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Abstract: In the context of the rapid development of the world’s nuclear power industry, it is neces-
sary to establish background data on radionuclides of different samples from different regions, and
the premise of obtaining such basic data is to have a series of good sample processing and detection
methods. The radiochemical analysis methods of low-level radionuclides 137Cs (Cesium) in environ-
mental and biological samples are introduced and reviewed in detail. The latest research progress
is reviewed from the five aspects of sample pretreatment, determination, separation, calculation,
application of radioactive cesium and the future is proposed.
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1. Introduction
137Cs (T 1

2 = 30.17 y) is among the most important hazardous radionuclides involved in
radiological pollution to humans and the environment due to its long half-life and high
fission yields [1,2]. 137Cs, as one of more than 30 isotopes of cesium, is fission a product
of 235U, whose decay chain is shown in Figure 1 [3,4]. 137Cs decays to short-lived 137mBa
(T 1

2 = 2.61 m) via emitting beta rays at maximum energies of 512 (94.0%) and 1176 keV
(6.0%), respectively. 137mBa emits gamma rays with an energy of 661 keV and becomes
stable 137Ba [5]. There are three main sources of 137Cs in the environment: (1) Global fallout
from the atmospheric nuclear weapon tests during 1950s–1980s [6–9], with total inventory
of 545–765 PBq 137Cs [10–12]. (2) Nuclear accidents, including the former Soviet Union
Chernobyl nuclear power plant accident in 1986 and the Fukushima Daiichi nuclear power
plant accident in 2011 in Japan. The Chernobyl accident released 85 PBq 137Cs into the
surrounding environment, especially in the Baltic Sea, while the Fukushima accident was
reported to release 15–20 PBq 137Cs mostly into the Pacific Ocean [13,14]. (3) Regulated
releases from the operation of nuclear facilities, such as nuclear power plants and nuclear
reprocessing plants [15].
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Figure 1. The decay chain of 137Cs.

With a chemical similarity to K+, extensive investigations revealed that cesium is prone
to be transferred into the human body via the food chain and substitute for potassium
during transport in the cell membrane [16]. 137Cs has serious damaging effects on the
human body due to the gamma radiation from its daughter 137mBa. 137Cs is mainly
accumulated in bone and muscle tissue, thereby can induce soft tissue tumors to cause
cancer, such as thyroid cancer, ovarian cancer, breast cancer, bladder cancer, and bile
duct cancer [17,18]. The chronic damage of 137Cs to the human body also manifests
as inflammatory lesions of various tissues and organs, the most obvious of which is
inflammation of the lungs, gastrointestinal tract, urinary tract, and reproductive system.
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Therefore, it is vital to remove cesium, especially after the Chernobyl disaster and the
Fukushima Daiichi nuclear plant accident, where large amounts of 137Cs were released into
the environment. On the other hand, the separation of long-life radionuclides from aqueous
solutions can greatly reduce the time required for safe storage for natural decay [19], and
various functional adsorbents have made great contributions to the efficient removal of
137Cs in the environment.

As fission products with well-documented source terms, 137Cs have been applied
as environmental tracers for studying ocean circulation and sedimentation processes,
etc. [9–11]. With the rapid development of the global nuclear power industry and the
widespread application of nuclear technology, it sets high demands for environmental
radiation safety and radiological risk assessment during routine operation and nuclear
emergency situations. Therefore, it is of great significance to establish efficient methods
to be applied for the determination and enrichment of 137Cs. This article summarizes
the recent progress of 137Cs sample pretreatment, measurement, separation, evaluation of
measurement data, and application.

2. Sample Pretreatment

Pretreatment is required before the sample can be analyzed. The purpose of sample
pretreatment is to obtain a homogeneous sample solution and preliminarily remove sample
matrix and interferences, such as organic matter and stable elements. Obviously, sample
pretreatment is a crucial stage before analysis. The selection of sample pretreatment
methods depends on the sample type and the analyte to be analyzed. Herein, we divide the
sample type into three categories for discussion, including environmental solid samples,
environmental water samples, and biological samples.

2.1. Pretreatment of Environmental Solid Samples

Environmental solid samples include soil, sediment, sludge, etc. The commonly used
methods for soil samples are acid leaching with microwave digestion or not [7,8,20–23].
Generally, the sample needs to be dried and combusted at 450–600 ◦C to decompose organic
matter. Choi et al. [24] found that the volatilization of 137Cs did not occur until 500 ◦C, and
the volatilization of cesium in milk samples during ashing did not occur until 450 ◦C. In
order to avoid the loss of Cs during the combustion process, staged ashing can be used [25],
i.e., ashing the samples at about 400 °C, for Cs determination. Sample pretreatment for
137Cs determination by gamma spectrometry do not need acid digestion.

Another method is alkaline fusion [26–28]. Jurecic et al. [29] compared conventional
acid digestion using a mixture of HNO3, HClO4, and HF acid, microwave dissolution using
HNO3 and HF, and alkali fusion with Na2CO3 and Na2O2. Complete decomposition of
soil samples can only be achieved by alkaline fusion. The boric acid melting method can
be used to dissolve Cs samples. Taylor et al. [28] mixed soil sample with LiBO2 and LiI in
a platinum crucible and melted it at 900 °C, then used nitric acid to dissolve. The borate
melting method can maintain a relatively high recovery rate of Cs.

2.2. Pretreatment of Environmental Water Samples

For environmental water samples including seawater, groundwater, lake water, and
river water, after acidification and concentration treatment, 137Cs can be enriched by
cation exchange resin [20,30,31]. The sediment in water needs to be decomposed by
ashing. Firstly, the main purpose of acidification is to eliminate interference [32]. Secondly,
concentration treatment can use precipitation or evaporation. For 137Cs, the seawater
sample was acidified to pH 1.6 with HNO3, CsCl was added and then adsorbed with
ammonium phosphomolybdate (AMP).

2.3. Pretreatment of Biological Samples

For the pre-treatment of biological samples, including bones, teeth, blood, urine, as
well as plants, milk, etc. The solid biological samples use similar acid digestion meth-
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ods as applied for environmental solids can be adopted [7,21,22,33,34]. For example,
Gasa et al. [33] used thermal HF, HNO3, HCl, and H3BO3 to digest mammalian skulls.
Because the teeth and bones are rich in Ca, the fuming nitric acid method is also commonly
used for pretreatment [35]. In the report of Altzitzoglou et al. [36], the bone ash is almost
completely dissolved by boiling HNO3 and H2O2 after repeated digestion and evaporation.
After the last digestion, the evaporated residue was dissolved in boiling HNO3-Al (NO3)3.

The traditional method of processing milk samples is to store them in formaldehyde
or sodium azide first [37,38] to maintain them in an antiseptic environment. One method is
ashing at high temperatures to remove a large amount of fat and protein, then the ash is
dissolved in concentrated nitric acid, but this method takes a long time. Thus, generally,
other methods are used, such as ion exchange resin for the enrichment of radioactive
elements, cation exchange resin, such as DOWEX 50W-X8 [39,40], anion exchange resin,
such as DOWEX 1-X8 [39,41]. In addition to the above two methods, microwave digestion
can also be used. Branislava et al. [42] placed aliquots of milk samples into digestion
vessels, added concentrated nitric acid and 30% hydrogen peroxide and heated them at
900 W for 25 min. Urine samples are usually digested by heating with concentrated acid.
In recent years, cation exchange resins have been developed to remove the matrix. For
example, pigments in urine can be removed by the combination of activated carbon and
ion exchange resin.

3. Measurement

As mentioned above, 137Cs decay into 137mBa through β emission, and immediately
accompanied by 662 keV gamma-ray emission, 137Ba was formed. In addition, due to
the low concentrations in environmental samples of most of the long-lived radioisotopes
of interest in environmental monitoring, such as the isotopes of cesium, measurement
approaches require extremely high sensitivity, and various detection methods have been
developed [43]. Beta counting or gamma spectrometry can be used to detect 137Cs, but
gamma spectrometry is more commonly used because most samples can be directly counted
without any chemical separation. The development of mass spectrometry technology has
led to its application in more and more radionuclide measurements, and mass spectrometry
can measure multiple nuclides simultaneously.

3.1. γ-Ray Spectrometry of 137Cs

Gamma-ray spectrometry is an analytical method that allows the identification and
quantification of gamma emitting isotopes in a variety of matrices. The sample with a
certain geometric shape is placed in the appropriate position of the germanium or sodium
iodide detector of the spectrometer system, the sample γ-ray spectrum is obtained to
determine the position of the full-energy peak and the net peak area, γ-ray emission
probability, sample mass (or volume), and related parameters or correction coefficients, etc.
to determine the type of radionuclide contained in the sample and its specific activity. γ
spectrometer consists of preamplifier, amplifier, pulse amplitude analyzer, high voltage
power supply, spectrum data analysis, and processing system, etc. Gamma spectroscopy is
convenient and fast, and does not require complex sample preparation. It is sufficient for
the ashing process of most solid samples [7,33,44], and the detection limit of high purity
germanium (HPGe) can be as low as ~1 mBq/g [45]. Indeed, gamma rays are slightly
attenuated by the sample matrix, meaning that direct measurement can be carried out [46].
Therefore, it has become the most widely used 137Cs measurement method [47,48].

3.2. Mass Spectrometric Techniques for the Determination of 135Cs/137Cs

Highly sensitive mass spectrometric techniques are important methods for measure-
ment of radionuclides, especially for long-lived radionuclides. Since the half-lives of 137Cs
are relatively short, gamma spectrometry is suitable when only measuring the concen-
tration of 137Cs separately is required. However, because 135Cs has a longer half-life of
2.3 × 106 years and a low β energy of 76 keV, when measuring 135Cs / 137Cs, the analysis
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method based on mass spectrometry is the first choice [49]. After the chemical separation of
the environmental sample, most of the interfering elements have been separated, but there
will still be trace interfering elements in the final sample solution, and Table 1 shows the
interferences affecting of 137Cs. Therefore, it is necessary to use the instrument to further
suppress the signal of the interfering elements.

Table 1. Interferences affecting the determination of 137Cs+ by mass spectrometry, reprinted with
permission from [49].

Analyte Interference Abundance (%)

137Cs+

137Ba+ 137Ba 11.3
136Ba1H+ 136Ba 7.81
136Xe1H+ 136Xe 8.87
121Sb16O+ 121Sb 57.2

97Mo40AR+ 97Mo 9.6

3.2.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

For the determination of radionuclides, ICP-MS is the most widely used mass spec-
trometry technique due to its relatively low cost, easy operation, and high sensitivity.
Compared with the long counting time of alpha spectrometry or beta counting, ICP-MS is
more efficient and can be completed within a few minutes for multi-radionuclide measure-
ments. Therefore, ICP-MS was used in the rapid separation of radionuclide traces in the
environment and the separation of fission products and actinides in nuclear samples in the
1990s [50–54]. However, for 137Cs, the interference is mainly 135Ba and 137Ba. To solve this
problem, in recent years, inductively coupled plasma-quadrupole mass spectrometry (ICP-
QMS), sector-field inductively coupled plasma-mass spectrometry (SF-ICP-MS), dynamic
reaction cell inductively coupled plasma mass spectrometer (DRC-ICP-MS), electrother-
mal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) and other
methods have been developed [3,27,28,55,56].

In an ICP-QMS with a reaction cell, the reaction gas must react with the interfering
substance, and it has little or no effect on the sensitivity of the element of interest. It can be
selected based on thermodynamic and kinetic data [2,3,27,28,49,57]. For 137Cs, H2 and He
can be introduced into the reaction cell to suppress the Ba isobaric line.

Inductively coupled plasma tandem mass spectrometer (ICP-MS/MS) has two
quadrupole mass filters, equipped with a reaction cell in the middle of the two mass filters,
which can effectively remove 135Ba and 137Ba in the reaction cell to test 135Cs/137Cs [26,50,55].

3.2.2. Resonance Ionization Mass Spectrometry (RIMS)

The RIMS can avoid some isobaric interference and improve the selectivity of tradi-
tional mass spectrometry to isotopes [58]. The system is mainly composed of three parts:
Ion source sample loading system, atomic ionization continuous wave laser system, and
mass spectrometer [59]. In RIMS, a laser beam is used to selectively/resonantly excite and
ionize analyte atoms, thereby eliminating isobaric interference caused by other elements.
RIMS also has its unique advantages in the analysis of 135Cs and 137Cs. For example,
adjusting the wavelength of Cs atomic radiation by a laser will result in higher sensitivity.
The detection limit is about 106 atoms [60]. The main limitation of RIMS is the high cost of
complex instruments.

3.2.3. Thermal Ionization Mass Spectrometry (TIMS)

The TIMS ion source is equipped with a sample changer, a sector magnetic field
mass analyzer, and a Faraday cup detector [3,26,57]. By setting the magnetic field under
the control of a dedicated personal computer, TIMS works in a peak-hopping mode, in
which the specified ion beam is directed to the detector in sequence, the computer acquires
voltage data in a digital format as a measure of peak intensity, and calculate the specified
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isotope ratio. The characteristic of TIMS is the abundance sensitivity of 10−10–10−11 at
m/z 135, which is suitable for the analysis of 135Cs and 137Cs [61]. TIMS is widely used for
nuclear safeguarding and forensic purposes due to providing high accuracy, precision, and
sensitivity, additionally exhibiting the advantages of negligible spectral interference, matrix
effects, and mass bias [62–64].

3.2.4. Accelerator Mass Spectrometry (AMS)

AMS can also measure trace amounts of 137Cs, which has the characteristics of high
sample throughput, high sensitivity, and fast turnaround time [49]. However, when
measuring the atomic ratio of 135Cs/137Cs by AMS, the biggest challenge is to separate
Ba and Cs under high energy conditions [65]. In addition, the test and analysis processes
are complicated. AMS is similar to RIMS in that it is expensive, the installation process
of the instrument is complicated, and the target preparation process of AMS is relatively
time-consuming and laborious [66]. Consequently, by comprehensively comparing the
characteristics of different mass spectrometry measurement analysis methods, ICP-MS is
still the mainstream in the measurement of 135Cs and 137Cs.

In the literature of the past 15 years, the pretreatment, separation methods, measure-
ment techniques, chemical recovery, and detection limits for 137Cs are summarized in
Table 2.

Table 2. Performance parameters of 137Cs.

Sample Pretreatment Separation Measurement
Method Recovery (%) Detection

Limit Ref.

Soil Acid leaching AMP + AG 50W-X8 CRC-ICP-
MS/MS - 0.06 ppt [50]

Soil Fusion with NaOH and
Na2O2

AMP-PAN TIMS - - [26]

Fusion with Li2B4O7
and LiBO2

- -

Soil, plant Ashed - γ-ray
spectrometry - - [7]

Soil Ashed + acid leaching AMP + AG MP-1 M
+ AG 50W-X8 ICP-MS/MS >95 0.006 pg·mL−1 [55]

Soil, sludge,
sediment

Ashed + fused with Li
metaborate and LiI AMP ICP-MS - 0.09 ng·L−1 [28]

Soil Ashed + acid leaching AMP-PAN + AG
50W-X8 TIMS - 0.13 mBq·L−1 [67]

Soil, sediment Ashed + acid leaching AMP-PAN + AG
50W-X8

γ-ray
spectrometry 60% - [68]

Ashed + fusion with
LiBO2

93% -

Sediment - - γ-ray
spectrometry - 0.8 mBq·g−1 [56]

Sea Sediment

Aqua regia acid leach
and

filtration/centrifuge

AMP + AG 50W-X8 ICP-SFMS

78 ± 3

0.05 ng·kg−1

[27]

Acid leaching in
ultrasonic bath + evap 80 ± 6

Lithium metaborate
fusion 100 ± 6

Single attack NaOH
sinter in silica crucible 90 ± 9

Double attack NaOH
sinter in silica crucible 100 ± 9

Acid leach + NaOH
sinter 100 ± 10
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Table 2. Cont.

Sample Pretreatment Separation Measurement
Method Recovery (%) Detection

Limit Ref.

Seawater Acidified AMP-PAN γ-ray
spectrometry 85–94 0.15 Bq·m−3 [69]

KniFC-PAN 93
Coastal water Acidified AMP + AG 50W-X8 ICP-MS 100.1 ± 3.3 1.0 ng·L−1 [70]

Seawater - AMP + Doulite C-3 β-counting 90 - [14]

Seawater Acidified KniFC−PAN γ-ray
spectrometry 99 - [71]

Seawater Acidified AMP γ-ray
spectrometry - - [1]

Seawater Acidified KniFC−PAN γ-ray
spectrometry 87–99 - [72]

Seawater - AMP γ-ray
spectrometry - - [73]

Lake water -

Adsorbed by a thin
film of mixed

ferrocyanide of
potassium iron

γ-ray
spectrometry 50–90 - [74]

Seawater Acidified AMP γ-ray
spectrometry - 0.20 Bq·m−3 [75]

Seawater Acidified AMP-PAN + AG
50W-X8 TIMS - 0.13 mBq·L−1 [67]

Aerosol - - γ-ray
spectrometry 98–99 - [76]

Aerosol - - γ-ray
spectrometry - - [77]

Oyster Irradiation - γ-ray
spectrometry - - [34]

Skull Ashed - γ-ray
spectrometry - - [33]

Food Ashed - γ-ray
spectrometry - - [44]

Leaf, litter Ashed + acid leaching
with H2O2

AMP + AG MP-1 M
+ AG 50W-X8 ICP-MS/MS >95 0.006 pg·mL−1 [55]

4. Separation and Purification

The main purpose of chemical separation is to concentrate the target radionuclide and
to remove interferes, thus obtaining a purified fraction. At present, a variety of separation
methods have been applied, and many functional materials have been derived for the
removal of radiocesium. In the following sections, we summarize the relevant separation
methods and a series of novel environmental materials in detail.

4.1. Extraction Chromatography

Extraction chromatography combines the high selectivity of solvent extraction with
the simple and multistage features of column chromatography, which requires simple
operation, easier material handling and lower cost input. More importantly, extraction
chromatography can significantly reduce the volume of highly radioactive solutions and the
amount of solid waste, reducing the harmful effects of radioactive waste on human health
and the ecological environment [78]. Russell et al. [27] tried a variety of extraction methods,
AG 50WX8 cation exchange resin and Sr resin, organic extraction material (BOBCCalixC6)
with linear alkyl ester as the skeleton, Amberchrom CG-71 resin, after adsorption can use
HNO3 elutes Cs. This method can effectively reduce the operation steps and is suitable
for the measurement of low-concentration environmental samples. The price of extraction
resin is relatively high, but the experimental separation process is fast, the elution volume
is small, and the amount of waste liquid generated is small.
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4.2. Ion Exchange

Ion exchange is a method that removes radioactive isotopes from the liquid phase,
during which some toxic ions may be reduced while more harmless ions may be increased
in the aqueous phase [79]. The ion exchange method can deliver high selectivity, mini-
mal radioactive discharge, and solidified waste [80]. Many natural substances have an
ion-exchange capacity for various radionuclides, such as clay minerals [81], zeolites [82],
etc. Belviso et al. [83] utilized synthesized zeolites from volcanic ash as an alternative
adsorbent material for cesium removal from aqueous solutions with encouraging results.
However, the low ion exchange capacity of these natural minerals is limited in practi-
cal applications [84]. The ideal ion exchange material should have high adsorption or
exchange capacity and be stable under a wide range of environmental conditions. There-
fore, researchers carried out a series of modifications of natural substances to improve
performance. Chen et al. [85] developed a novel montmorillonite-sulfur composite via a
one-step solvent-free method and applied it to the removal of Cs+. Due to the stronger
interaction between the soft Lewis base S2− ligand and the soft Lewis acid Cs, compared
with other cations, the capacity and selectivity towards Cs+ was significantly enhanced.
The maximum adsorption capacity of the adsorbent reached 160.9 mg/g, and the dis-
tribution coefficient value (~4000 mL/g) was three times larger than that of the pristine
montmorillonite (~1500 mL/g).

In addition, other novel ion exchangers have also been developed. Metal hexacyano-
ferrate (MHCFs) is a typical coordination polymer consisting of transition metal ions (such
as Cu2+, Co2+, Ni2+, and Fe3+) with coordinated CN bridges. Since their structural lattice is
comparable to the size of hydrated cesium ions, MHCFs can selectively adsorb cesium ions
through ion exchange [19]. At the same time, they should be easily regenerated and reused
in an environmentally friendly way. Zhang et al. [86] prepared a clay-based composite
hydrogel (DHG(Cu)) containing hexacyanoferrate (HCF) nanoparticles for selective re-
moval of Cs+ from contaminated water. DHG(Cu) showed excellent recovery performance
for Cs+ in a polluted environment, and the maximum adsorption capacity was 173 mg/g.
In KCuHCF, the adsorption of Cs+ was mainly achieved through the ion exchange be-
tween Cs+ and K+. Unfortunately, due to the extremely small particle size (~10 nm) of this
excellent material, its practical application is limited.

Ammonium phosphomolybdate (AMP) is another novel ion exchanger and has a high
selective adsorption capacity for Cs. The chemical formula of AMP is [(NH4) 3PMo12O40].
AMP contains exchangeable NH4

+, which can be replaced by Cs+. The adsorption coef-
ficient (Kd) of Cs is about 104 mL/ g and is not significantly affected by the high ionic
strength of the solution [2,27,87]. After concentrating cesium, AMP is usually dissolved
with sodium hydroxide solution to produce a precipitate of cesium iodate bismuthate. At
present, AMP has been widely used in the adsorption of Cs in samples such as seawater,
inland freshwater, nuclear waste liquid, and digested soil and sediment. Hyoe et al. [70]
compared the separation efficiency of 5 AMP manufacturers and confirmed that the AMP
may contain Cs in the manufacturing process, and the AMP produced by Kishida Chemical
Co., Ltd. (Osaka, Japan) had the least Cs content. On this basis, the adsorption efficiency of
AMP and AMP-PAN, KNiFC-PAN to Cs, and interfering elements Ba, Mo, Sb, and Sn were
further studied. By combining inorganic ion exchangers (AMP and KNiFC) with organic
polymers (polyacrylonitrile, PAN), the granularity performance of powdered AMP and
KNiFC can be improved.

4.3. Adsorption

Adsorption is a process of using a solid adsorbent to adsorb one or several components
in a water sample on the surface and then desorb the predicted components by appropriate
solvent or heating to finally achieve the purpose of separation and enrichment. The
adsorption method has the advantages of low cost, excellent removal efficiency, high
flexibility in operation, and no generation of secondary pollutants [88–91]. Thus, adsorption
is considered to be the most effective method for removing environmental pollutants [92].
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Various adsorbents, including metal sulfides, metal-organic frameworks (MOFs), graphene
oxide (GO), etc., have been developed to remove cesium through different mechanisms.
Because soft S2− ligands in their frameworks have a strong innate affinity for soft metal
ions (Cs+) rather than coexisting hard ions (H+, Na+, K+) [93], they can effectively remove
radionuclides from wastewater. Xing et al. [94] utilized graphene oxide for the removal of
cesium from aqueous solution, and the maximum adsorption capacity of GO could reach
95.46 mg/g due to the existence of a large amount of oxygen-containing functional groups.

However, the selectivity enhancement of adsorbents to target nuclides remains a great
challenge. To address the challenges, the ion imprinting technique has been developed as a
template strategy to effectively improve the selectivity of materials by which a functional
monomer and a crosslinker were polymerized in the presence of a template ion [95,96]. It
can create specific cavities containing a ligand for the template ion that possesses the right
size and charge [97,98]. More and more ion-imprinted polymers are now available, and
the selective adsorption of various nuclides can be achieved by introducing an imprinted
cavity for the target nuclide on the surface of ion-imprinted polymers [99]. Zhou et al. [97]
employed dual ion-imprinted mesoporous silica based on multiple interactions to separate
cesium from a high-salt environment. The synergism of multiple interactions and imprinted
cavity endows the sorbent with good selectivity for cesium over other cations and with
excellent salt tolerance.

5. Evaluation of Measurement Data

The complete measurement process should also include blank experiments, activity
calculations, and precision calculations. Whenever reagents are changed and each batch of
samples is analyzed, a blank experiment should be conducted. Under normal circumstances,
the number of blank samples should not be less than 5% of the total number of samples
analyzed. Finally, the repeatability and reproducibility of the method should be evaluated.

In order to evaluate the impact of various chemical operations and measurement
procedures on data quality, relevant scholars conducted uncertainty analysis on different
measurement methods in different environments. The measurement uncertainty of 137Cs
in water with α and β measuring instruments mainly comes from the contribution of β
radioactivity measurement with its inherently lower background, which is considerably
more sensitive [100–102]. The main uncertainty of 137Cs measurement by the γ energy
spectrum analysis method comes from the peak count of 137Cs in the sample source. In
actual work, the sample volume can be selectively increased according to the specific
experimental conditions, the detection efficiency can be improved, and the measurement
time of the sample source can be extended to increase the peak zone count of 137Cs in the
sample source [103].

In order to analyze the low-level 137Cs activity in complex samples, the instrument
background level, counting efficiency, sample number, and element yield are critical. To
reduce the errors introduced during the analysis. Cresswell et al. [104] analyzed the uncer-
tainty and detection limit of 137Cs activity measured by the computer-based gamma-ray
spectrometer (AGS) with the gross counts within the defined spectral windows method.
The results show that the spectral interference stripping contributes the most to the uncer-
tainty, so a narrow spectral window should be used. To use a narrow spectral window, it
needs to control the spectral gain and resolution. Caciolli et al. [105] studied the full spec-
trum analysis (FSA) by using a sodium iodide scintillator. By introducing the non-negative
least squares constraint into FSA algorithm, a more reliable basic spectrum was obtained,
and the uncertainty in the fitting process was reduced.

6. Tracer Application of 137Cs

Due to nuclear tests and nuclear accidents, radioactive materials are mainly present in
sediments and oceans worldwide [11,56,75,106]. After the radioactive material is deposited
on the ground, it is resuspended with the storm and the surface soil particles in the air, and
deposited on the ground again. Under dry and wet climate conditions, the difference in the
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137Cs/90Sr activity ratio in the topsoil provides clues for understanding the source of dust.
Most of 137Cs exist in the seawater in dissolved form. Therefore, 137Cs nuclides can be used
as a tracer for the study of surface dust suspension, transportation, and their deposition at
a distance, as well as marine transportation and eddy current research for final assessment
of nuclear tests and pollution status of nuclear accidents [13,107–110].

6.1. Application of 137Cs as Oceanographic Tracer

The Nielsen research group has studied the content of 137Cs and 99Tc in the Danish
Strait seawater in the past 40 years [109], trying to reveal the water mixing dynamics of the
Danish strait. 99Tc mainly came from the Chernobyl nuclear accident. After the accident, it
spread evenly in the sea water of the Danish Strait. 137Cs were continuously discharged
from the water treatment plant of the European nuclear power plant. Overall time-series
records of 137Cs and 99Tc in the Danish Straits could serve well as oceanic tracers and
99Tc/137Cs activity ratio could be utilized to explore the flow mixing dynamics between
the North Sea and the Baltic Sea.

The radioactive materials, 134Cs and 137Cs, produced by the FDNPP accident were
mainly distributed in the North Pacific and its marginal areas in 2011. It is estimated that
the total amount of these radionuclides released directly into the ocean is about 15–19 PBq.
134Cs has a short half-life of about 2.06 years, and the ratio of 134Cs / 137Cs is close to
1, so 137Cs has become the main detection target. Hirayama et al. [111] described a first
attempt to estimate the water seepage rate of an active crater lake using radioactive cesium
dispersed into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident
in March 2011 as a hydrological tracer and successfully estimated the water leakage rate of
the Yugama crater lake in Kusatsu Bairen volcano. The findings suggest that radioactive
cesium is one of the powerful tracers for addressing the geochemical processes of the Crater
Lake System. Hirose [13,14] discussed the temporal changes of 90Sr and 137Cs in the surface
waters of Japanese Haiti. In subsequent studies, the apparent vertical diffusion coefficients
of 90Sr and 137Cs (AVDC) and apparent initial surface flux (AIF) show temporal and
spatial variability. A mathematical model of its vertical distribution has been established.
Zhou et al. [106] analyzed 137Cs, 134Cs, 90Sr, and total β in the northeastern South China Sea,
Luzon Strait, and its vicinity. The peak of 137Cs appeared at a depth of 150 m, and the peak
of 90Sr at 0.5 m in depth, the average value of total β activity gradually increased from the
South China Sea to the Western Pacific. The highest average value of 134Cs and 137Cs was
found at a depth of 500 m in the Northwest Pacific Public Area [75]. Liu et al. [56] analyzed
the spatial and vertical distribution of Pu isotopes and 137Cs in the surface sediments and
core sediment samples of the Yangtze Estuary. The activity of 137Cs in the surface sediment
samples of the Yangtze Estuary ranged from below the detection limit (0.8 mBq/g) to
4.92 mBq/g, there is no obvious spatial change. The maximum peak of 137Cs activity of
19.55 ± 1.38 mBq/g in the depth range from 140 to 180 cm.

6.2. Application of Global Fallout 137Cs as a Tracer for Soil Erosion Investigation

The classical approach of using 137Cs as a soil erosion tracer, which is based on
the comparison between stable reference sites and sites affected by soil redistribution
processes, has been applied to the research focused on the establishment of erosion rate
calculation models, determination of regional background values, and spatial variability of
soil erosion (erosion and subsidence rate, slope erosion process). The method is associated
with potentially large sources of uncertainty, with major parts of this uncertainty being
associated with the selection of the reference sites. Laura et al. [112] proposed an extension
of this procedure, using a repeated sampling approach, in which the reference sites are
resampled after a certain time period. Suitable reference sites are expected to present no
significant temporal variation in their decay-corrected 137Cs depth profiles. Olson et al. [113]
determine the soil erosion rates in cropland of west central Illinois using a magnetic tracer
(fly ash) and radio-cesium (cesium-137). The fly ash and cesium-137 accumulation on a
stable cropland/hayland summit was determined using a spiral transect. This reference
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site was used as a baseline and then compared with the fly ash and cesium-137 levels in
adjacent cropland landscape positions to estimate loss from erosion. Li et al. [114] used
the 137Cs tracer method to study the soil erosion of purple soil slope farmland in the Three
Gorges Reservoir area of China, and calculated the soil erosion rate of slope farmland using
an improved simplified mass balance model. The segmented analysis results of the soil
erosion rate along the slope show that due to the effect of plowing, the soil erosion rate
of the two slope sections of the slope farmland generally decreases with increasing slope
length, and accumulation occurs below the slope section. Zhao et al. [115] Collected soil
samples from sandy land, bare land, Gobi, cultivated land, and grassland in the Zhundong
region of Xinjiang, measured the 137Cs content, and compared it with the soil erosion
data of various types of land. In low-grain wind-eroded areas, 137Cs tracer technology is
not reliable.

7. Conclusions

This article reviewed the measurement, separation, and applications of 137Cs in envi-
ronmental samples. It also discussed in detail the pretreatment of different sample types,
chemical purification methods, and analytical techniques, as well as their respective ad-
vantages and disadvantages. Pretreatment includes solids, water bodies, and biological
samples. Chemical purification methods include precipitation, ion chromatography, and
extraction chromatography. Analysis techniques include traditional beta counting and
gamma-ray measurement, as well as the latest development of mass spectrometry. At
present, the most widely used pretreatment method is acid hydrolysis. The chemical
separation method is coprecipitation. Although its process is cumbersome, it is still the
preferred method for the treatment of large numbers of samples. At the same time, crown
ether extraction chromatography is gradually replacing the coprecipitation method because
of its superior separation efficiency.

The rapid analysis method of 137Cs still needs to be further explored. Traditional
methods often take two weeks or more, and the standard processes established by most
countries are still based on the results from the last century. To solve this problem, it is
necessary to increase the selection of pretreatment, chemical separation, and test methods.
In terms of pretreatment, the rapid processing of large volume samples still needs to be
explored, especially the concentration of liquid samples. In terms of chemical separation,
crown ether extraction chromatography has become a new trend. On the one hand, it is
the synthesis of new crown ethers, which makes the decontamination factor and chemical
recovery higher. Another aspect is how to achieve mass production. In terms of the
selection of test methods, the advantages of mass spectrometry are obvious. The following
work can be expanded from the following aspects. First, the combination of chemical
separation and instrumental analysis to reduce contamination during operations, such as
ion exchange, electrothermal evaporation, laser burning, or capillary electrophoresis for
preliminary treatment before injection. Second, the common factor restricting RIMS, TIMS,
and AMS is the cost of instruments.

In addition, the application of radionuclides in tracing has become a hot and diffi-
cult issue. Using the atomic ratio of multiple elements, such as 90Sr/137Cs, 134Cs/137Cs,
240Pu/239Pu, etc., to find a more accurate source of pollution has been applied to the study
of the migration of sand and dust around Japan and Asia, including the condition of
melted fuel in the damaged core after the accident. The application of tracing is of great
significance to further explore the impact of nuclear accidents and nuclear waste emissions
on human health and the environment. The application of 137Cs and other radionuclide
tracing techniques in aerosols has been seldom studied, and it has yet to be reported by
relevant researchers.
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