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Abstract: Sewage sludge, produced in the process of wastewater treatment and managed for agri-
culture, poses the risk of disseminating all the pollutants contained in it. It is tested for heavy
metals or parasites, but the concentration of pharmaceuticals in the sludge is not controlled. The
presence of these micropollutants in sludge is proven and there is no doubt about their negative
impact on the environment. The fate of these micropollutants in the soil is a new and important
issue that needs to be known to finally assess the safety of the agricultural use of sewage sludge.
The article will discuss issues related to the presence of pharmaceuticals in sewage sludge and their
physicochemical properties. The changes that pharmaceuticals undergo have a significant impact on
living organisms. This is important for the implementation of a circular economy, which fits perfectly
into the agricultural use of stabilized sewage sludge. Research should be undertaken that clearly
shows that there is no risk from pharmaceuticals or vice versa: they contribute to the strict definition
of maximum allowable concentrations in sludge, which will become an additional criterion in the
legislation on municipal sewage sludge.
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1. Introduction

During wastewater treatment, it is not only treated sewage that leaves the treatment
plant but also waste, such as screenings, sand, and stabilized sewage sludge, which is
created as a result of the continuous multiplication of the biomass of microorganisms.
Each of these wastes requires management. The biggest problem is the formation of
excessive sewage sludge in large amounts. Its management requires it to undergo previous
stabilization processes. According to the currently binding legal acts in Poland, stabilized
sewage sludge is a sludge with reduced susceptibility to rotting and does not pose a threat
to the environment or human life and health [1,2]. The constant development of cities and,
hence, the expansion of sewage networks, causes an increasing amount of sewage [3,4].
Moreover, restrictive standards concerning the maximum permissible concentrations for
biogenic elements contribute to the increase in the amount of excess sludge. Statistical data
from Statistics Poland confirm the growing amount of sludge in industrial and municipal
sewage treatment plants. Since 2010, this value is consistently growing, and in 2019 it
exceeded 1048.7 thousand tons of dry matter) [5]. In 2020, there was a decrease in the
generated sludge by approx. 5.6% (Table 1). According to the Central Statistical Office, this
could be related to the coronavirus pandemic, which forced the human population to be
less active which inhibited the industry [5].

Over the last 20 years, the method of sewage sludge management in Poland has
changed dynamically. The amount of stored sludge is systematically decreasing, which
is the result of the changing law in Poland. In 2000, there were 474.5 thousand tons of
dry matter of stored sewage sludge, 10 years later there were 165.9 thousand tons of

Int. J. Environ. Res. Public Health 2022, 19, 10246. https://doi.org/10.3390/ijerph191610246 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph191610246
https://doi.org/10.3390/ijerph191610246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-0092-3772
https://doi.org/10.3390/ijerph191610246
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph191610246?type=check_update&version=3


Int. J. Environ. Res. Public Health 2022, 19, 10246 2 of 15

dry matter, and in 2020 only 63.9 thousand tons of dry matter. A completely opposite
tendency is observed when analyzing the thermal treatment of the sludge. In 2000, only
34.1 thousand tons of dry matter were transformed this way, whereas in 2010 the level of
thermal transformation almost doubled, and in 2020 it reached the level of 219.4 thousand
tons of dry matter. The level of sludge used in agriculture for the cultivation of crops
intended for the production of compost remains stable. On the other hand, significantly
less sludge is used for land reclamation, including land for agricultural purposes—in 2019
only 24.5 thousand tons of dry matter was managed in this way. The amount of sludge
temporarily stored in the sewage treatment plant was also reduced from 14,654 thousand
tons to 6143.6 thousand tons of dry matter, which is important from the point of view of
safety. Taking into account the agricultural use in total, i.e., applied in agriculture, land
reclamation including reclamation of land for agricultural purposes, and the cultivation of
plants intended for compost production, it should be noted that, in 2000, as much as 37.77%
of all sludge formed were distributed in natural areas. On the other hand, 20 years later,
the agricultural use of sludge fell to 21.97%. Undoubtedly, this effect was caused by the
introduction of restrictive regulations on pollution caused by sewage sludge.

Table 1. Total production of sewage sludge from industrial and municipal wastewater treatment
plants and trends in their use over the last 20 years [5].

Specification
2000 2005 2010 2015 2019 2020

in Thousand Tons of Dry Solid

Total sewage sludge generated during the year
of which: 1063.1 1124.4 895.1 951.5 1048.7 989.5

applied in agriculture; 212.2 98.2 136.9 126.6 141.9 160.4

applied in land reclamation including reclamation
of land for agricultural purposes; 154.9 324.9 150.4 31.3 24.5 26.5

applied in cultivation of plants intended for
compost production; 28.1 29.6 31.3 48.2 31.7 30.5

thermally transformed; 34.1 37.4 66.4 165.4 195.7 219.4

landfilled; 474.5 399.1 165.9 131.5 113.3 63.9

sewage sludge accumulated on the wastewater
treatment plants 14,654 9342.8 6450.5 6483.9 6191.2 6143.6

There is no doubt that the amount of sludge to be managed is enormous and requires
special and careful measures. The amount of generated sludge is only about 1–3% of the
volume of raw sewage. Nevertheless, they can pose a potential threat to the environment
in the event of inappropriate management because they contain, among other things, heavy
metals and pathogenic organisms. On the other hand, sewage sludge can be used in practice,
as it is a rich source of organic matter and biogenic elements. Sewage sludge is used for
agricultural purposes, fertilization of soils and plants as a valuable source of nitrogen and
phosphorus, compost production, as well as for the reclamation of degraded lands. Appropri-
ate management of sewage sludge turns out to be important from the point of view of the
circular economy, energy economy, and depletion of non-renewable mineral resources.

The article presents a brief overview of the possibilities of sewage sludge management
in the context of implementing a circular economy. Particular attention was paid to the agri-
cultural use of sludge. Their use in the natural environment carries the risk of transferring
pharmaceutical residues present in sewage sludge and fertilizers produced from them. It is
necessary to analyze the content of pharmaceuticals and their fate after the distribution of
sludge-based products on farmlands. The aim of the article is to draw attention to the safe
usage of sewage sludge in the natural environment in the context of processes involving
pharmaceuticals in soil.

2. Final Disposal of Sewage Sludge—Granular Fertilizer

It is believed that one of the most beneficial methods of recycling sewage sludge
is to use it in agriculture. This is facilitated by the observation of the deficit of organic
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compounds in soil. The factor limiting the industrial use of sewage sludge in agriculture is
the presence of sanitary pollution or the exceeded heavy metal content. Pharmaceuticals are
an important problem that may affect the limitation of the use of sewage sludge as fertilizer
products, which results from the specificity of their activity and potential possibilities of
immunizing pathogenic microorganisms against the active substances contained in the
sludge. Application of treated wastewater and digested sludge, and animal manure, are
routes of transport of pharmaceuticals of human and veterinary origin to soils and their
accumulation. The need for the reduction of our dependence on freshwater irrigation and
chemical-based fertilizers coupled with the reuse of wastewater treatment by-products can
drive to increase the input of pharmaceuticals in soils in the near future.

Therefore, the article is devoted to the agricultural use of sludge as a fertilizer product.
Although there are currently no limits on these substances in sludge, this paper will consider
the methodology of testing pharmaceuticals in sludge, and their presence in sewage sludge
and soil.

The first patents for the production of fertilizer from sewage sludge are already issued,
e.g., in Poland [6]. The process of creating an organic–mineral fertilizer consists of the
thorough mixing of stabilized sewage sludge with a dry mass of 18–20% with lime, dolomite,
gypsum, and microcrystalline cellulose [7]. The homogeneous mixture obtained in this
way is granulated to give the product a suitable, homogeneous granule size and to prevent
dusting and excessive disintegration. The last stage of sludge treatment is drying, which
additionally protects the product against the possible presence of pathogens.

Converting sludge to fertilizer has many advantages. First of all, this process, ap-
parently from all methods of sludge management, is part of the closed cycle trend—the
sludge formed in the process of wastewater treatment after modifications returns to the
environment as a full-value fertilizer that brings benefits to nature (Figure 1). These benefits
result from the high content of phosphorus and nitrogen—biogenic elements necessary
for the proper development of plants. The safety of using such fertilizers in agriculture is
ensured by removing pathogens and reducing the content of heavy metals. Laboratory
tests show that the quality of such products is adequate and meets all the requirements in
accordance with the Regulation of the Minister of Agriculture and Rural Development in
force in Poland on the implementation of certain provisions of the Act on fertilizers and
fertilization [8]. An important aspect is an economic issue. The sludge used in this way
does not require a paid collection. On the contrary, it is possible to sell this product as a
plant fertilizer rich in minerals.
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The field tests which were conducted clearly show the effectiveness of the use of
fertilizers made from sludge [9]. An interesting issue, however, is the presence of micropol-
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lutants in fertilizing products and the lack of information on the possibility of their spread
with fertilization.

3. The Content of Sewage Sludge—Properties and Limits in Agricultural Management

The sludge management options are diverse, and the choice depends on factors such
as installation costs, operating costs, or the amount of sludge. However, the most important
factor is the chemical composition and quality of the sludge that needs to be managed.

Considering the variant of using the sludge for agricultural purposes, e.g., for land
reclamation or as an organic and mineral fertilizer, special attention should be devoted to
the standards of quality that the sludge must meet. Such sludge management involves
the risk of distributing not only valuable ingredients, but also all substances contained
in the sludge, including micropollutants, known as the ”emerging contaminants”. It is a
wide group of compounds that differ in terms of structure and physicochemical properties.
These include the following: pharmaceuticals and their residues, personal care products,
repellants, caffeine, bisphenol A, or drugs. The composition of the sludge is variable and
individual for each treatment plant. It also depends on the composition of the incoming
sewage and the pollutants it contains [10] and the treatment technology [11–13].

The stabilized sewage sludge is characterized by high hydration (55–80%) and a high
content of organic parts (45–55% dm). The relatively high level of biogenic elements, such
as nitrogen, phosphorus, and magnesium, encourages the use of the sludge for agricultural
purposes. On the other hand, the presence of heavy metals in the sludge was proven,
including arsenic, cadmium, lead, and mercury [14].

Due to the presence of environmentally harmful toxic heavy metals, the sludge in-
tended for agricultural use must meet the standards in the scope of the above-mentioned
parameters specified in the relevant legal acts (in Poland: Ordinance of the Minister of the
Environment of 6 February 2015 on municipal sewage sludge [15]). In addition, the sludge
is tested in the context of the presence of Salmonella bacteria and live eggs of intestinal
parasites, such as Ascaris sp., Trichuris sp., Toxocara sp. The sludge dose applied to a specific
area of land is also controlled.

In addition, organic–mineral fertilizer based on sewage sludge is also subject to
relevant legal acts (in Poland: The Act of 10 July 2007 about fertilizers and fertilization [8];
Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the
implementation of certain provisions of the Act on fertilizers and fertilization [16]). They
define the maximum permissible concentrations of heavy metals: Cr, Cd, Ni, Pb, and Hg.
As in the agricultural sewage sludge, the fertilizer is subjected to parasitological analysis.

Meanwhile, the presence of micropollutants or ”emerging contaminants”, such as
pharmaceuticals, are identified in the raw sludge, activated sludge, and digested sludge [17].
The content of pharmaceuticals and other micropollutants contained in sewage sludge and
fertilizers derived from them has not been standardized so far: it is not recommended to
test pharmaceuticals or any reference methods for their determination and compounds
requiring specific monitoring are still not identified in sewage sludge [18].

Before steps are taken towards the investment, which is an installation for the produc-
tion of fertilizers from sewage sludge, its composition should be carefully analyzed in the
context of the presence of pharmaceuticals that can be transferred into the soil and have a
negative impact on living organisms and the natural environment.

4. Analytical Methods for the Determination of Pharmaceuticals

Another aspect is the methodology of pharmaceuticals determination in sewage sludge
and fertilizers. The analytical method of testing sewage sludge requires sample preparation
in several stages. Dehydration, homogenisation, and extraction [19–21] are performed
(Figure 2). Solid samples (sewage sludge or fertilizer) are frozen and lyophilized. After
weighing the milled small aliquot of the sample and sieving about 0.45 µm particles, the
pharmaceutical internal determination standard is added. Then, the sample is extracted
by ultrasound-assisted extraction (UAE), which is the most commonly used extraction
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method in 2011–2019 [22,23], or by QuEChERS extraction (quick, easy, cheap, effective,
robust, and safe). After centrifugation, the liquid fraction is subjected to a clean-up phase
and centrifuged again. The sample is dried and diluted. Due to the non-selectivity of
the extraction, it is necessary to clean the sample by SPE (solid-phase extraction) on HLB
columns conditioned with methanol and deionized water.
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The sample prepared in this way is analyzed using liquid or a gas chromatography e.g.,
ultra-performance liquid chromatography) system, coupled with mass spectrometry (MS).

The analytical procedure for the determination of pharmaceuticals in sludge is a com-
plex process. The complicated composition of the sample and the complexity of the matrix,
makes the choice of the method a difficult task. Very low concentrations of micropollutants
make it difficult to determine the compounds within the quantification limits of the method.
An additional difficulty has to do with the specificity of the contamination of the analyzed
sewage sludge, depending on the composition of sewage in particular seasons and even
the size of the city. In order to protect the environment and apply the principles of Green
Chemistry, automated methods are developed and implemented that do not require the
use of large amounts of reagents (e.g., Quechers).

The obtained results of the content of pharmaceuticals in stabilised sewage sludge ranged
from µg/kg to mg/kg dm. The highest concentrations were recorded for antibiotics of the
fluoroquinolone group, such as ofloxacin, the content of which was estimated at 8546.21 µg/kg
dm [23]. Ciprofloxacin was estimated at 6500 µg/kg dm [24], 3726.8 µg/kg dm [25], and
303 µg/kg dm [26] while norfloxacin was estimated at 2796.68 µg/kg dm [23] and 620 µg/kg
dm [24]. High concentrations were obtained for another group of antibiotics—tetracyclines. The
oxytetracycline content was determined at the level of 7105.54 µg/kg dm [23] and 742.5 µg/kg
dm [27], while the tetracycline content was 4457 µg/kg dm [23]. Equally high values were
obtained by analysing bisphenol A, the concentration of which was 92.9 µg/kg dm [28], through
155 µg/kg dm [29] to 3590 µg/kg [30]. Varying results were obtained for hormones. Both low
concentrations of 20–40 µg/kg for estrone [31], 5–50 µg/kg for estradiol [31] and 2–20 µg/kg
for ethinylestradiol [31], and concentrations below the limit of quantification were obtained [32].
A similar scatter of the results of values was obtained for other studies, in which estrone was not
within the detection limits, and the concentration of 17β-estradiol in the stabilized sewage sludge
was found at the level of 293.5 µg/kg [33]. Other pharmaceuticals, such as carbamazepine and
ibuprofen, were detected at a similar level. The obtained concentrations indicate values ranging
from a few to several dozen µg/kg [34].
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5. Pharmaceuticals in Sewage Sludge

Pharmaceuticals enter the treatment plant together with raw sewage. The sources of
these substances are metabolic products of the human body, hospital wastewater, leachate
from landfills, animal husbandry, and sewage from the pharmaceutical industry. Wastewa-
ter treatment in municipal wastewater treatment plants by the activated sludge method
consists of the mechanical separation of solid pollutants, sedimentation of sand and easily
deposited suspensions, biological removal of pollutants with the use of microorganisms,
and sedimentation of the activated sludge in a secondary sedimentation tank. Such tech-
nology does not allow for the reduction in ”emerging contaminants”. There are several
possibilities for degradation and micropollutant processes in the environment. This can
be the degradation of a substance, the removal of the substance with the treated effluent,
or exiting the system on sludge particles. This is a serious problem for the use of sewage
sludge in the environment.

The fate of micropollutants in a typical municipal sewage treatment plant depends
on their physicochemical properties, such as molecular weight, octanol–water partition
coefficient (Kow), acid dissociation constant (pKa), solubility, or biodegradability. Other
external factors are the sludge treatment method and the operation condition of the wastew-
ater treatment plant [35,36]. It is estimated that more than 70% of relatively hydrophobic
contaminants from groups, such as heavy metals, persistent organic pollutants (POPs),
brominated flame retardants and some personal care products (PCP), surfactants, plastic
additives, hormones, some PCP, some medicines, and household chemicals are usually
well disposed of in wastewater treatment plants [37,38]. On the other hand, many more
hydrophilic and slightly or moderately biodegradable pollutants, such as some pharma-
ceuticals, pesticides, and household chemicals (corrosion inhibitors, sweeteners, chelating
agents, phosphorus flame retardants) are poorly removed during treatments [37]. In the
course of wastewater treatment, pollutants can adsorb on suspended solids, biodegrade or
degrade chemically, and are then removed from the water phase [39].

Some pharmaceuticals (e.g., ibuprofen, ketoprofen) will decompose during the wastew-
ater treatment process [38,40,41]. Estrone, sulfamethoxazole, or carbamazepine are diffi-
cult to decompose compounds, so they are only partially decomposed and will flow out
with the treated sewage [42]. The last way of reducing micropollutants is adsorption on
sewage sludge. Non-polar and alkaline compounds, characterized by high hydrophobicity,
such as antibiotics such as tetracyclines and fluoroquinolones (e.g., norfloxacin, ofloxacin,
ciprofloxacin, and doxycycline), are sorbed on solid particles [22,43]. It is shown that com-
pounds that are components of hormonal agents adsorb well to sediment particles [44,45],
which results from their lipophilicity. Settling on the sewage sludge, they leave the aquatic
environment and thus do not end up with the treated sewage in the natural environment.
This means, however, that these compounds will not be fully degraded, but will only go
into the solid phase.

Another aspect is the stabilisation conditions for the sewage sludge. Studies show
differences between the use of composting and anaerobic digestion in terms of the concentra-
tion of pharmaceuticals. Only 18% of estrogens were removed under aerobic conditions [46].
Meanwhile, a reduction of up to 97–99% of the content of some antibiotics (tetracycline,
chlortetracycline) in the sludge after the composting process was observed [47]. One may
notice that the temperature of the process is also important. The fermentation process also
reduces the content of pharmaceuticals [48,49]. A total of 16 out of 20 tested compounds
underwent biotransformation in over 35% [48].

Additionally, in the case of anaerobic stabilization, the dependence of changes in
pharmaceuticals with regard to temperature was noted. Degradation of chlortetracycline
increased as a result of increasing the temperature of the process [50]. The opposite effect
was achieved with estrogens. Their reduction decreased with increasing fermentation
temperature [46].

Not all pharmaceuticals are reduced during the stabilisation processes. It has been
shown that carbamazepine [46,51] and fluoroquinolones are persistent and resistant to both
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aerobic and anaerobic biotransformation [52,53]. Doubts arise as to what their future fate
will be, which is closely dependent on the method of sewage sludge management.

6. The Presence of Pharmaceuticals in Soil after Sewage Sludge Distribution

As mentioned before, studies show that the concentration of pharmaceuticals in soil is
strongly correlated with the maturity of the sludge used [54]. The highest concentrations
of pharmaceutical compounds were determined only in limed sludge, lower in digested
sludge, even lower in composted sludge, and the lowest in solid post-fermentation [54].
At the same time, it is stated that both the aerobic and anaerobic decomposition of sludge
stimulate the degradation of pharmaceutical compounds [55]. It is related to the activity of
microorganisms. The same processes take place in the soil, this time involving soil bacteria.

The research showed the presence of pharmaceuticals in soil treated with sewage
sludge (Table 2). The highest values were recorded for triclosan and triclocarban. Their con-
tent reached several thousand ng/g dm. High concentrations of ciprofloxacin, norfloxacin,
and ofloxacin were detected in several studies: additionally, these antibiotics were detected
after a longer time after the application of the sludge, which indicates the persistence of
these compounds in the soil [56–58]. Meanwhile, in soil samples treated with compost, the
concentrations of this group of antibiotics were definitely lower, and sometimes lower than
the LOQ [59].

The concentration of these compounds depends on the physicochemical properties
of the analyzed chemical compound [64] and the different fate of pharmaceuticals in
soil, where their content may be reduced due to photodegradation or the mineralisation
processes [34,65] (Figure 3).

Studies show that the concentration of pharmaceuticals, such as ibuprofen and keto-
profen, fluoroquinolones (ciprofloxacin and moxifloxacin), and statin atorvastatin decrease
under the influence of UV-B radiation [66]. Moreover, research is currently being carried
out on the selection of photocatalysts to intensify the process [67,68].

Light radiation naturally contributes to the decomposition of micropollutants, which
takes place many times: during the sewage treatment process, sludge oxygen stabilization,
sludge composting, and from the moment the sludge is dosed onto the soil.

Pharmaceuticals with strong sorption properties tend to accumulate in the soil, while
those which are highly mobile are transported with groundwater and further: to drainage
and surface waters [69].

These pharmaceuticals, which are characterized by strong sorption properties, tend to
accumulate on soil particles, e.g., trimethoprim, indomethacin, propranolol, metoprolol,
and carbamazepine [64]. Other studies shows the presence of pharmaceuticals, such as
ciprofloxacin, carbamazepine, ketoprofen, and atenolol in the soil but not in leachate [55].
The results of the studies on diclofenac and carbamazepine confirmed [70,71] significant
retention in soil. This was confirmed by other studies [59] showing that norfloxacin,
ofloxacin, and ciprofloxacin are very persistent antibiotics and were detected in soil particles,
unlike ibuprofen which is detected in soil leachate, which indicates their lower persistence
and sorption capacity [59]. The persistence of the pharmaceutical in soil is an important
issue. With the passage of time, the concentration of the compound in the soil treated
with the sludge is investigated. The results showed different persistence of the soil over
the 3-year period of the research: triclocarban, fluoxetine, and diphenhydramine did not
show significant changes in their concentration unlike triclosan, which is characterized by
a relatively low persistence [58].
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Table 2. Concentration of pharmaceuticals in soil treated with sewage sludge.

Compound Measured Concentration [ng/g dm] References

Ciprofloxacin

350–400 after 8 months of sludge application [56]
270–280 after 21 months [56]

450 (2.5 cm depth) [57]
542 (day 0)–390 (day 994) [58]

<LOQ–8.7 (soil amended with composted sludge) [59]

Norfloxacin

320–290 after 8 months of sludge application [56]
270–300 after 21 months of application [56]

350 (2.5 cm depth) [57]
50 (day 0 in a mesocosms experiment) [58]

<LOQ–9.4 (soil amended with composted sludge) [59]

Ofloxacin
470 (day 0)–267 (day 994) [58]

5.3–8.6 (soil amended with composted sludge) [59]

Triclosan

1715 (day 0) [58]
833 [60]

10,900 [61]
14,000 [62]

n.d.–16.7 [63]

Triclocarban
2715 [58]
4940 [61]
8000 [62]

Trimethoprim n.d.–0.64 [60]
n.d.–60.1 [63]

Azithromycin 30 (day 0 in mesocosms experiment) [58]

Diclofenac n.d.–1.16 [63]

Ibuprofen
n.d.–5.03 [63]

63.5 [61]
750 [62]

Carbamazepine

n.d. [60]
0.02–7.5 [63]

6 (day 0 in a mesocosms experiment) [58]
9 [62]

183 [61]

Fluoxetine 10 (day 0 in a mesocosms experiment) [58]

Diphenhydramine 40 (day 0 in a mesocosms experiment) [58]
n.d. [60]

n.d.—not detected.

The stability of a pharmaceutical will depend on various factors. Studies show that
high soil hydration reduces the persistence of clotrimazole, while the opposite will be
true of fluconazole in response to soil moisture [72]. The pH of the soil and the content of
organic carbon in the soil also has an impact on the durability and rate of decomposition
of pharmaceuticals [73]. This is confirmed by other studies based on the enrichment of
the soil with fermented sewage sludge and compost rich in organic carbon (OC). OC
increases the log Kd coefficient, which indicates greater sorption to the fraction with a
higher concentration of organic carbon [74–76].

Sorption of pharmaceuticals to the soil, apart from the soil pH and organic carbon
content, also depends on the mineral parts of the soil [77]. Mechanisms that may affect the
adsorption of micropollutants are ion exchange, hydrogen bonding, or the formation of
complexes with Ca2+, Mg2+, Fe3+, or Al3+ ions [77–79]. Hydrophobic interactions, van der
Waals interactions, and hydrogen bonds were also proposed, and the pKa coefficients are
to help predict the sorption mechanisms of a given compound [80].
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The fate of pharmaceuticals in soil and the concentration of pharmaceuticals in soil
enriched with sludge will also depend on purely technical conditions. The frequency of
sludge application, the amount of sludge dispensed to a specific area, or the time between
sludge application and the moment of taking a soil sample will also affect the obtained
measurements of pharmaceutical concentrations [81]. The type and physicochemical
properties of the soil on which the sludge or the fertilizer based on it are to be applied are
also of key importance.

Another aspect is the use of organic and mineral fertilizers based on sewage sludge in
agriculture. This variant of sludge management requires separate consideration in terms of
the transfer of pharmaceuticals to the soil, because the composition of fertilizers is modified
in relation to the composition of the sludge from which it was formed. Considering the
changes in the physicochemical composition, the change in pH and other factors influencing
the fate of a pharmaceutical, one should expect differences in the transfer of pharmaceuticals
from fertilizers to the soil, which is still a completely unknown issue.

7. Ecological Effect an Environmental Risk Assessment

Detailed analysis of the dosing of the use of sewage sludge for agricultural purposes
is intended to protect the natural environment. The implementation of the use of sludge
containing micropollutants in a circular economy carries risks for living organisms.

Agricultural use of sewage sludge affects the quality of soils from areas enriched
with sludge and its derivatives [22]. The study of the changing composition of the soil
was carried out in relation to the type of applied sludge [54]. These studies showed a
relationship between the degree of sludge stabilization and the concentration of pharma-
ceuticals. In other words, the higher the degree of sludge degradation, the lower the level
of pharmaceutical substances was recorded in the soil treated with the sludge [54]. In
addition, there was a lower level of leaching of pharmaceuticals into the soil. This indicates
that a high level of sludge stabilization may determine the safety of sewage sludge use [54].

The presence of pharmaceuticals was also analyzed in the context of the effect on
microorganisms. Antibiotic resistance is a phenomenon that may be intensified due to
the contact of antibiotics with soil bacteria, as a result of treating the soil with sewage
sludge [82,83]. This is confirmed by other studies that show that the short-term effect of
antibiotics on microorganisms has an inhibitory effect. After prolonged exposure to drugs,
the activity and biomass of the bacteria return to the level before the tests [84].

The first watch List of substances for union-wide monitoring in the field of water
policy was defined in the Decision 2015/495/EU (EC, 2015) and, recently, a third watch list
was proposed by the European Union in the Decision (EU) 2022/130 of 22 July 2022 [85].
The presence of antibiotics on the watch lists confirms their direct risk to human and
animal health and careful monitoring is recommended by the EU Member States. The
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watch list also supports the use of it to improve knowledge of the occurrence and spread of
antimicrobials in the environment. Communication from the Commission to the European
Parliament, the Council and the European Economic and Social Committee published in
March 2019 performed the European Union strategic approach to pharmaceuticals in the
environment [86]. It highlights that more information is still needed to understand and
evaluate certain pharmaceuticals as regards their environmental concentrations and the
resulting levels of risk.

Some of the antibiotics we use end up in sewage sludge, together with a variety
of antibiotic resistant bacteria present in feces [87,88]. Therefore, there is a widespread
concern that spreading sludge on farmland would contribute to the development or spread
of antibiotic resistance [89,90]. Antibiotics can accumulate in food webs and, even more
alarmingly, antibiotic resistance genes can be transferred between environmental bacteria
and human pathogens [91]. Antibiotics and their effects on the environment have become
an important theme in environmental science. Sewage sludge is the most important output
from WWTPs, and its treatment, reuse, and disposal are the most complex problem [92].

It is proven that plants can accumulate micropollutants [93,94]. Pharmaceuticals
reach plant organisms through diffusion and transpiration. These substances accumulate
in the roots, e.g., triclosan or carbamazepine, and even in the stems and leaves, e.g.,
diclofenac, propranolol or chloramphenicol [95]. As the research on the accumulation of
pharmaceuticals in spinach shows [96], it cannot be clearly stated what the fate of a given
pharmaceutical in contact with the cultivation of a given plant will be because external
factors, such as soil type and pH, will be of great importance.

The water cycle in nature causes contaminants from soils to be washed into the
water flowing through it and, together with groundwater, get into aquatic environments,
and even into waters intended for consumption. The scientific literature proves this
negative influence [97]. Hormonal compounds, which are components of drugs regulating
the hormonal balance, disturb the reproduction of small aquatic organisms [98]. Other
organisms living in the aquatic environment under the influence of endocrine compounds
have shown feminization of males through the loss of male features [99]. Bisphenol A
also affects the reproductive system of living organisms [100]; therefore, it is classified
as an endocrine disrupting compound that is important for species reproduction. Anti-
inflammatory drugs also have negative effects, e.g., ibuprofen, diclofenac, and E2 pose
chronic risks for high trophic level organisms [101].

To assess the potential ecotoxicological effect of a test compound, the substance risk ratio
(RQ) and the ratio between the measured (MEC) or predicted environmental concentration
(PEC) and predicted no effectcConcentrations (PNEC) are determined [102,103]. A very simple
classification for risk assessment by RQ divides substances with low (RQ < 0.1), medium
(RQ between 0.1–1), and high risk (RQ > 1) environmental effects [104]. It was also proposed
to assess the environmental risk in soil based on pharmaceutical concentrations and PECsoil
calculation from the formula of the European Commission Technical Guidance Document on
Risk Assessment [105]:

PECsoil = Csludge × APPLsludge/DEPTHsoil × RHOsoil

where Csludge is the concentration of pollutants in the sludge; APPLsludge is the dry sludge
application rate (0.5 kg/m2 year); DEPTHsoil is the depth of soil mixing (0.20 m); and
RHOsoil is the bulk density of wet soil (1700 kg/m3) [33].

8. Conclusions

Due to the content of pharmaceuticals in the sewage sludge, their ecological manage-
ment requires a multifaceted analysis. The physicochemical diversity of these compounds
contributes to the different processes that pharmaceuticals undergo. The quality and
composition of soil enriched with sewage sludge will also affect the fate of micropollutants.

This article shows that pharmaceuticals that enter the soil with sludge can decompose,
be diluted and transported with water to further lands, or accumulate on soil particles.
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This means a real threat to organisms whose natural habitat is soil, as well as to humans
and animals whose food may be planted in areas enriched with sludge. Most of all, the
quality of the water that circulates in nature is at stake.

Additional detailed analyses of the fate of pharmaceuticals in the soil should be
undertaken if sewage sludge is to be safely implemented as part of a circular economy and
used for agricultural purposes. This issue is still poorly understood because of the large
number of factors influencing the processes taking place. The type of micropollutants in
any given sludge should be determined, as well as the soil composition, and a detailed
method of dosing the sewage sludge, i.e., the amount and frequency of dosing and possibly
the weather conditions.

Other aspects have to do with the use of fertilizers based on sewage sludge. Their
properties are changed due to the changed components of sludge. Physicochemical changes
will undoubtedly affect the transfer of pharmaceuticals to the soil; therefore, separate tests
should be undertaken to obtain information on the behaviour of micropollutants in the soil
introduced with the fertilizer.
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92. Styszko, K.; Durak, J.; Kończak, B.; Głodniok, M.; Borgulat, A. The impact of sewage sludge processing on the safety of its use.
Sci. Rep. 2022, 12, 12227. [CrossRef]

93. Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural
occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [CrossRef]
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