shorter at all TSIV levels 

than it is in the other two speed conditions, and it is not minimized at the S0 level. 

This is because the increase in speed places a higher demand on the driver’s visual 

search, and the driver’s average saccade duration increases slightly as a result of the 

increased psychological stress caused by driving at high speeds on roads without 

TSIV [27]. However, overall, the average saccade duration of drivers in the S3 TSIV 

level is lower and less discrete compared to the other levels with TSIV. This indicates 

that drivers are more efficient in searching for information about the road traffic en-

vironment under this condition, and are able to search for useful information quickly 

and recognize the target information better. 

(3) The driver’s average saccade duration varies from 76.4 ms to 79.6 ms at 60 km/h, 74.9 

ms to 78.7 ms at 80 km/h, and 72.2 ms to 74.8 ms at 100 km/h. It can be found that for 

the same TSIV level, although there is no significant difference between the average 

saccade duration of drivers at 60 km/h and 80 km/h, it is clear from the trend in the 

data that the average saccade duration and its range of variation tend to become 

smaller as the speed increases. This indicates that the driver spends significantly less 

time searching for information as the speed increases due to the fact that the increase 

in speed directly makes the driver’s dynamic field of view and spatial recognition 

range smaller and the driver’s search for information more difficult. 

6.3. Differences in the Average Saccade Amplitude 

The trend in the average saccade amplitude of drivers when recognizing different 

levels of TSIV at the three-speed conditions is shown in Figure 10. 
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Figure 10. The comparison of average saccade amplitude for each TSIV at the three speeds. 

Combined with the previous analysis, the following results can be obtained from Fig-

ure 10. 

(1) When drivers recognize various levels of TSIV under the three-speed conditions, the 

changing trend of the average saccade amplitude is roughly the same. With an in-

crease in TSIV, they display a trend of initially growing and then declining. Addi-

tionally, the average saccade amplitude of drivers under the three-speed conditions 
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is the maximum threshold under the S3 TSIV level. This suggests that changes in 

TSIV have a significant effect on the change in drivers’ average saccade amplitude, 

with both too little and too much TSIV resulting in decreased average saccade ampli-

tudes. This reflects the limited information that can be obtained with each fixation 

during the driver’s visual search under conditions of TSIV insufficient and overload, 

resulting in smaller subsequent saccade distances [39], as well as the greater difficulty 

for the driver to extract information, which makes the saccade amplitude smaller. 

(2) The depth of attention of the driver when searching for information while driving 

can be accurately measured by the saccade amplitude. The average driver’s saccade 

amplitude at the three speeds is highest in the S3 TSIV level, and the standard devi-

ation is lowest compared to the other levels, showing that the driver can obtain more 

about the road traffic environment at each fixation in the S3 TSIV level, making it 

easier for the driver to observe and comprehend the surrounding traffic environment 

and lowering the drowsiness, improving driving safety. 

(3) The driver’s average saccade amplitude varies from 1.95° to 2.44° at 60 km/h, 1.59° to 

2.31° at 80 km/h, and 1.74° to 2.40° at 100 km/h. It can be found that the average sac-

cade becomes significantly shorter as the speed increases for the same TSIV level. 

This is due to the fact that the driver’s dynamic visual field and spatial recognition 

range become smaller with the increase in driving speed, and it is difficult for the 

driver to obtain enough useful traffic environment information by a single fixation, 

which leads to the smaller following saccade amplitude, and the driver will show 

obvious tension at this time [40]. 

6.4. Analysis of the Visual Workload Intensity 

From the above analysis, it can be seen that the three indicators of fixation duration, 

saccade duration, and saccade amplitude are all effective in characterizing the driver’s 

visual workload on the TSIV [41]. Therefore, these three eye movement indicators can be 

combined to form a comprehensive indicator of the driver’s visual workload. 

In this paper, the method of factor analysis is used to determine the weight of each 

indicator, and the factor score coefficient can be used as the weight value of the indicator 

to evaluate its importance. The factor scores are shown in Table 7. 

Table 7. Factor score coefficient. 

Eye Movement Indicators Factor Score 

Fixation duration 0.034 

Saccade duration 0.558 

Saccade amplitude 0.559 

We can derive the relational equation of the comprehensive indicator characterizing 

the driver’s visual workload intensity from Table 7. The coefficient of the relational equa-

tion is the above factor score. Additionally, according to the previous analysis, it can be 

seen that the driver’s visual workload intensity is positively correlated with fixation du-

ration and saccade duration and negatively correlated with saccade amplitude, so the ex-

pression of the driver’s visual workload intensity can be expressed as: 

F = 0.034FD + 0.558SD − 0.559SR, (11) 

where: F is the driver’s visual workload intensity (dimensionless), FD is the driver’s fixa-

tion duration (ms), SD is the driver’s saccade duration (ms), SR is the driver’s saccade 

amplitude (°). 

The visual workload intensity was calculated when the participants recognized dif-

ferent levels of TSIV at 60 km/h, 80 km/h, and 100 km/h speeds, as shown in Figure 11. 

Additionally, the relationship between visual workload intensity and TSIV was analyzed. 
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The results and ANOVA of the fit of the driver’s visual workload intensity to the TSIV are 

shown in Tables 8 and 9. 
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Figure 11. Visual workload intensity of the driver when recognizing different levels of TSIV under 

three speed conditions. 

Table 8. Fitting results of driver’s visual workload intensity and TSIV under three-speed condi-

tions. 

Speeds 

Intercept B1 B2 Statistics 

Value 
Standard 

Error 
Value 

Standard  

Error 
Value 

Standard  

Error 
Adj. R-Square 

60 km/h 58.02 0.216 −0.16 0.021 0.003 3.89148 × 10−4 0.92 

80 km/h 58.64 0.229 −0.12 0.022 0.002 4.14849 × 10−4 0.85 

100 km/h 59.85 0.276 −0.15 0.026 0.003 4.98139 × 10−4 0.87 

Table 9. ANOVA for fitting of driver’s visual workload intensity and TSIV under three-speed con-

ditions. 

Speeds Parameter  DF Sum of squares Mean square F Value Prob > F 

60 km/h 

Model 2 3.416 1.708 30.21 0.01 

Error 3 0.169 0.057   

Total 5 3.586    

80 km/h 

Model 2 1.934 0.967 15.05 0.027 

Error 3 0.193 0.064   

Total 5 2.127    

100 km/h 

Model 2 3.364 1.682 18.16 0.021 

Error 3 0.278 0.093   

Total 5 3.642    

According to the above fitting results, the non-linear fitting equations of the driver’s 

visual workload intensity and TSIV under the three-speed conditions of 60 km/h, 80 km/h, 

and 100 km/h are 2003.016.002.58 xxy +−= , 2002.012.064.58 xxy +−= , and 
2003.015.085.59 xxy +−= , respectively. The fitting determination coefficients R2 are 0.92, 

0.85, and 0.87, respectively. It shows that the reliability of the fitted model is good, indi-

cating that the driver’s visual workload intensity and the TSIV of different levels in the 

three-speed conditions are well binomially distributed. In addition, the results of the fitted 

variance show that the p-values are all less than 0.05, which also indicates that the corre-

lation is statistically significant. 
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From the above statistical analysis, it is clear that: 

(1) The changing trend of the visual workload intensity of drivers is roughly the same 

when drivers recognize different levels of TSIV under the three-speed conditions. 

They show the trend of decreasing first and then increasing with the increase of TSIV. 

This shows that the TSIV has a significant influence on the visual workload intensity 

of drivers. 

(2) The visual workload intensity of the driver is the lowest under the S3 TSIV level un-

der the three-speed conditions, indicating that the driver’s psychological pressure is 

the lowest when driving under the S3 TSIV level, and the driving workload is lower, 

which is conducive to ensuring the driver’s driving safety. 

(3) At the same TSIV level, the driver’s visual workload intensity increases with the in-

creasing speed. 

7. Limitations and Directions for Future Research 

To further study the impact of TSIV on traffic safety, the following issues need to be 

further discussed: 

(1) Drivers of different genders, ages, driving styles, and driving experience may have 

different perceptions and performances on the TSIV, so further research needs to con-

sider different types of drivers. 

(2) Different requirements for TSIV may also apply to different types of roads, including 

freeways, urban expressways, and tunnels. Therefore, different types of roads need 

to be specifically studied in additional research. 

(3) This paper only analyzes the visual characteristics and visual workload of drivers. In 

the future, the impact of the TSIV on the driver’s perception and behavior can be 

further analyzed by combining it with data from the driver’s EEG, ECG, driving be-

havior, and vehicle operating status. 

(4) The number of participants recruited for the tests was 30, and the number was limited. 

To obtain more accurate test results, it is suggested that the number of subjects should 

be appropriately expanded in future studies. 

8. Conclusions 

In this study, simulated driving tests were conducted to obtain eye movement data 

of participants when recognizing different levels of TSIV and analyzed the influence of 

TSIV on the visual characteristics and visual workload of drivers, and then the following 

conclusions were obtained: 

(1) Three indicators—fixation duration, saccade duration, and saccade amplitude—were 

chosen by PCA as sensitive indicators of the driver’s eye movement behavior influ-

enced by the TSIV while driving. 

(2) When drivers recognize traffic signs, the duration of a single fixation is mainly con-

centrated in the time period of 50–400 ms, and the proportion of fixation frequency 

accounts for more than 70%. The duration of a single saccade is mainly concentrated 

in the time period of 30–120 ms, with the proportion single saccade accounting for 

more than 90%. The amplitude of a single saccade is mainly concentrated in the range 

of 0°–4°, accounting for more than 80% of the saccades. 

(3) The average fixation duration exhibits a trend of decreasing first, then increasing, 

and the average saccade duration displays a trend of increasing first, then decreasing, 

and then increasing again, and the average saccade amplitude shows a trend of in-

creasing first, then decreasing. These trends are all correlated with the increase in 

TSIV. Drivers have the shortest average fixation duration, the shortest average sac-

cade duration, and the greatest average saccade amplitude at the S3 TSIV level (30 

bits/km), and drivers have the best visual performance in this condition. 

(4) With the increase of TSIV, the driver’s visual workload intensity shows a trend of 

decreasing first and then increasing and is lowest at the S3 TSIV level. It shows that 
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drivers have the lowest psychological stress and lower driving workload when driv-

ing at the S3 TSIV level, which is conducive to ensuring the driver’s safety when 

driving in this condition. 

(5) The setting of traffic signs in the experiment of this paper is based on the current 

standards of China, and the form of traffic signs is of Chinese characteristics. There-

fore, the conclusions drawn in this paper are only applicable to the suggestion of 

proposed TSIV on highways in China. This paper finds that reasonable and appro-

priate TSIV plays an important role in traffic engineering and driving safety. The re-

search conclusion can provide a theoretical basis for the setting and improvement of 

highway traffic signs in China. 
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