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Abstract: Dengue is the most widespread mosquito-borne viral disease of man and spreading at
an alarming rate. Socio-economic inequality has long been thought to contribute to providing
an environment for viral propagation. However, identifying socio-economic (SE) risk factors is
confounded by intra-urban daily human mobility, with virus being ferried across cities. This study
aimed to identify SE variables associated with dengue at a subdistrict level in Bangkok, analyse
how they explain observed dengue hotspots and assess the impact of mobility networks on such
associations. Using meteorological, dengue case, national statistics, and transport databases from the
Bangkok authorities, we applied statistical association and spatial analyses to identify SE variables
associated with dengue and spatial hotspots and the extent to which incorporating transport data
impacts the observed associations. We identified three SE risk factors at the subdistrict level: lack of
education, % of houses being cement/brick, and number of houses as being associated with increased
risk of dengue. Spatial hotspots of dengue were found to occur consistently in the centre of the
city, but which did not entirely have the socio-economic risk factor characteristics. Incorporation
of the intra-urban transport network, however, much improved the overall statistical association
of the socio-economic variables with dengue incidence and reconciled the incongruous difference
between the spatial hotspots and the SE risk factors. Our study suggests that incorporating transport
networks enables a more real-world analysis within urban areas and should enable improvements in
the identification of risk factors.

Keywords: dengue; socio-economic risk; spatial clusters; mobility; transport system; Bangkok

1. Introduction

Dengue is a rapidly emerging mosquito-borne infection, caused by any one of four
viral serotypes (denoted DENV-1, 2, 3, 4), with an increase in incidence of thirty-fold over
the last 50 years [1]. The disease is endemic in over 100 countries [2,3]. More than 3.5 billion
people are at risk of DENV infection and recent estimates suggest that there are 390 million
DENV infections every year, of which 100 million cause clinical symptoms [4]. The increase
in global transmission of this disease has been linked to several factors such as global trade,
international travel, rapid urbanization, and ineffective vector control strategies [5–8].

Dengue virus is mainly transmitted by Aedes aegypti mosquitoes, which are widely
present in tropical and subtropical areas and well-adapted to an urban environment.
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Dengue risk is associated with climatic factors particularly temperature and rainfall, which
impact upon the mosquito abundance and vectorial capacity [6,9,10]. Urbanization has
been frequently linked with the endemicity of the disease, where high population density
coupled with poor environmental hygiene provide a conducive environment for mosquito
vector breeding and increased probability of transmission [11–13]. Dengue is associated
with a wide range of socio-economic (SE) factors that alter risk of exposure to infectious
mosquitoes and which can vary at very local scales [11–19]. However, these associated
risk factors are not systematic [20,21], likely influenced by the role of human mobility in
ferrying the virus from places of high environmental risk throughout the city [22–24]. The
identification of the source of infection and the subsequent socio-spatial structure of the
intra-urban spread of DENV would clearly aid the local public health services to better
allocate resources [25].

Bangkok, the capital city of Thailand, bears a considerable burden of reported cases
of dengue and has year-round endemic transmission [26]. In Bangkok, dengue-confirmed
cases from the hospitals are reported to the Bangkok Metropolitan Administration (BMA)
and Ministry of Public Health (MoPH) via an online operating system “Epi-net” [27].
Based on this notification, intervention is activated, which is largely based on fumigation of
insecticide in the patient’s household and the neighboring area within a radius of 100 m [27].
Some of the major challenges faced by this system have been delayed intervention, which
relies solely on the clinical confirmation of cases and reporting, followed by difficulty in
tracing the address of identified cases [27]. Hence, understanding the spatial and socio-
economic distribution of risk associated with the disease at a subdistrict level in such
an endemic setting could help assign probable risk to an area and therefore enable early
vector control-targeted interventions and prevent frequent outbreaks. Within this context,
understanding how intra-urban mobility in Bangkok may shape the spread of the virus
is important. Bangkok has a very well developed intra-urban public transport system
comprised of BTS Skytrains, MRT Subways, Airport Rail Link, buses, and ferry boats that
enable rapid transport throughout the city. Geographical knowledge of the structure of the
transport network can provide a proxy for human intra-urban mobility and thus enable its
inclusion in understanding dengue risk.

The overall aim of this study was firstly to identify socio-economic and spatial risk
factors for dengue incidence across subdistricts in Bangkok, all the while taking into
account the influence of meteorological factors and, secondly, to assess the added value of
incorporating intra-urban transport networks as a proxy for human mobility.

2. Materials and Methods
2.1. Study Design

This is a three-step retrospective analytical observational study to assess the association
firstly of meteorological factors with monthly dengue incidence across Bangkok over a
14-year period. Secondly, association of socio-economic (SE) variables and previously
identified significantly associated meteorological variables with dengue incidence over
a two-year period at a sub-district level was assessed. Finally, the impact of inclusion of
transport networks on the observed SE associations was assessed.

2.2. Study Area

Bangkok is the capital city in the central region of Thailand (latitude 100◦31′, longitude
100◦0′) and covers an area of 1569 km2. Bangkok has a tropical climate. Rainfall occurs
throughout the year but with highest rainfall from May to October. Likewise, temperature
fluctuates year-round, ranging from 22–35 ◦C on average, but can soar to 40 ◦C in March–
May. According to the 2010 census, Bangkok had a population of 8.3 million, out of which
4.3 million were registered [28]. This population inflates up to 15 million during the day
mainly due to commuters from surrounding areas. The city has an average population
density of 5294.5 persons/km2 [28]. Bangkok is composed of 50 districts (khet), and
180 subdistricts (khwaeng) in 2019.
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2.3. Data Sources
2.3.1. Dengue Incidence Data

The data were obtained from two different sources. Dengue incidence data for the
year 2000–2013 were obtained from the Bureau of Epidemiology, MoPH in the context of
the FP7 DENFREE program [29]. This dataset is comprised of dengue cases per month
per year in Bangkok and used to identify meteorological factors associated with dengue
incidence for subsequent inclusion in analyses of socio-economic variable risk analysis as
covariates. The second dataset was obtained from the Health Department of the Bangkok
Metropolitan Administration for 2012–2013, which consisted of individual case level data
on a monthly basis, which were mapped with certainty to the subdistrict level and are the
outcome of interest in this study.

2.3.2. Environmental Data

Meteorological data (temperature and precipitation) for the year 2000–2012 were ob-
tained from the Bangkok Meteorological Department. For the year 2013, data were retrieved
from Don Muang Airport meteorological station records, which were then merged with the
former, being found to be consistent over previous years. Daily values of the maximum and
minimum temperature and mean and maximum precipitation were averaged at a monthly
level for each year. For temperature, two new variables, Diurnal Temperature Range
(DTR) and mean temperature were generated given their known influence on dengue
incidence [7,30]. In addition to concurrent monthly values, time lags of 1, 2, and 3 months
were assessed for lag effects of these meteorological variables on the disease incidence
fitted with year. Incorporation of the effect of year on dengue incidence attempted to take
into account other factors, such as herd immunity, differing viral serotypes, etc., which
might confound the underlying effect of the environmental variables.

2.3.3. Socio-Economic Variables

The dataset with socio-economic (SE) variables was obtained from the 2010 census
data conducted by the National Statistical Office of Thailand [28]. This dataset included
subdistrict level aggregated data for Bangkok on a wide range of SE factors that included
education, nationality/immigration, occupation, type and structure of housing, type of
water sources, different household amenities (e.g., refrigerator, air conditioner, washing
machine, TV, car, etc.), subdistrict surface area (km2), number of households, population
characteristics (age, sex, occupation, education level). All these variables were measured in
relative percentages except area, number of houses, and population density, which were
measured in numbers. Based on literature review and/or biological relevance, only those
variables considered to have pertinent effects on dengue were selected for further analysis.
These selected variables and their definitions are presented in Table A1. A brief rationale of
each selected variable is as follows:

(1) Lack of education can lead to precarious working/housing conditions as it relates to
household income, thereby increasing dengue risk [2,3];

(2) Immigration can impose a significant dengue risk due to lack of access to health care
or proper housing conditions [31];

(3) Agricultural areas generally have higher rainfall and humidity, lower abundance of
Ae. aegypti but higher of Aedes albopictus [32];

(4) Manual work sites such as construction sites are found to be potential areas of dengue
clusters [33];

(5) High population density is a known risk factor for dengue transmission [34];
(6) Age will reflect differential exposure to DENV and subsequent level of acquired

immunity and thus could be a potential confounder for dengue incidence [31];
(7) Construction materials for houses have been identified as a risk factor in the past; for

example, cement/brick houses have lower temperature and high humidity, which are
favorable for adult mosquito survival [35,36];
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(8) Shop houses usually have longer hours with windows and doors are open and thus
provide easy entrance for mosquitoes [35];

(9) Different types of water sources were considered as they provide effective breeding
sites for mosquitoes and thus promote vector density [37,38];

(10) Pit toilets could be potential breeding sites for mosquitoes and thus could increase
dengue risk [39,40];

(11) Air conditioners promote indoor breeding sites and impact survival of Ae. aegypti
mosquito through maintenance of clement temperatures;

(12) Land surface coverage (vegetation, road, water bodies, extent built-up) will determine
the ecological suitability for mosquito abundance/survival and is also a proxy for
human population density [12,13].

2.3.4. Intra-Urban Transport Networks Variables

In order to take into account the impact of public transport and human mobility in
the spatial diffusion of dengue [41], bus, metro and ferry stops (N = 3767), as well as
the lines (N = 209) that make up Bangkok’s public transport network were incorporated
into a GIS from several sources (Bangkok Metropolitan Administration, OpenStreetMap,
TransitBangkok). Road networks were also added for comparison. Several indicators were
derived from these datasets at the subdistrict level (number of public transport stops, public
transport stops density, total road length, road density) to measure the level of accessibility
and of transport infrastructure of each subdistrict.

2.4. Statistical Methods
2.4.1. Association Analyses

To assess the association of meteorological variables with time lags (lag 0 to 3 months)
with monthly dengue incidence over the period 2000–2013 across all Bangkok, we fitted
Generalized Loglinear Models (GLMs). In order to avoid overfitting of too many “alike”
variables differing only in the lag time, the lag time of each variable in a univariate analysis
that gave the best fit was selected for the multivariable analysis. Thus, for each meteorolog-
ical variable (mean, minimum, maximum temperature, DTR and mean, max rainfall), the
time lag that explained the largest percentage of variation in the dengue incidence data was
selected for a multivariate analysis with backward elimination of non-significant variables
until a final adequate model was achieved.

To ensure comparability of the datasets over the study period (2000–2013), data were
aggregated across the 160 subdistricts that made up the Bangkok Metropolitan Administra-
tion prior to the 2009 administrative reform. To assess the association of socio-economic
variables with dengue incidence data from 2012 and 2013 localized to subdistrict level,
we performed univariate analyses, fitting Generalized Loglinear Mixed Models (GLMMs)
with Log(e) population fitted as an offset and subdistrict as the random variable to account
for the repeated (monthly) measures of dengue within each subdistrict. All variables for
which the univariate analyses yielded a p < 0.2 were retained and fitted in the multivariable
analysis, including the identified associated meteorological variables above, and a final
adequate model including only significant variables was achieved by backward elimination
of non-significant variables. For the multivariable analyses, an adjusted Relative Risk (aRR)
was calculated to show the direction and size of the association of the explanatory variables
with the output variables. Relative Risk for the case of continuous explanatory variables
is the percentage increase in dengue cases for a unit increase in the explanatory variable
(e.g., 1 ◦C for temperature, 1 mm for precipitation, 1% for the %SE variables, etc.). The
aRR is the relative risk of a variable adjusted for all the other co-fitted variables in the
multivariable analysis.

Because many statistical tests were performed, for interpretation of statistically signifi-
cant variables, we applied Bonferroni’s correction to yield a corrected p-value significance
threshold. Thus, only those variables lower than the corrected p-value threshold were
considered of significant interest.
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In order to assess whether the dengue clusters (hotspots) identified through Local
Moran’s Statistic (LISA) (see below) were associated with the significant SE variables
identified above, we fitted a GLM with normal error structure and cluster type as an
explanatory factor. However, because some of the SE variables were percentages, we had
to arcsine transform them prior to the analysis.

To take into account connectivity between subdistricts, we retrieved information on
bus, metro (BTS, MRT, Airport Link), and ferry lines and counted the number of lines
connecting bus stands, metro stations ferry piers from one subdistrict to another and
within a subdistrict, generating a symmetric transport matrix of connectivity among all
subdistricts. From this transport matrix, we then generated a new matrix to quantify
the similarity in the extent of connectedness of a subdistrict as compared to that of all
the other subdistricts. To achieve this, as discussed in detail in [42,43], when there are n
individuals (here subdistricts) distributed in Euclidean space, an n × n similarity matrix
can be generated, whereby each column represents a subdistrict and contains the number
of connections with the subdistricts arranged as rows. The similarity, S, of a subdistrict to
another, is calculated by comparing the number of connections each has to all subdistricts
(including itself) taking into account the range in the numbers of connections any subdistrict
has. A pair of subdistricts having exactly the same number of connections to all subdistricts
will have a similarity value of 1. The Euclidean similarity matrix uses the following formula:
S = 1 − [(xi − xj)/range of xk]2 where x is the number of transport connections of the ith
and jth subdistrict to the kth subdistrict and the range is the maximum-minimum number
of connections that occur from the kth subdistrict to all subdistricts [42,43]. The similarity
value, S, of the ith and jth subdistrict is then the average of all the values computed to all the
subdistricts. The value of similarity then takes any value from 0 to 1. We also measured the
(Euclidean) distance between the geographic centre of all pairs of subdistricts and calculated
a distance Similarity matrix. These similarity matrices were then used as weighting matrices
for a second series of analyses on the association of pertinent SE variables with High/Low
clusters as well as a comparative analysis of the pertinent SE variables (significant in the
final multivariate analysis above) with and without the transport and distance matrices.
For these analyses, we first regressed out the significant meteorological variables and year,
and then took the mean residual dengue incidence per subdistrict for analysis with the SE
variables with and without weighting with the transport or distance matrices.

In all analyses, a dispersion factor was estimated to account for any over-dispersion
in the data. All analyses were conducted in Genstat vers. 15 (VSN International, Hemel
Hempstead, UK) [44].

2.4.2. Spatial Analysis

GeoDa (version 1.12.1.161, Center for Spatial Data Science, University of Chicago,
USA) [45] and QGIS (version 2.18.27,QGIS Association) [46] were used for mapping the
spatial distribution and further to identify spatial autocorrelation of dengue cases between
various subdistricts in Bangkok. The geographical layers of Bangkok were obtained from
the BMA. QGIS was used to develop dengue risk maps and layers based on the reported
cases of dengue for the year 2012 and 2013 across subdistricts in Bangkok. These layers
were then used in GeoDa to identify global, local spatial autocorrelation and generate a
spatial correlogram.

As incidence can vary depending on the population size, with highly populated sub-
districts tending to have more cases and vice versa, incidence rates were used as an outcome
variable in this analysis. Dengue incidence rates were calculated based on the number of
cases per subdistrict divided by their respective population size (per 10,000 population). As
a measure of global spatial autocorrelation, Moran’s I was calculated for each year. This was
calculated based on the spatial weight matrix that defined neighbours for each subdistrict
based on the queen contiguity, i.e., common edge and a common vertex between geograph-
ical units. Random 999 permutations were applied to assess significance of global autocor-
relation. Likewise, univariate Local Moran’s statistic measure (LISA) was used to identify
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significant local clusters and spatial outliers among subdistricts. Significance and LISA
cluster maps were obtained for each year independently (for more information on the LISA
methodology, see https://geodacenter.github.io/workbook/6a_local_auto/lab6a.html, ac-
cessed on 1 April 2018). Spatial autocorrelation of dengue was investigated as a function of
distance through a spatial correlogram. Euclidean distance was chosen as a distance metric.
Since the autocorrelations are normally sparser at longer distance, maximum distance
was set to 9 km. Maximum distance implies the exact maximum distance between two
subdistrict centroids. The distance interval of bins was set to 365 m.

3. Results
3.1. Impact of Meteorological Variables on the Dengue Incidence in Bangkok 2000–2013

There were 124,820 cumulative dengue cases reported during the years 2000–2013,
where around 66% of cases (N = 81,760) was reported from June to November, coinciding
with the monsoon season in Bangkok. The overall mean dengue incidence per month was
743, and the range of number of cases reported per month was 108 to 2260 (Figure A1).
Overall, the trend of reported dengue cases fluctuated over the years, with the highest inci-
dence reported in the year 2001 at 14,686 followed by 2013 (N = 14,134), 2008 (N = 11,846),
2010 (N = 10,912), 2011(N = 10,574), 2012 (N = 10,030).

Over the period 2000–2013, the descriptive statistics of the meteorological variables
used in the association analyses were as follows: the mean of the monthly minimum temper-
atures was 25.5 ◦C (Standard deviation (SD) 1.36, Range 20.8–28.4); the mean of the monthly
maximum temperatures was 33.7 ◦C (SD 1.15, Range 30.5–37.0); the mean of the monthly
mean temperatures was 29.6 ◦C (SD 1.17, Range 26.1–32.7); the mean of the monthly mean
DTR was 8.2 ◦C (SD 0.92, Range 6.3–11.0); the mean of the monthly maximum precipitation
was 41.32 mm (SD 33.5, Range 0–216.8); the mean of the monthly mean precipitation was
4.75 mm (SD 4.33, Range 0–20.04). Diurnal temperature range (lag 1), maximum tem-
perature, mean temperature (lag 3), minimum temperature (lag 3), mean precipitation
(lag 1), and maximum precipitation (lag 1) gave the best fit models for their respective
variables for dengue incidence, explaining 28.6%, 11.7%, 16.3%, 21.2%,17.4%, and 8.3%
of variance, respectively (Table A2). Including these best-fit models in the multivariable
regression, minimum temperature (lag 3) and mean temperature (lag 3) were no longer
significant. Mean precipitation (lag 1) was positively associated with dengue incidence rate
(p < 0.005) and diurnal temperature (lag 1) was negatively associated (p < 0.001). Maximum
temperature for the same month was marginally associated with dengue incidence rate
(p = 0.032) (Table 1); the maximum precipitation (lag 1) neared significance (p = 0.053). The
relationship between these significant variables in relation to dengue incidence can be seen
in Figure A2.

Table 1. Final multivariable model for association of meteorological variables with dengue cases
2000–2013 in the final adequate model.

Variables aRR (95% CI) p Value

Year 1.03 (1.01–1.053) 0.0043
DTR (Lag 1 month) 0.81 (0.74–0.90) <0.001

Maximum temperature 0.92 (0.85–0.99) 0.032
Mean precipitation (Lag 1 month) 1.05 (1.03–1.09) <0.001

aRR—adjusted Relative Risk. DTR—Diurnal temperature range.

Since many statistical tests were performed a Bonferroni correction was applied,
yielding a new p-value threshold of 0.0017 calculated as alpha/number of tests = 0.05/29.
Using this value as the significance threshold, the maximum temperature was no longer
considered significant for inclusion in subsequent analyses with SE variables for 2012–2013.

https://geodacenter.github.io/workbook/6a_local_auto/lab6a.html


Int. J. Environ. Res. Public Health 2022, 19, 10123 7 of 23

3.2. Association of Socio-Economic Factors with Dengue Incidence

The mean percentage and standard deviation of the SE variables at the level of Bangkok
are shown in Table 2. The association analysis of these variables with dengue case data
was carried out per subdistrict over two years (2012–2013). Seasonality has a strong role in
dengue transmission in endemic settings [47] and, thus, seasons were initially analysed
separately; January–June was considered as the dry season and July–December as the
wet season. Univariate analyses revealed a large number of significant SE variables and
which differed between seasons (Table A3). In the final minimum adequate model in
the multivariable analysis, SE variables associated with dengue cases differed between
seasons. In the dry season, “%Groundwater” was negatively associated with dengue cases,
whereas “%Manual labor” increased risk. In the wet season, “%Cement houses” and
“%No education” both increased risk (Table A4). Diurnal temperature range (lag 1) was
only significantly negatively associated with dengue risk in the wet season. The strongest
SE association with dengue cases was with “Nb of houses (100s)”, which was positively
associated with dengue risk in both seasons. Combining seasons gave similar results to the
wet season, likely because of the larger number of dengue cases occurring in that season,
although “%Manual labor” and “%Groundwater” were no longer found to be associated
with dengue incidence (Table 3). Overall, the meteorological variables and yearly variation
had a stronger association than SE variables, with the exception of “Nb of houses (100s)”
(Table 3).

Table 2. Variation in socio-economic variables among subdistricts in Bangkok.

Variable Mean SD

Demography (%) or N (%)

Age 0–4 years 3.77 1.65
Age 5–14 years 9.22 2.97

Age 15–24 years 16.58 4.46
Age 25–59 years 59.17 4.62

Age above 60 11.27 3.90
Number of households (N 100s) 179.3 186.3

Area (km2) 9.89 11.95
Built-up Area (km2) 0.38 0.40

Dense vegetation area (km2) 0.97 2.01
Low vegetation area (km2) 3.49 5.62

Road area (km2) 0.38 0.40
Waterbody area (km2) 0.81 3.89

Population per household 3.2 1.02
Population density (km2) 13,393 6324

Education

No education 4.82 2.17
Primary 16.94 9.02

Secondary 16.38 8.51
Undergraduate 26.01 10.12
Postgraduate 4.65 2.67

Nationality

Immigrants 9.96 8.02

Types of occupation

Agriculture 1.10 2.88
Manual work 21.66 10.60

Household characteristics

Cement or brick houses 74.99 14.76
Wooden houses 14.11 9.85

Shop houses 29.42 22.85
Ground water 0.05 0.10

Rain water 1.27 5.87
Air conditioner 46.21 13.89

Pit toilet 2.44 2.54
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Table 3. Association of socio-economic variables, meteorological factors, and year with dengue cases
in the final adequate multivariable model.

Fixed Term aRR 95% Conf.
Ints Wald Statistic p Value

%No education 1.04 1.01–1.08 7.76 0.006
% Cement houses 1.006 1.002–1.01 6.95 0.009
Nb houses (100s) 1.0019 1.0015–1.0023 117.32 <0.001

lag 1 DTR 0.61 0.58–0.63 772.07 <0.001
lag 1 Mean daily Rain 1.051 1.045–1.058 319.12 <0.001
Year 2013 (vs. 2012) 1.88 1.77–2.00 403.66 <0.001
Nb transport stops 1.005 1.001–1.009 6.38 0.013

DTR—Diurnal temperature range; aRR—adjusted Relative Risk; Conf. Ints—Confidence Intervals.

3.3. Spatial Analysis of Dengue Incidence

The aim of this analysis was to identify any pattern of spatial autocorrelation of
reported dengue across subdistricts and to identify areas of dengue hotspots, cold spots,
and spatial outliers across subdistricts in Bangkok. The mean incidence rate for 2012
was 16.93/10,000 population (range: 2.32–40.35/10,000 population), whereas the mean
incidence for 2013 was 20.81/10,000 population (range: 6.17–136.84/10,000 population).
The spatial distribution of dengue was mapped for each year based on the incidence rates.
These rates were categorized into quantiles so that each class had the same number of
subdistricts and were comparable between years. Figure 1 shows the considerable inter-
annual variation in the spatial distribution of dengue cases. However, for both years, high
incidence rates (IRs) were concentrated in the city centre, along with areas in the eastern
and western periphery and low IRs in the northern subdistricts. Global Moran’s Index
for 2012 was 0.24, denoting a weak positive spatial autocorrelation (p = 0.001, z = 5.59
under 999 permutations). This suggests that in Bangkok, there was statistically significant
clustering of dengue in subdistricts in the given year, but at a low level, suggesting some
spatial dispersion as well. In 2013, Global Moran’s I was even lower at 0.12 (p = 0.006,
z = 3.04, under 999 permutations). It is notable that 2013 had low spatial autocorrelation
even though the number of reported cases was higher.

In order to further assess the clustering pattern at the subdistrict level, Local Indicators
of Spatial Association (LISA) were calculated. This measure categorizes significant areas
into four different cluster types. Areas with a significantly higher than mean number IR
surrounded by similar areas are known as High–High clusters or hotspots, and areas with
significantly lower than the mean IR surrounded by similar areas are called as Low-Low
clusters or cold spots. Likewise, if areas with low cases were surrounded by areas with
high IR and vice versa, they are categorized as Low–High clusters and High-Low clusters,
respectively, which are also called spatial outliers. LISA analysis identified significant
clusters in 40 subdistricts in 2012. High–High clusters were found in 13 subdistricts, all
located at the heart of Bangkok (Figure 2a). Low–Low clusters were found in 23 subdistricts,
mostly in the eastern and northern subdistricts. There were four subdistricts with Low–
High clusters. These spatial outliers were detected in the city centre adjacent to the hotspot
areas. No High–Low outliers were found in 2012. In 2013, 30 amongst 160 subdistricts
showed significant clusters, out of which High–High clusters were identified in eight
subdistricts, Low–Low clusters in 12 subdistricts, Low–High and High–Low clustering
each in 5 five districts (Figure 2b). High–High clusters were again found at the city centre,
along with Low–High clusters. Seven of the Low–Low clusters were the same as the
previous year. High–Low clusters detected this year were found mainly in subdistricts
identified as Low–Low clusters the previous year.
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Over the two years, 51 out of a total of 160 subdistricts were classified into a cluster
type. Nineteen subdistricts were identified as clusters/outliers in both years, 14 of which
had the same category (4 High–High, 7 Low–Low and 3 Low–High), two changed from
High–High to Low–High, two from Low–Low to High–Low and one from Low–High to
High–High.

Spatial autocorrelation of dengue incidence rates was then investigated as a function
of distance through a spatial correlogram. The number of subdistrict pairs per distance
band ranged from 129 to 720, with 10,812 pairs in total. A very high positive spatial
autocorrelation of 0.93 was found at a very local scale in the distance band of 0–1200 foot
(365.8 m) for the year 2012 (Figure A3). For 2013, there was a weaker correlation of
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0.21 observed at this distance band, despite this distance having the highest positive
autocorrelation for 2013. Proximity therefore had an influence on the spatial distribution of
dengue cases but only at a very local scale.
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We then addressed the extent to which the observed hot and cold spot clusters had
SE characteristics associated with increased risk of dengue. Only “%No education” was
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significantly higher in High–High clusters and cluster type explained 13% and 11% of
the variation in this SE variable in 2012 and 2013, respectively (Table 4). By comparison,
cluster type only explained 1% of variation in “%Cement houses” in either year, with no
notable variation among cluster categories. By contrast, “Nb of houses (in 100s)” were
higher in the Low–Low clusters and cluster type explained 12% and 3% of the variation
in this SE variable in 2012 and 2013, respectively. Overall, the Low–High clusters were
similar to High-High clusters for the SE variables. Likewise, High–Low clusters tended to
have characteristics more similar to Low–Low clusters. We then combined the 2012 and
2013 clusters, retaining only those that remained in the same cluster category in both years.
“%Cement houses” was significantly different between High–High and Low–Low clusters,
being higher in the Low–Low clusters (t = 2.75, p = 0.019). In contrast to “%Cement houses”,
where 31% of the variation was explained by cluster type, only 1% and 4% of variation in
“%No education” and “Nb of houses (in 100s)”, respectively, was explained by cluster type.

Table 4. Association of globally significant socio-economic variables with hotspot/cold spot clusters
identified by LISA.

Variables LISA Cluster
2012 2013

Mean SE p Value Mean SE p Value

% No education

High–High 7.40 0.67 <0.001 8.16 0.86 <0.001
Low–Low 4.22 0.47 0.300 4.18 0.79 0.310
Low–High 6.21 0.69 0.092 5.89 1.06 0.170
High–Low 4.77 0.75 0.806
No cluster 4.61 0.18 Ref 4.64 0.17 Ref

%Cement house

High–High 81.12 3.87 0.055 79.04 6.18 0.258
Low–Low 74.93 3.24 0.867 68.43 3.10 0.116
Low–High 69.29 9.79 0.501 82.20 4.06 0.311
High–Low 81.01 5.51 0.365
No cluster 74.52 1.33 Ref 74.84 1.32 Ref

Nb houses (100s)

High–High 34.29 6.88 0.007 40.86 10.98 0.023
Low–Low 316.26 57.88 <0.001 164.45 58.04 0.593
Low–High 49.42 16.12 0.165 44.37 13.73 0.076
High–Low 185.53 59.30 0.918
No cluster 173.12 14.58 Ref 194.17 16.77 Ref

Public Transport
Stops Density

High–High 16.32 2.12 <0.001 22.51 1.44 0.001
Low–Low 4.20 0.63 0.237 7.74 0.89 0.032
Low–High 17.11 2.63 0.001 25.83 2.16 <0.001
High–Low 8.42 2.63 0.255
No cluster 6.00 0.64 Ref 6.50 0.63 Ref

Shown are the mean, Standard errors (SE) of the variables and the p-Value of the regression analysis. NA—not
applicable; there were no High–Low clusters in 2012.

3.4. Impact of Transport and Distance

As evident from Figure 2a,b, the High–High clusters tend to be very centrally located
in both years and the Low–Low clusters more peripherally located. This centrality is
mirrored in the transport network with peripheral areas being more poorly connected than
the central areas (Figure 3). The public transport stops density is significantly higher in the
High–High areas (Table 4). Cluster type explained 20% and 17% of the variation in transport
density in 2012 and 2013, respectively, larger than for the SE variables as described above.
When re-analysed using only those clusters that remained of the same type in both years,
cluster type explained 73% of the variation in transport density. Furthermore, inclusion
of public transport stops (number of bus stands, ferry piers, metro/BTS stations) per
subdistrict in the multivariable risk factor model did reveal a small but significant positive
association with dengue cases (Table 3).



Int. J. Environ. Res. Public Health 2022, 19, 10123 12 of 23Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 25 
 

 

 
(a) 

 
(b) 

Figure 3. Bangkok Public Transport Network: (a) Public Transport Stops Heatmap, (b) Density of 
Public Transport Stops across subdistricts.  

In light of the strong association of hotspots with transport density, we then 
constructed a transport matrix that totalled the number of connections through public 
transport lanes among all subdistricts and a distance matrix between the barycentres of 
all subdistricts. These matrices were then used as weight matrices for statistical analyses 
of the association of SE variables with dengue incidence after having regressed out the 
year and meteorological effects (thus using the mean residual dengue case values per 

Figure 3. Bangkok Public Transport Network: (a) Public Transport Stops Heatmap, (b) Density of
Public Transport Stops across subdistricts.

In light of the strong association of hotspots with transport density, we then con-
structed a transport matrix that totalled the number of connections through public trans-
port lanes among all subdistricts and a distance matrix between the barycentres of all
subdistricts. These matrices were then used as weight matrices for statistical analyses of the
association of SE variables with dengue incidence after having regressed out the year and
meteorological effects (thus using the mean residual dengue case values per subdistrict)
and of LISA clusters with SE variables. Incorporating either the transport or the distance
similarity matrix as a weighting matrix led to a vastly improved model fit of the association
of SE variables with mean dengue residuals (with transport matrix, 92% of the variance
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explained vs. 61% without; with the distance matrix, 96% of the variance explained).
Notably the contribution of “% No education” increased from 2% to 37% with inclusion
of the transport matrix and to 73% with inclusion of the distance matrix. By contrast, the
contribution of “Nb of houses (in 100s)” decreased from 47% to 19% and to 23% following
inclusion of the transport and distance matrices, respectively. In contrast to the similar
directional effects of incorporating either matrix for “% No education” and “Nb of houses
(in 100s)”, the percentage of variation explained by “%Cement housing” increased upon
weighting with the transport matrix, but decreased with the distance matrix (Table 5). We
also used the mean number of dengue cases per subdistrict as an explanatory variable alone,
again with and without the matrix weightings. As expected, even without the matrices,
the mean number of dengue cases explained a very large percentage of variation in mean
residual number of dengue cases (88%); this increased to 94% after weighting with either
the transport or distance matrices.

Table 5. Effect of matrices of distance and transport similarity among subdistricts and mean subdis-
trict number of dengue cases on association of SE variables with residual dengue cases.

Transport Matrix Distance Matrix

w/o with w/o with

%No education 0.047
2.2%

0.081
36.9%

0.047
2.1%

0.072
73.1%

%Cement houses 0.0035
11.5%

0.0045
36.9%

0.0034
10.8%

−0.027
0.03%

Nb houses (100s) 0.0023
46.6%

0.0023
18.9%

0.002
48.1%

0.0036
23.3%

Shown are parameter estimates and percentage of variation explained in the multivariable GLM analyses.

Re-analysis of the LISA High/Low dengue clusters but with inclusion of the transport
weighting matrix led again to a consistent (both years) positive association of “% No educa-
tion” with High–High areas and negative association with Low–Low areas as compared to
uncategorized areas. There were no other consistent associations with either “Nb of houses
(in 100s)” or “%cement/brick housing” for any LISA categories (Table A5).

4. Discussion

This study attempted to identify key socio-economic and spatial risk factors for dengue
in the urban setting of Bangkok at the spatial scale of subdistrict, all the while taking into
account the influence of identified meteorological factors. The major findings of this work
were that although three SE variables (“%No education”, “%cement house structure”, and
“Nb of houses (100s)”) were associated with increased dengue IR, they poorly explained the
observed dengue hotspots. Moreover, inclusion of the intra-urban transport connectivity
matrix among subdistricts vastly improved the explanatory power of the fitted model and
radically altered the explanatory power of the three SE variables.

In more detail, in addition to the three aforementioned SE variables, “%manual labour”
was found to be associated with increased incidence of dengue and “%groundwater use”
was found to be protective and only during the dry season. This result is consistent with a
reduced need to stock water afforded by well-water availability and thus reduced breeding
sites associated with stocking water as observed previously [48,49]. Likewise, construction
sites are known to generate potential mosquito breeding and transmission sites for the
dengue virus [33,36]. The observed seasonal effect here may be a consequence of a general
increase in breeding sites everywhere in the wet season, thus diluting any specific effects of
groundwater and manual labour. A high percentage of lack of education was also found to
be a risk factor and likely reflects poor income as well as lack of knowledge on personal
protection and environmental hygiene, raising the question of whether dengue is a disease
of poverty [50]. Increased risk associated with cement houses has been noted previously,
potentially by providing an environment conducive for mosquito survival [35,36]. It may
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also reflect increased housing density as this variable was strongly positively correlated
with Nb of houses (r = 0.44, p < 0.001).

The only strongly, positively associated SE risk factor was the “Nb of houses”, which
likely reflects population density, thereby increasing both the facility for disease spread and
the number of mosquito breeding sites [12]. The relationship of the latter with population
density is thought to be nonlinear [51], perhaps explaining why number of houses rather
than population density per se was such a strong risk factor; a larger number of houses
may generate larger numbers of breeding sites independently of the human population
size (e.g., flower pots in front yards and backyards).

However, overall, the SE risk factors at the subdistrict level explained very little of the
variation in dengue incidence as compared to the meteorological factors at the city level, i.e.,
diurnal temperature range (DTR) and mean precipitation, both one month previously. Large
changes in daily temperature (i.e., DTR) had impact on vectorial capacity, affecting mosquito
population densities through diminished larval development and increased adult mortality,
as well as modifying the susceptibility of the mosquito to viral development [9,30,52]. The
negative association of DTR with dengue incidence was indeed confirmed in this study.
Likewise, rainfall is directly associated with increase in natural breeding sites and thus
larval density [10]. However, heavy rainfall is known to have nonlinear effects on mosquito
density both due to flushing of larva and adult mortality [10]. The paucity of excessive rain
during this study likely led to no evidence of any non-linearity in the relationship with
dengue incidence.

The spatial analyses revealed that clustering occurs at a very local scale (<~350 m) as
has been shown previously [13,53,54], likely reflecting the low dispersal of the mosquito
vector from the human source of infection. This would thus likely inflate the number of
local cases (within the subdistrict) and bias results based on SE status. Indeed, the dengue
hotspots and cold spots did not, overall, reflect the characterized SE risk variables, with the
exception of “%No education”. In light of the “forest-fire” nature of dengue clusters, there
are clearly two processes at work: firstly, the probability of having sufficient dengue cases
seeding an area, and secondly, the subsequent expansion of dengue cases to generate a
hotspot. The first is likely to be strongly influenced by the degree of centrality of the subdis-
trict, and hence, the degree of viral import, whereas the second will additionally reflect the
environmental vulnerability. With this in mind, the spatial analyses underline the degree of
centrality, whereas the socio-economic analyses have generated Bangkok-wide risk factors.
The extent to which centrality interferes with interpretation of the socio-economic factors is
difficult to judge, but inclusion of the transport network information significantly improved
the power of the SE variables to explain variation in dengue incidence rate. Significant and
consistent hotspots were identified in the city centre of Bangkok. This can be attributed
to several factors such as high population density, increased human activity, and high
diurnal human mobility. Indeed, transport infrastructure density was significantly higher
in hotspots than cold spots, suggesting connectivity is playing a significant role in disease
spread. This finding is coherent with a previous study in Guangzhou city, China, where
high road density was found to be a risk factor for clinical dengue [34].

This study has several strengths. Firstly, the temporal association of the meteorological
variables was tested with a large dataset (2000–2013) comprising 124,820 dengue cases.
The sample size was also high at over 25,000 for the main study period (2012–2013) for
assessing the impact of socio-economic factors. The association was tested at the subdistrict
level, which is the lowest administrative unit in Bangkok. This enabled a fine-scale spatial
cluster analysis that could then be coupled with globally important SE variables. Finally,
the addition of transport network data at this spatial scale revealed the importance of
including such data for interpretation of SE and spatial risk factors. In future work, the
connectivity and the centralities of the public transport system could be analysed using
other methods (e.g., graph theory).

There were also limitations in this study. The first limitation is the fact that surveillance
data are subjected to bias of under/over reporting as they only cover clinically apparent
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cases, whereas subclinical infections are considered the majority [55]. The fact that this
study used aggregated variables at subdistrict level does not account for individual risk
factors. Hence, interpretation is to be done with caution [34]. In addition, some socio-
economic variables had a very broad definition comprising more than two elements, which
made it hard to make a clear distinction between their roles; for example, agriculture,
forestry, and fishing were included under a single category. Hence, individual/household
level data collected purposefully for this analysis could have shown clearer association of
these variables. Finally, the public transport system network used in this study does not
account for all urban mobilities. Additional data could be used to assess daily commuting
(e.g., through Call Detail Records (CDRs) or social media [56,57]).

Very few studies have considered joint effects of socio-economic, meteorological, and
transport variables together and remains a field of further research [34,58,59]. More studies
are needed to better understand the joint dynamics of these variables in differing urban
settings whose urban structure, in terms of socio-economic and transport heterogeneity,
is likely to differ. Spatial analysis has been applied frequently in understanding dengue
risk in the past decade, but application of these findings is still lacking [54,60–62]. At the
time where the disease is rapidly flourishing at the cost of limited availability of preventive
measures, it is crucial to make effective and efficient use of vector control measures that
are already in place. In a country such as Thailand where outbreaks occur every few years
despite control efforts, there is a clear need to improve implementation of disease control
strategies and identify alternative strategies. Targeting persistent hotspots may offer one
such approach, but targeting the infection source may offer a more long-term solution if
socio-economic factors are at the heart of the problem. An improved understanding of
socio-economic vulnerabilities could help in disease prevention by directing efforts towards
minimizing such attributes through allocation of resources and introducing responsive
policies. However, improving our grasp of the role played by transport networks in the
spread of pathogens is essential to be able to trace the sources of infection, is a subject of
keen interest at all spatial scales, but currently not sufficiently developed [63–66].

While dengue outbreaks are becoming an increasing burden on the health systems
of cities in the Global South, our study has important public health implications. Looking
at the case of Bangkok for the years 2012 and 2013, we were able to better understand the
impact of socio-economic risk factors in the distribution of spatial hotspots of dengue by
adding transport variables to socio-economic and meteorological ones. The incorporation
of human mobility to the analysis of infectious diseases outbreaks at city, regional, and
national levels have helped improve forecasting models and early warning systems. It
is often done by returning to mobile phone data, call detail records, and location data
produced on social media platforms. This raises several issues of data availability, cost, and
privacy protection, particularly in the context of cities and countries of the Global South.

5. Conclusions

The conclusions of this work are that whilst SE risk factors can be identified and
thus highlight potential improvements for public health strategies (i.e., education), the
inclusion of transport networks can drastically alter the outcome of risk factor analyses
and thus need to be considered in further studies. Incorporating publicly available data on
public transport networks proves to be robust enough to improve our understanding of the
intra-urban spatial distribution of dengue outbreaks in Bangkok. A better comprehension
of the role of connectivity and centrality of each locality within large conurbations could
improve the implementation of disease and vector control strategies against dengue. If
sources of infection and super-spreading in highly connected localities can be identified,
vector control strategies could be much more focussed on such areas and alleviate the
financial and manpower burden of current approaches.
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Figure A1. Median and interquartile range of the monthly reported cases of dengue by year in
Bangkok, Thailand over 2000–2013.

Table A1. Summary of the socio-economic variables and their definitions.

Definition (as Per NSO and Own Analysis) Referred to as

Demography

Proportion of population aged 0–4 years Age 0–4 years
Proportion of population aged 5–14 years Age 5–14 years
Proportion of population aged 15–24 years Age 15–24 years
Proportion of population aged 25–59 years Age 25–59 years

Proportion of population aged 60 years and above Age above 60
Number of households (100s) Number of households

Total subdistrict area in km2 Area
% Area Built-up in km2 Built-up area

% Area with dense vegetation in km2 Dense vegetation area
% Area with low vegetation in km2 Low vegetation area

% Area with Roads in km2 Road area
% Area with water bodies in km2 Waterbody area

Population per household Population per household
Population density in km2 Population density
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Table A1. Cont.

Definition (as Per NSO and Own Analysis) Referred to as

Education

Proportion of population aged 6 years and above who never studied No education
Proportion of population attending Primary school Primary

Proportion of population attending Secondary school Secondary
Proportion of population attending Undergraduate Undergraduate
Proportion of population attending Postgraduate Postgraduate

Nationality

Proportion of migrant population (abroad and Thai) who moved in last 5 years Immigrants

Types of occupation

Proportion of population engaged in agriculture, forest and fishing work Agriculture
Proportion of population involved in manual, construction, mining and network work Manual work

Household characteristics

Proportion of houses made up of cement or brick Cement or brick houses
Proportion of wooden houses Wooden houses

Proportion of households using ground water, well water Ground water
Proportion of households using rain water Rain water

Proportion of households with air conditioner Air conditioner
Proportion of shop house/row house/row homes Shop houses

Proportion of households with pit toilet or who defecate into river/canal Pit toilet

Table A2. Percentage variation explained when analysing the association of meteorological variables
at different time lags on the incidence of dengue.

Models Meteorological Variables R2

Model 1 Mean Diurnal temperature Range +Year 22.09
Model 2 Lag 1_Mean Diurnal temperature Range + Year 28.56
Model 3 Lag 2_Mean Diurnal temperature Range + Year 21.17
Model 4 Lag 3_Mean Diurnal temperature Range + Year 13.01
Model 5 Max temperature + Year 11.71
Model 6 Lag 1_max temperature + Year 9.06
Model 7 Lag 2_max temperature + Year 4.90
Model 8 Lag 3_max temperature + Year 9.86
Model 9 Min temperature + Year 6.01
Model 10 Lag 1_min temperature + Year 7.73
Model 11 Lag 2_min temperature + Year 13.21
Model 12 Lag 3_ min temperature + Year 21.19
Model 13 Mean precipitation + Year 8.45
Model 14 Lag 1_ Mean precipitation + Year 17.38
Model 15 Lag 2_ Mean precipitation + Year 16.66
Model 16 Lag 3_ Mean precipitation + Year 8.66
Model 17 Max precipitation + Year 3.2
Model 18 Lag 1_Max precipitation + Year 8.26
Model 19 Lag 2_Max precipitation + Year 8.14
Model 20 Lag 3_Max precipitation + Year 5.029
Model 21 Mean temperature + Year 6.68
Model 22 Lag 1_mean temperature + Year 5.37
Model 23 Lag 2_mean temperature + Year 7.82
Model 24 Lag 3_mean temperature + Year 16.34

In bold the best fit model of each variable type subsequently used in the final model.
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Figure A2. Relationship of significant meteorological variables with dengue incidence, 2000–2013, in
Bangkok, Thailand. (a) lag 1 mean precipitation; (b) lag 1 diurnal temperature range; (c) lag 1 max
precipitation; (d) maximum temperatures. Shown are the data points and the best fit regression line
from the multivariate analysis.

Table A3. Univariate association analysis of selected socio-economic variables by season showing p
value for subsequent selection for multivariable analysis.

Variable Dry Season Wet Season Combined

Year <0.001 <0.001 <0.001
Agriculture, Forest & fishing 0.022 0.005 0.006

No education 0.068 0.087 0.07
Primary 0.303 0.244 0.262

Secondary 0.221 0.274 0.252
Undergraduate 0.721 0.436 0.510
Postgraduate 0.991 0.967 0.984

Migrant Population 0.165 0.024 0.04
Shop house 0.009 0.006 0.005

House: Cement or brick <0.001 <0.001 <0.001
House: Wood <0.001 <0.001 <0.001

Air conditioning 0.472 0.670 0.926
Groundwater, well 0.071 0.193 0.126

Pit toilet 0.636 0.261 0.353
Rain water 0.045 0.013 0.014

Number of households <0.001 <0.001 <0.001
Manual 0.005 0.037 0.016

Population density 0.301 0.822 0.682
Age 0–4 years 0.716 0.834 0.754
Age 5–14 years 0.267 0.077 0.099

Age 15–24 years 0.147 0.126 0.122
Age 25–59 0.039 0.002 0.003
Age 60+ <0.001 <0.001 <0.001

Pop per house 0.089 0.032 0.033
Dense vegetation/km2 0.726 0.526 0.725
Low vegetation/km2 0.144 0.354 0.253

Road area/km2 <0.001 <0.001 <0.001
Waterbody area/km2 0.349 0.260 0.262

Built-up area/km2 <0.001 <0.001 <0.001
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Table A4. Association of socio-economic variables, meteorological factors, and year with dengue
cases in the final adequate multivariable GLMM model.

Season Fixed Term aRR 95% CI
Lower

95% CI
Upper p Value

Wet % No education 1.048 1.016 1.082 0.004
Wet % Cement houses 1.007 1.003 1.011 0.006
Dry %Ground water 0.456 0.220 0.946 0.036
Dry %Manual work 1.008 1.002 1.014 0.018
Wet Nb houses (100s) 1.0019 1.0015 1.0023 <0.001
Dry Nb houses (100s) 1.0016 1.0012 1.0020 <0.001
Wet lag 1 DTR 0.835 0.757 0.921 <0.001
Wet lag 1 Mean monthly Rain 1.016 1.012 1.020 <0.001

aRR—adjusted Relative Risk for unit increase in the fixed term (i.e., 1%, 1 ◦C, 1 mm, 100 houses); CI—Confidence
Intervals.

Table A5. Effect of transport weight matrices on the association of clusters with pertinent SE variables.

Variables Cluster
2012 2013

Parameter
Estimate p Value % Var

Explained
Parameter
Estimate p Value % Var

Explained

% No education High–High 1.265 0.023 7.80% 9.596 <0.001 67.70%
Low–Low −1.248 <0.001 −1.453 0.015
Low–High −0.22 0.866 1.92 0.137
High–Low NA −7.66 <0.001
No cluster Ref Ref

%Cement house High–High 5.66 0.003 15.80% −2.41 0.365 3.70%
Low–Low −1.22 0.31 5.98 0.007
Low–High 21.34 <0.001 −5.26 0.271
High–Low NA 2.82 0.632
No cluster Ref Ref

Nb houses (100s) High–High −69.3 0.188 6.60% −409.1 <0.001 30.80%
Low–Low 107.9 0.002 −81.9 0.105
Low–High 165 0.176 −47 0.668
High–Low NA 184 0.176
No cluster Ref Ref
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