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Abstract: Recently, the rapid growth in vehicle activity in rapidly urbanized areas has led to the
discharge of large amounts of polycyclic aromatic hydrocarbons (PAHs) into roadside soils and
these compounds have gradually accumulated in the soil, which poses a serious threat to national
food security and public health. However, previous studies did not clearly investigate the seasonal
differences in PAH pollution of roadside soil by different highways. Therefore, based on field
investigations, this study collected 84 soil surface samples to compare the pollution characteristics of
16 PAHs in farmland soils located near different roads in different seasons in Guangzhou, China. The
results showed that the concentration of Σ16PAHs in farmland soils in spring (with a mean value of
258.604 µg/kg) was much higher than that in autumn (with a mean value of 157.531 µg/kg). There
are differences in the PAH compositions in spring (4 ring > 3 ring > 5 ring > 6 ring) and autumn
(4 ring > 5 ring > 6 ring > 3 ring). The proportion of 4–6 ring PAHs was much higher than 2–3 ring
PAHs in both seasons. The spatial differences were significant. The sampling areas with higher
concentrations of 16 PAHs were Tanbu Town, Huadu District (TB), Shitan Town, Zengcheng District
(ST), and Huashan Town, Huadu District (HS), while the lowest concentration was in Lanhe Town,
Nansha District (LH). The results of the diagnostic ratios showed that the main source of soil PAHs
consists of a mixed source from petroleum and biomass combustion. The results from the total
pollution assessment method and Nemerow index method indicated that the pollution levels of PAHs
in the farmland soils indicated weak contamination. Our study provides a scientific basis for the
prevention and control of soil pollution in farmlands near highways.

Keywords: polycyclic aromatic hydrocarbons (PAHs); traffic sources; farmland soil; seasonal
variations; risk

1. Introduction

With the development of the global economy and acceleration of urbanization, urban
transportation facilities have continuously improved, and the number of vehicles has
increased rapidly. Vehicle exhaust emissions, as a typical anthropogenic source of polycyclic
aromatic hydrocarbons (PAHs), accumulate in soil through wet and dry deposition, surface
runoff, and other ways, which cause serious pollution of surface soils and affect food safety
and human health by crop absorption and incorporation into the food chain [1–3]. In
addition, the continuous expansion of transportation facilities has led to unbalanced land
use, much traffic land has occupied cultivated land, and large amounts of farmland are
still reserved along the highways. Soils play an important role in ensuring the sustainable
development of a country. Especially in cultivated soils, the soil quality is closely related to
agricultural product safety and human health. PAHs have carcinogenic, teratogenic, and
mutagenic effects and can enter the human body through ingestion, dermal contact, and
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inhalation to cause various diseases [4]. These are some of the most harmful environmental
pollutants with respect to human health, and 16 PAHs were listed as pollutants with
priority control by the United States Environmental Protection Agency (U.S. EPA) [5–9].
Some studies have found that soils bear more than 90% of the environmental load of PAHs
and are a potential source and sink in the environment [10–14]. Therefore, it is necessary
to explore the pollution of farmland soil PAHs by traffic emissions and to assess their
environmental risks.

Many scholars have paid attention to the influencing factors of soil PAH pollution
and found that urbanization is an important driving factor [15,16]. Urbanization has led
to the rapid centralization of large populations, transportation infrastructures, and an
increase in the number of vehicles and industrial activities, which have severely affected
the distribution characteristics of soil PAHs [17]. For example, the traffic emissions and coal
and biomass combustion that occur due to the rapid urbanization and industrialization
processes also lead to the high PAH concentrations that are found in the urban topsoils of
China [18]. Some scholars have also conducted research on soil PAH pollution levels and
pollution sources [19–21]. For example, some scholars studied PAHs in the soils of two cities
in Florida and found that the PAH concentrations in the central districts and near roads
with high traffic volumes were high [22]. Moreover, industrial sources and traffic sources
were also found to be important sources of soil PAHs, and the PAH concentrations in the
soils near traffic areas and industrial areas were five times those found in the suburbs [23].
In addition, some scholars have also analyzed the relationship between soil PAH pollution
and traffic road. One study found that the PAH concentrations in soil were related to
the distances to roads and to traffic congestion [2,24]. The study also found that the PAH
concentrations gradually decreased with increasing distances from roads [25]. The soils
near roadsides have higher PAH concentrations and have the most serious pollution [26].

In general, there are still deficiencies. First, although beneficial some studies have been
conducted on the PAHs in soils along highways and major and minor roads, little attention
has been given to the PAHs in farmland soils located near different highways. A systematic
study on soil PAH pollution in different highway conditions is lacking. Second, few studies
have focused on the seasonal drivers of PAH pollution characteristics and pollution levels
in farmland soils along traffic roads. The high traffic densities in urban areas lead to serious
PAH pollution in surface soils. Guangzhou, as China’s third largest city and core city of
the Guangdong–Hong Kong–Macao Greater Bay Area, is one of the rapidly urbanized
areas. The vehicle numbers in Guangzhou increased sharply from 0.035 million in 1999
to 3.08 million in 2020 (Guangzhou Statistical Yearbook, 2021). The fast-growing vehicle
numbers and rapid increases in traffic congestion have exacerbated pollution due to PAHs
in the farmland soils near highways. Accurate analysis of the pollution characteristics of
soil PAHs and pollution levels is conducive to the formulation of risk mitigation strategies.

Therefore, it is necessary to assess the pollution characteristics and pollution levels
of PAHs in farmland soils located near highways in different seasons. In our study, we
collected 84 samples from farmland soil near different highways in different seasons.
The specific purposes of this study were to (1) describe the relationship between traffic
emissions and PAH pollution in farmland soils located near highways; (2) illustrate the
seasonal differences in the concentrations and distributions of PAHs in farmland soils; and
(3) identify the potential sources and assess the ecological and health risks of PAHs.

2. Materials and Methods
2.1. Study Area

Guangzhou is located in the Pearl River Delta in southeast China and is China’s
third largest city, with an area of 7434 km2 and population of approximately 19 million.
According to the Guangzhou Statistical Yearbook (2021), Guangzhou receives a large
amount annual rainfall, with an annual average of 1800 mm. The rainfall amounts are
highest in summer, which are followed by those in spring, autumn, and finally winter.
Guangzhou is one of the central cities of the Guangdong–Hong Kong–Macao Greater Bay
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Area and has a complete transportation network. By 2020, 1102 km of expressways had
been constructed, and car ownership had reached 3.08 million. With the development of
rapid urbanization and traffic, Guangzhou is facing severe soil PAH pollution.

2.2. Soil Sampling and Analysis

We try our best to avoid the impact of industrial emissions on soil PAHs. After the
field investigation, we chose roads far away from the industrial area. In addition, factors
such as Guangzhou’s traffic road network, agricultural planting areas, and vehicle driving
conditions were comprehensively considered. Therefore, the farmland used for planting
vegetables near the toll gates of 6 different highways was selected for the sampling site
layout. In addition, when considering the temperatures in four seasons in Guangzhou, to
avoid the influence of temperature on PAHs, we selected spring and autumn, which have
similar average temperatures, for sample collection. The details of the 6 sampling areas are
shown in Table 1. We adopted gradient sampling in the TB and HL areas and non-gradient
sampling in the CN, HS, ST, and LH areas when collecting soil samples in autumn (during
October 2020) and spring (during March 2021) (Figure 1). We collected 84 surface soil
(0–20 cm) samples (10 samples in each area of CN, HS, ST, and LH, and 22 samples in each
area of TB and HL) in autumn and spring, and 42 samples were collected in each season.
In addition, each area is represented by a background value that is located 500 m away
from the highways. We mixed five subsamples (e.g., 4 corner samples and 1 center sample)
to form one 20 g composite sample for each site. The samples were stored in brown glass
bottles before storage at 4 ◦C until further analysis by the testing company.

Before the chemical analyses, the soil samples were air dried at room temperature
and were then sieved through a 100-mesh sieve to remove stones and plant residues.
We adopted the U.S. EPA standard 3550C and U.S. EPA standard 3630C to extract and
purify the soil PAHs [27–29]. The method was as follows. Firstly, 5 g of soil samples was
mixed with anhydrous sodium sulfate, and then we used the Soxhlet extraction method to
extract the target compound with a mixture of dichloromethane and n-hexane (v/v = 1:1).
Secondly, we concentrated the extracts by rotary vacuum evaporation (at 35 ◦C). Thirdly,
the solvent was changed to n-hexane, and the concentrated extracts were purified by
adopting a glass column fitted with anhydrous sodium sulfate and silica gel. Next, a
mixture of n-hexane/dichloromethane (v/v = 3:2) was used to elute the column. Finally, the
collected PAH fraction was then concentrated to 1.0 mL under a gentle stream of nitrogen
for measurement on a GC-MS instrument.

Table 1. Specific information for the six sampling areas.

Sample Serial
Number Location Date Number of

Samples Nearby Highway Road Opening
Time

CN Chini Town, Huadu
District, Guangzhou

October 2020
(Autumn)

March 2021
(Spring)

10 Pearl River Delta
Ring Expressway December 2014

TB Tanbu Town, Huadu
District, Guangzhou 22

Express Highway
Round City

in Guangzhou
December 2006

HS Huashan Town, Huadu
District, Guangzhou 10 Da Guang Expressway January 2002

ST Shitan Town, Zengcheng
District, Guangzhou 10 Jinan Guangzhou

Expressway December 2015

HL Hengli Town, Nansha
District, Guangzhou 22 Nansha Port

Expressway December 2004

LH Lanhe Town, Nansha
District, Guangzhou 10

Express Highway
Round City

in Guangzhou
December 2010
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less mode, and helium (purity > 99.999%) with a flow rate of 1 mL/min was the career gas. 

Figure 1. Sampling areas and sampling methods used in Guangzhou. (a) The sampling area; (b) the
sampling method, where the left is non-gradient sampling (CN, HS, ST, LH) and the right is gradient
sampling (TB, HL).

Gas chromatography–mass spectrometry (GC-MS) (6890N/5975B, Agilent, Santa
Clara, CA, USA) was used to measure the concentrations of 16 PAHs. We used a fused
silica capillary Rtx-5MS column (30 m × 0.25 mm inner diameter × 0.25 µm film thickness)
to separate the different chemical compounds. The injection volume was 1 µL with splitless
mode, and helium (purity > 99.999%) with a flow rate of 1 mL/min was the career gas.
Initial oven temperature was programmed as 80 ◦C for 2 min, and increased to 180 ◦C at a
rate of 20 ◦C/min for 5 min; then ramped to 290 ◦C at a rate of 10 ◦C/min, and maintained
for 5 min. We chose electron impact (EI) mode to carry out ionization, and selective ion
monitoring (SIM) mode to obtain data. We measured the 16 PAHs by the internal standard
method. At the same time, strict quality control measures were employed in this process,
and both blank and parallel samples were analyzed. The recovery rate of PAHs ranged
between 70.2% and 110.8%.

2.3. Exposure Model

Human exposure to soil PAHs mainly occurs in three ways, namely, ingestion, dermal
contact, and inhalation. The incremental lifetime cancer risk (ILCR) is usually used to assess
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the carcinogenic risks for children and adults who are exposed to PAHs in soils [27,28,30–32].
The ILCR formulas for the three pathways are shown below.

ILCRingestion =

(
CSFingestion × 3

√
BW
70

)
×

CS × IRingestion×EF × ED

BW × AT × 106 , (1)

ILCRdermal =

(
CSFdermal ×

3

√
BW
70

)
× CS × SA × AF × ABS × EF × ED

BW × AT × 106 , (2)

ILCRinhalation =

(
CSFinhalation × 3

√
BW
70

)
× CS × IRinhalation×EF × ED

BW × AT × PEF
, (3)

where CS is the concentration of soil PAHs (µg/kg); CSF represents the carcinogenic slope
factor (mg kg−1 day−1); and the values for CSFingestion, CSFdermal, and CSFinhalation were
7.3, 25, and 3.85, respectively [31]. The conversion coefficient for the PAH concentrations is
106. The remaining parameters are described in Table 2.

Table 2. Parameters used for lifetime carcinogenic risk assessment (ILCR).

Parameter Units Child Adult References

Body weight (BW) kg 6.94 58.55 [32]
Exposure frequency (EF) day year−1 350 350 [27]
Exposure duration (ED) year 6 24 -

Inhalation rate (IRinhalation) m3 day−1 5.65 13.04 [32]
Dust ingestion rate

(
IRingestion

)
mg day−1 200 100 [27]

Dermal exposure area (SA) cm2 day−1 2800 5700 [27]
Dermal exposure factor (AF) mg cm−2 0.20 0.07 [27]

Dermal adsorption factor (ABS) - 0.13 0.13 [30]
Average lifespan (AT) day 81.34 × 365 81.34 × 365 GDASS, 2018

Particle emission factor (PEF) m3 kg−1 1.36 × 109 1.36 × 109 [30]

Notes: GDASS refers to the Guangdong Academy of Social Sciences.

3. Results and Discussion
3.1. PAH Concentrations in Farmland Soil

The concentrations of 16 PAHs in the 84 soil samples in autumn and spring are shown
in Table 3. The 16 U.S. EPA priority PAHs were detected in all samples. The concentrations
of Σ16PAHs in farmland soils in autumn ranged from 27.529 µg/kg to 627.856 µg/kg,
with a mean value of 157.531 µg/kg. The mean concentration of the seven carcinogens
in autumn was 75.648 µg/kg and ranged from 13.122 µg/kg to 308.086 µg/kg, while
Σ7PAHs accounted for 48.02% of the total concentration. The 16 total PAH concentrations
in farmland soil in spring varied from 63.826 µg/kg to 1059.767 µg/kg, with a mean
value of 258.604 µg/kg, and Σ7PAHs contributed to 39.62%. The results showed that
there were seasonal differences in the PAH concentrations in farmland soils, and the PAH
concentrations were higher in spring than in autumn, which was related to the climate and
precipitation in the study area. During the spring sampling period, there were 2 days with
continuous rainfall, which resulted in higher PAH concentrations in the samples that were
due to surface runoff and wet deposition. In addition, PAHs in soil are also transferred to
plants in various ways. After the autumn harvest, the concentration of PAHs in the soil
decreased [33]. Besides that, the photolysis reaction of PAHs may be another influencing
factor. Although the spring and autumn temperatures were similar, autumn was less rainy
and the sunlight exposure time was longer, resulting in lower soil PAH concentrations in
autumn. Some studies have found photolysis of PAHs in surface water, drinking water,
and microplastics [34–36]. In addition, other scholars have confirmed the photocatalytic
degradation of PAHs in the topsoil [37–39]. Σ7PAHs with high carcinogenicity account for
a higher proportion, which indicates that the safety of farmland soils was more affected.
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Table 3. The concentrations of 16 PAHs in farmland soils in autumn and spring.

PAHs (µg/kg) Rings
Autumn Spring

Max Min Mean Max Min Mean

Nap 2 28.954 3.897 8.799 78.143 5.667 23.423
Acy 3 10.582 0.000 1.613 14.111 0.686 4.202
Ace 3 6.040 0.000 1.745 4.429 0.504 1.768
Fl 3 6.653 0.357 2.249 33.545 2.049 8.148

Phe 3 58.210 3.527 16.922 159.557 9.849 38.831
Ant 3 5.900 0.049 2.155 12.635 1.185 4.569
Fla 4 55.711 3.709 17.464 112.717 8.021 30.243
Pyr 4 49.709 2.509 14.838 98.515 8.807 25.153
BaA 4 27.773 0.674 8.214 103.496 2.742 14.068
Chr 4 51.425 3.474 14.993 96.026 5.237 19.196
BbF 5 77.455 5.749 21.461 96.006 7.876 28.326
BkF 5 27.223 1.102 6.952 37.626 2.195 7.568
BaP 5 54.226 1.609 10.450 72.046 1.239 11.753
DBA 5 25.860 0.000 4.353 22.614 0.591 6.199
IcdP 6 44.124 0.515 9.226 50.395 3.224 15.364

BghiP 6 98.010 0.358 16.097 67.904 3.953 19.792
Σ16PAHs - 627.856 27.529 157.531 1059.767 63.826 258.604
Σ7PAHs - 308.086 13.122 75.648 478.210 23.105 102.475

Notes: Σ16PAHs refer to the total concentration of 16 PAHs. Σ7PAHs represents the concentration of 7 carcinogenic
PAHs (e.g., BaA, Chr, BbF, BkF, BaP, IcdP, and DBA).

The concentrations of Σ16PAHs in this study were much lower than those in roadside
soils in Delhi, India (the concentration ranged from 1062 µg/kg to 965 µg/kg) and Dhanbad,
India (the concentration of 13 PAHs varied from 1019 µg/kg to 10,856 µg/kg) [1,2]. The
high concentrations in the study area of India are mainly due to the following factors:
(1) there were large traffic loads; (2) traffic congestion was present; (3) low-speed and
variable-speed driving conditions occurred; and (4) the surrounding tall buildings affected
the diffusion of PAHs. In addition, the PAH concentrations in this study were also lower
than for the soils in the urban–rural integration area in Hebei (the concentration ranged
from 25 µg/kg to 15,155 µg/kg) and the industrial soils in the Yangtze River Delta (the
concentration varied from 189.500 µg/kg to 1070.400 µg/kg) [40,41]. This also suggests that
urbanization and industrialization are the main drivers of soil PAH pollution. In addition,
traffic flows, road conditions, and the surrounding environments can also affect soil PAH
concentrations. The concentrations of Σ16PAHs in this study are similar to those for the
rice–wheat continuous cropping soils that are located close to industrial parks in Suzhou,
with a value ranging from 125.990 µg/kg to 796.650 µg/kg [42]. Compared with other
areas, the farmland soils of Guangzhou were weakly contaminated. The main reason is
that the farmland soils examined in this study are located in traditional agricultural areas
of Guangzhou and are located far from the industrial area.

3.2. Compositional Characteristics of PAHs in Farmland Soils

The distributions of the concentrations and proportions of 16 PAHs in the soil in
autumn and spring are shown in Figure 2. We can see that the concentration of each PAH
in spring was significantly higher than that in autumn. The proportions of each PAH
exhibited small differences. The component with the largest proportion was Phe, while the
component with the lowest proportion was Ace in spring. BbF accounted for the highest
proportion, and Acy accounted for the lowest proportion in autumn.
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For the low-molecular-weight (LMW) 2- to 3-ring PAHs, the concentrations of Acy,
Ace, Fl, and Ant were low and accounted for approximately 1% of total PAHs. However,
the Phe concentrations were highest in autumn and spring, with average concentrations
of 16.922 µg/kg and 38.831 µg/kg, accounting for 10% and 15% of the average content
of total PAHs, respectively. Nap had the second highest concentrations in autumn and
spring, with average concentrations of 8.799 µg/kg and 23.423 µg/kg, comprising 5.60%
and 9%, respectively.

For the medium-molecular-weight (MMW) 4-ring and high-molecular-weight (HMW)
5- to 6-ring PAHs, the DBA concentrations in spring were the lowest, with a mean concentra-
tion of 6.199 µg/kg, accounting for 2.4% of total PAHs, while the Fla concentration was the
highest, with a mean concentration of 30.243 µg/kg and comprised 11.7% of the total PAHs.
However, the BbF concentrations in autumn were the highest, with a mean concentration
of 21.461 µg/kg, accounting for 13.62% of the total PAHs, while DBA presented the lowest
mean concentration, with a concentration of 4.353 µg/kg, which accounted for 2.76% of the
total PAHs. Fla, Pyr, Chr, and BghiP also had relatively high concentrations, with values of
17.464 µg/kg, 14.838 µg/kg, 14.993 µg/kg, and 16.097 µg/kg, with proportions of 11.09%,
9.42%, 9.52%, and 10.22%, respectively. Except for Nap and Phe, the concentrations of the
LMW PAHs were lower than those of the HMW PAHs.

Regarding the composition of PAHs in farmland soils, there were certain differences
in spring and autumn (Figure 3). The 4-ring component was the largest component, which
accounted for 32–35%, while the 2-ring component accounted for the lowest amount, which
was 5–10%. The PAHs in autumn were dominated by 4-rings, followed by 5-ring and 6-ring,
and finally 3-ring. The PAHs in spring were dominated by 4-ring, followed by 3-ring, then
5-ring, and finally 6-rings. In both autumn and spring, the proportion of 4–6-ring PAHs
was far larger than that of 2–3-ring PAHs. The overall results were similar to other research
results, which show that the ring number composition of PAHs in soil close to the highway
was mainly 4–6-ring [2,43]. Medium- and high-molecular-weight PAHs are usually related
to the incomplete combustion of petroleum fuels, so the compositions near highways were
relatively high. The proportion of 2-ring PAHs in the soil was low, which was related to the
molecular weight. The 2-ring PAHs have low molecular weights and easy volatilize into
the atmosphere. In addition, in spring, the proportion of 3-ring PAHs was greater than that
of 5-ring and 6-ring PAHs, which was related to rainfall. There was more rainfall in spring,
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and pollutants in the atmosphere entered the soil through runoff and wet deposition, which
resulted in higher levels of low-ring components.
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3.3. Spatial Distribution of PAHs in Farmland Soil

The spatial distributions of the PAHs in farmland soils in autumn and spring are shown
in Figure 4. The Σ16PAH contents were relatively high in the TB, ST, and HS areas. Among
them, the TB area had the largest Σ16PAH content in spring and autumn, and the Σ16PAH
contents were 489.190 µg/kg in spring and 263.040 µg/kg in autumn. In areas ST, HS, HL,
and CN, the contents of Σ16PAHs were 245.278 µg/kg, 238.762 µg/kg, 164.561 µg/kg,
and 152.035 µg/kg in spring and 240.699 µg/kg, 179.938 µg/kg, 213.376 µg/kg, and
188.729 µg/kg in autumn, respectively. The contents of Σ16PAHs were lowest in the LH
area in the two seasons, and the contents were 137.263 µg/kg in spring and 121.804 µg/kg
in autumn. Based on the average contents in the two seasons, the maximum content of
Σ16PAHs in spring was 489.190 µg/kg, with a minimum content of 137.263 µg/kg. How-
ever, the maximum value in autumn was 263.040 µg/kg, and the minimum value was
121.804 µg/kg.
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There was a correlation between the concentrations of Σ16PAHs in the farmland soils
and traffic loads and road opening times. The opening time of each road is shown in Table 1.
We can see that the TB area had an early road opening time and large traffic load, so its PAH
concentration was highest. Although the ST area has the latest opening time, the average
PAH content was still high. The potential reason was that ST areas were near a national
expressway with a large traffic load and sparse roadside trees around the sampling site.
Then, the roads in the HS area are open for a long time, the road conditions are complicated,
and motor vehicles are always in a state of constant acceleration and deceleration, resulting
in higher concentrations. LH has always been a traditional agricultural area in Guangzhou,
with lower pollution accumulations, so the concentrations were low.

3.4. PAH Concentration in Farmland Soil in Gradient Sampling Area (TB, HL)

The highways selected for the gradient sampling area (TB and HL) in this study are
Express Highway Round City in Guangzhou and Nansha Port Expressway, respectively.
TB is located in the West Second Ring Road of Huadu District, and HL is located in Hengli
Town, Nansha District. We set gradients at 0 m, 20 m, 50 m, 100 m, and 250 m from the
highway and took the background value at 500 m. The concentrations of PAHs in farmland
soil in autumn and spring at different distances are shown in Figure 5.
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For the sampling area TB, the Σ16PAH concentration in the farmland soil was higher
as a whole, and it was much higher in spring than in autumn. In spring, the overall
change trend of Σ16PAH concentration was to increase first and then decrease, reaching a
maximum value of 695.789 µg/kg at 50 m. The Σ16PAH concentrations at 0 m and 20 m
were similar with little change. From 20 m to 50 m, the concentration of Σ16PAHs increased
with distance, while from 50 m to 250 m, the Σ16PAH concentration gradually decreased
with the increase in distance, and reached a minimum value of 256.524 µg/kg at 250 m.
Meanwhile, the Σ16PAH concentration values at 100 m and 250 m were close to but lower
than the background value (391.945 µg/kg) at 500 m. The 16 total PAH concentrations
in farmland soil varied from 256.524 µg/kg to 695.789 µg/kg, with a mean value of
489.190 µg/kg, and Σ7PAHs contributed to 45.10%. In autumn, the vertical distances of
Σ16PAH concentration from high to low are: 0 m, 20 m, 100 m, 50 m, and 250 m, respectively.
The maximum at 0 m was 321.431 µg/kg, and the minimum at 250 m was 86.728 µg/kg.
The Σ16PAH concentration decreased gradually with the increase in distance, but increased
slightly from 50 m to 100 m. The concentration values at all distances were higher than
the background value (46.403 µg/kg) at 500 m. The average content of 16 PAHs was
263.040 µg/kg, and Σ7PAHs accounted for 50.14% of the total.
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From the results, we can see that highway traffic emissions have a great impact on
the concentration of PAHs in farmland soil. In terms of seasons, the pollution in spring
is much higher than that in autumn, and the concentration of PAHs in spring is about
twice or more than that in autumn. The main reason for this is not only the impact of
rainfall, but also closely related to crop planting and farmland soil ploughing [33,44–46]. In
autumn, the concentration of PAHs gradually decreases with the increase in the distance
from the highway. This is because under the action of natural conditions such as wind
speed and wind direction, the farther the distance is, the less aerosols there are, and the
PAHs deposited into the soil through wet and dry deposition will be reduced. In spring,
the concentration of PAHs is the highest at 50 m away from the highway, followed by 0 m
and 20 m, and then gradually decreases with the increase in distance. We found that the
closer to the highway, the more serious the pollution. This is consistent with previous
research conclusions [25,26,47,48]. PAH concentrations at 0 m and 20 m were lower than
those at 50 m, which was because the luxuriant branches and leaves of the roadside trees in
spring hindered the diffusion of pollutants. The highest concentration at 50 m is mainly
due to the transfer of particulate matter and aerosols generated by vehicle exhaust and
the impact of runoff after heavy rainfall [49–52]. An interesting phenomenon is that the
background value of PAHs at 500 m in spring is higher than that at 100 m and 250 m, which
indicates that the background value of soil PAHs in the sampling area is high and the soil
pollution is serious. The main reason is that Express Highway Round City in Guangzhou is
connected with many expressways, national highways, and provincial trunk roads, sharing
a large amount of transit traffic, and the traffic flow is large and mostly heavy vehicles.
Previous studies have confirmed that heavy traffic flow and traffic congestion lead to high
PAH emissions [2,47,53]. In addition, another possible reason is that there is a small ditch
not far from the sampling site of the background value, and more rainfall in spring will
also have a certain impact on it.

Compared with sampling area TB, the PAH concentration in sampling area HL was
lower as a whole. This is because the Nansha District where the Nansha Port Expressway
is located is mainly arable land and ecological land, and the traffic flow on the road is low.
Except for 0 m and 100 m, the concentrations in spring and autumn were similar. In spring,
the concentrations of 16 PAHs all decreased with the increase in distance, except for the
increasing trend from 50 m to 100 m. The highest concentration at 0 m was 195.584 µg/kg,
followed by 100 m, with a concentration of 153.664 µg/kg, and a minimum concentration of
109.563 µg/kg at 250 m, which was close to the background value at 500 m. In autumn, the
concentration at 0 m is also the highest, with a value of 317.821 µg/kg, which is much higher
than that in spring. The PAH concentrations showed a decreasing trend from 0 to 20 m and
50 to 100 m, while increasing from 20 to 50 m and 100 to 250 m. The Σ16PAH concentration
was the smallest at 100 m, with a value of 80.423 µg/kg, which was close to the background
value. On the whole, in spring and autumn, except for the high concentration of PAHs at
0 m, other gradient concentrations have little change, which are close to the background
value at 500 m. This is mainly because the soil taken at 0 m is close to the expressway
toll station, at which traffic congestion and frequent vehicle speed change result in high
PAH concentration. In addition, PAHs emitted from tire debris and asphalt pavement
also accumulate in roadside soil [50,54]. At the same time, after rainfall, the water on the
highway spills into the soil, which will also affect the PAH concentration in the adjacent
soil [49].

3.5. PAH Source Identification

The ratios of BaA/(BaA + Chr), Fla/(Fla + Pyr), Ant/(Ant + Phe), and IcdP/
(BghiP + IcdP) were used to characterize the potential sources of PAHs (Figure 6). Except
for one sampling point, the values of Fla/(Fla + Pyr) at the other points were greater than
0.4 in autumn, indicating that the main source of PAHs consisted of combustion sources.
However, the values at all points in spring were less than 0.4, which suggested that the
main source of PAHs was petroleum [55]. In autumn, the Ant/(Ant + Phe) ratios in 32.5%
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of sampling points were less than 0.1, which indicated that the PAHs originated from
petroleum sources. However, in 67.5% of sampling points in autumn and at all points in
spring, the Ant/(Ant + Phe) ratios are greater than 0.1, which means that the source of PAHs
was petroleum combustion [56]. The IcdP/(BghiP + IcdP) ratios for almost all sampling
points in autumn and 92% of sampling points in spring are greater than 0.2 and less than
0.5, indicating that the main source of PAHs consisted of petroleum combustion [57]. In
addition, based on the BaA/(BaA + Chr) ratios, we found that 60% of sampling points in
autumn and 84% in spring had values above 0.35, which indicated that the main source
was biomass burning. At 20% of sampling points in autumn and 18% in spring, the BaA/
(BaA + Chr) ratios were between 0.2 and 0.35, indicating that PAHs were mainly derived
from petroleum combustion sources [58,59].
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Overall, the PAHs in farmland soil mostly come from mixed sources of petroleum and
biomass combustion.

3.6. Pollution Level Assessment of Soil PAHs

The methods proposed by Maliszewska-Kordybach (1996) were used to more rig-
orously assess farmland soil pollution [60]. There were four levels of soil pollution by
PAHs: ΣPAH concentrations less than 200 µg/kg indicated uncontaminated; those be-
tween 200 and 600 µg/kg indicated weakly contaminated; ΣPAH concentrations from
600 to 1000 µg/kg indicated contaminated; and values greater than 1000 µg/kg suggested
heavily contaminated. Based on these criteria, 40.48% of the samples were considered to be
weakly contaminated and 59.52% could be considered as uncontaminated (Table 4).
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Table 4. Evaluation standard for the total pollution levels of PAHs.

Level Total Concentration Range of PAHs Number of Samples

Uncontaminated <200 µg/kg 25
Weak contamination 200~600 µg/kg 17

Contamination 600~1000 µg/kg 0
Heavy contamination >1000 µg/kg 0

We also used the Nemerow index method to assess the pollution levels of PAHs in
soils based on the evaluation criteria obtained from the Canadian government. According
to the pollution index p, these levels are divided into five evaluation grades. A value of
p less than or equal to 0.7 is safe. A value of p from 0.7 to 1 suggests a warning line, a value
between 1 and 2 indicates weak contamination, a value from 2 to 3 indicates contamination,
and a value greater than 3 indicates heavy contamination. Our results showed that the
p values of all soil samples were below the security level (Table 5).

Table 5. Statistics of the Nemerow index of soil PAHs.

Level Safe
(p ≤ 0.7)

Warning Line
(0.7 < p ≤ 1)

Weak
Contamination

(1 < p ≤ 2)

Contamination
(2 < p ≤ 3)

Heavy Contamination
(p > 3)

Number of samples 42 0 0 0 0

3.7. Health Risk Assessment
3.7.1. Toxic Equivalence Concentration

Different individual PAHs have different toxic effects, so the toxic equivalence fac-
tors (TEFs) were used to determine the toxic equivalence concentration (TEQBaP) of soil
PAHs [61]. Table 6 shows the TEF values of PAHs and the TEQBaP concentrations. The total
TEQBaP of 16 PAHs in farmland soil samples varied from 5.068 µg/kg to 79.380 µg/kg, with
an average value of 22.420 µg/kg. The total TEQBaP values for the seven carcinogenic PAHs
were between 4.910 µg/kg and 77.828 µg/kg, with a mean value of 21.894 µg/kg, and
contributed 98.62% for the total TEQBaP. The results suggested that the total carcinogenicity
of soil PAHs was mainly caused by seven carcinogenic PAHs; among them, BaP contributed
the most, followed by DBA, which accounted for 49.58% and 23.46% of the total TEQBaP of
soil PAHs, respectively. The 16 PAHs in farmland soil samples had TEQBaP values that were
lower than the soil pollution risk management and control for agricultural land standard
value of 0.55 mg/kg. Therefore, the soil in the study area poses little risk to human health.

Table 6. Toxic equivalence concentration (TEQBaP) of soil PAHs.

PAHs (µg/kg) TEFs Min Max Mean

Nap 0.001 0.007 0.044 0.016
Acy 0.001 0.001 0.007 0.003
Ace 0.001 0.000 0.005 0.002
Fl 0.001 0.001 0.017 0.005

Phe 0.001 0.091 0.831 0.277
Ant 0.010 0.001 0.007 0.003
Fla 0.001 0.010 0.065 0.024
Pyr 0.001 0.008 0.057 0.020
BaA 0.100 0.311 5.441 1.099
Chr 0.010 0.057 0.542 0.170
BbF 0.100 0.853 6.415 2.473
BkF 0.100 0.187 2.285 0.722
BaP 1.000 2.137 40.936 11.006
IcdP 0.100 0.283 3.566 1.215
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Table 6. Cont.

PAHs (µg/kg) TEFs Min Max Mean

DBA 1.000 1.082 18.644 5.208
BghiP 0.010 0.039 0.521 0.177

16 PAHs - 5.068 79.380 22.420
7 PAHs - 4.910 77.828 21.894

3.7.2. Exposure Model

Ingestion, dermal contact, and inhalation are three ways that the human body comes
into contact with soil pollutants. Due to the physical differences at different ages, we
calculated the lifetime cancer risks of adults and children separately in this study. The
results shown in Table 7 were obtained through Equations (1)–(3). When combining the
three exposure methods, in all soil samples, the range of ILCRs for children was between
9.68 × 10−5 and 1.09 × 10−3, with a mean of 3.44 × 10−4, while the range for adults was
5.77 × 10−5 to 6.48 × 10−4, with a mean of 2.05 × 10−4. The total ILCRs of both children
and adults exceeded 10−6, which indicated a low risk or critical health level in the soil.
Children and adults bear different risks for different exposure pathways. The risk caused
by inhalation was the lowest, but the risk from dermal contact was the highest. Other
scholars have also found that the dermal contact exposure route of PAHs is higher risk than
the inhalation and ingestion routes [62]. Overall, under the current concentrations, the soil
PAH exposure risk in children was greater than that in adults, and the mean of the total
ILCRs was approximately 1.68 times that in adults. The ILCRs were higher for children
than adults because of their different individual differences and lifestyle habits [29,63].
Studies have found that children are more likely to ingest contaminated soil because of
their hand to mouth activities [13,64]. In addition, children also have higher PAH intake
than adults due to their lower body weight, so they are at greater risk [41].

Table 7. The ranges of lifetime carcinogenic risk assessment (ILCR) in children and adults with three
exposure pathways.

Exposure
Pathway

Children Adults

Min Max Mean Min Max Mean

Dermal contact 5.370 × 10−5 6.030 × 10−4 1.906 × 10−4 3.693 × 10−5 4.147 × 10−4 1.311 × 10−4

Ingestion 4.308 × 10−5 4.837 × 10−4 1.529 × 10−4 2.079 × 10−5 2.335 × 10−4 7.379 × 10−5

Inhalation 4.720 × 10−10 5.299 × 10−9 1.675 × 10−9 1.051 × 10−9 1.181 × 10−8 3.731 × 10−9

Total 9.678 × 10−5 1.087 × 10−3 3.435 × 10−4 5.772 × 10−5 6.482 × 10−4 2.049 × 10−4

4. Conclusions

Vehicle exhaust is an important source of roadside soil PAHs. In this study, 16 PAHs
in the farmland soils of Guangzhou that were located near different highways in different
seasons were investigated. The farmland soils in rapidly urbanized areas are seriously
polluted by PAHs. Different highway conditions have different degrees of influence
on soil PAH pollution. We found that factors such as traffic loads, traffic congestion,
driving conditions, road opening times, and road surroundings significantly affected the
concentrations and distributions of PAHs in farmland soils. When the traffic load is heavy,
the opening time is early, the roadside trees around the road are sparse, and the driving
conditions are often low speed or variable speed, the PAH concentrations in farmland soils
were higher, such as in the sampling TB, ST, and HS areas. In the traditional agricultural
areas of Guangzhou, there was lower pollution accumulation, so the PAH concentrations
in the LH sampling area were the lowest. Besides that, rainfall conditions, farmland tillage,
photolysis reaction, and surface runoff also affected the of PAH concentrations in farmland
soils, which resulted in seasonal differences in soil PAH concentrations. The soil PAH
concentrations in the study area were much higher in spring than in autumn. In addition,
the distance from the highway was also closely related to the concentration of soil PAHs.
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Gradient sampling studies found that the concentration of soil PAHs decreased gradually
with the increase in distance. The closer to the highway, the more serious the pollution.
Finally, this research determined that the overall potential ecological risk of the farmland
soils in Guangzhou is low, but continuous monitoring is still required to assess the impact
of transportation emissions on the environment and human health.
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