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Abstract: Metal pollution in lake wetlands has become increasingly serious in China and worldwide
due to the rapid growth of urbanization and agricultural activities. However, comprehensive as-
sessments of metal pollution in lake wetland sediments that are associated with land use change
have been limited from an international perspective. Metal concentrations (As, Cd, Cr, Cu, Hg, Mn,
Pb, and Zn) were measured in the surface soils and surrounding sediments of five land use types
in the eastern Hongze Lake wetlands, including Farmland (FL), Culture Ponds (CP), Reed Land
(RL), Poplar Forests (PF), and Willow Forests (WF). The metal pollution status was assessed using
the geo-accumulation index and the potential ecological risk index; The results showed that the
average concentrations of As, Cd, Mn, and Zn in the surface soils and As, Cd, Cu, and Zn in the
sediments, exceeded the background values of Jiangsu Province, China. The FL soils and surrounding
sediments were moderately contaminated with As, whereas the sediments surrounding the CP were
uncontaminated to moderately contaminated with Cd. Metal pollution in both soils and sediments
was greater on farmland than on other types of land use. Furthermore, there were significant positive
correlations between the values of the soil risk index and the values of the surrounding sediment risk
index. Correlation analysis (CA) and principal component analysis (PCA) found that metals may be
derived from agricultural activities such as the application of chemical and organic fertilizers, as well
as domestic sewage, industrial wastewater, and geological anomalies. These findings shed new light
on the quantitative impacts of adjacent land use practices on sediment metal pollution and provide a
scientific foundation for wetland management decision-making.

Keywords: metal risk assessment; lake wetland; sediment; land use

1. Introduction

Lake wetlands are aquatic-terrestrial ecotones with unique hydrological, biological,
biophysical, and landscape features that can provide humans with valuable ecosystem
services such as freshwater provision, water purification, flood attenuation, climatic regu-
lation, habitat for wildlife, and recreation [1,2]. The lake-wetland ecosystem is one of the
most important ecosystems on the planet [3], but it has been severely impacted by rapid
urbanization and other land use changes in recent decades. According to Xu et al. [4],
agricultural land and urban expansion are the major factors causing wetland loss in China.
They accounted for 47.7% and 13.8% of the total area of the loss in China from 2000 to 2015.

As a land use alters to support human life, the conversion of lake wetlands to farmland,
aquaculture ponds, and human settlements provides essential ecosystem goods at the
expense of the deterioration of the wetland environment [5]. In China, pollution is the
primary cause of wetland degradation [6]. This is because land use is closely linked to
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anthropogenic activities, which can cause pollutants to enter waterways. The hydrology
and water quality of wetlands are directly threatened by wastewater discharges from
industry, agriculture, animal husbandry, and aquaculture. Large amounts of pollutants
(nutrients and metals) were discharged into wetlands, causing damage to the integrity of
the structure and function of lake wetlands since the1980s in China [7].

The accumulation of metals in lake sediments has attracted increasing attention in
the environmental research of lake wetlands because of their potential biological toxicity,
environmental durability, and biological accumulation in recent years [8–10]. Lead (Pb), for
example, is the most bioconcentrated element in certain aquatic organisms. It can harm the
nervous and hematopoietic systems of humans, and cause irreversible harm to children’s
psychological, intellectual, and behavioral development as well [11,12]. Mercury (Hg) has
the potential to harm both the renal and nervous systems, while arsenic (As) and cadmium
(Cd) have negative effects on the skin, blood vessels, nervous system, lung, kidney, prostate,
and bone [13,14]. Metals have a long-term impact on aquatic ecosystems because they do
not degrade in the environment [15]. Most metals are attached to fine-grained particulates
after being introduced into the aquatic ecosystem and, as a result of settling, accumulate in
the bottom sediments where they may cause adverse biological effects even if the water
quality criteria are not exceeded [16]. Therefore, there is a strong need to investigate metal
pollution in lake sediments and assess the potential ecological risks that are posed by
metals in order to protect the corresponding aquatic ecological environment and human
health. Current lake sediment pollution research focuses on metal pollution characteristics
and associated risk assessment [10,17–19], metal enrichment status and history [20], and
source identification of metals [21,22]. However, very limited research has been done to
investigate the influence of adjacent land use practices on the sediment metal pollution in
lake wetlands. In addition, the potential relationships between the metal pollution in the
topsoil of adjacent land use and those in lake sediments are not well-understood.

Hongze Lake is the fourth largest freshwater lake in China and the first natural
sink for transferring drinking water along the East Route of the South-to-North Water
Diversion Project (SNWDP-ER), which has been developed to solve the problem of water
shortages in North China [23]. As the intersection point of the mainstream and branches,
the eastern Hongze Lake wetland is both a sink for pollutants from the upper reaches
of the Huai River and a source of the lower reaches of Huai River and SNWDP-ER [24].
Therefore, the quality of soil and sediment in eastern Hongze Lake wetlands is critical,
which may affect the Project’s success or failure. However, the land use patterns of this area
have changed in the past decades under the pressure of local economic development [25].
Culture pond and farmland area showed an increasing trend while open water area and
the community of arbor and shrub plants showed a decreasing trend [26]. Land use
changes in this region have resulted in serious environmental issues, such as declining
water quality and soil and sediment pollution, with metal pollution becoming a major
issue as a result of intensive agriculture and aquaculture’s rapid development [27,28].
Previous research on the metal pollution in soils and sediments of Hongze Lake region
focused on contaminant survey and risk assessment on a large scale or for a single land
use type. Yu et al. [27] discovered that the concentrations of Cd, As, and copper (Cu) in the
sediments of Hongze Lake significantly exceeded the Chinese soil quality standard’s grade
II level. The presence of As and chromium (Cr) in the Hongze Lake sediments was linked
to human activity in the basin, according to correlation analyses [29]. However, there are
not enough quantitative and insight studies about the impact of different land use types in
Hongze wetlands on metal contents in wetland sediments. In addition, metals would be
continuously introduced into the environment and accumulated in soils and sediments due
to ongoing and excessive anthropogenic activities in this region, putting the lake ecosystem
and human health at risk. Therefore, the potential ecological risk of metal contamination
needs to be thoroughly investigated.

Understanding the effects of land use practices in lake wetlands on metal pollution of
soils and lake sediments is critical for improving lake ecological security and preserving
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wetland ecosystem services. Thus, the objectives of this study were to (1) investigate the
impact of five different types of land use on the contents of As, Cd, Cr, Cu, Hg, Manganese
(Mn), Pb, and Zinc (Zn) in surface soils and sediments; (2) assess the metal pollution status
and its potential ecological risk in soils and sediments using a geo-accumulation index (Igeo)
and the potential ecological risk index (RI); and (3) identify the possible sources of these
metals in soils and sediments in relation to five different types of land use. The findings from
this study will support decision-makers in developing effective environmental monitoring
and efficient management strategies to minimize the impacts of local pollutants.

2. Materials and Methods
2.1. Study Area

The study area is a wetland (33.166◦ N–33.188◦ N, 118.454◦ E–118.692◦ E) that is formed
by the confluence of the Huai River and Hongze Lake in Jiangsu Province, China, with
an area of approximately 14,700 hm2 (Figure 1). The investigation of metal contamination
and the associated potential ecological risk on five typical land use types was undertaken
in this study: culture pond (CP), farmland (FL), reed land (RL), poplar forest (PF), and
willow forest (WF). Culture ponds are the most common land use type, accounting for
about 16.28% of the total area and are primarily used for Chinese mitten crab intensive
aquaculture. In the last two decades, farmland has sprung up in this area [26]. Before
our study, the site had been cultivated under wheat-rice double cropping with chemical
fertilizer inputs for 13 years. Besides, the poplar and willow forests are planted artificially
with chemical fertilizers and herbicides that were used in the first two years. In contrast,
the reed land is natural without significant human impact.
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2.2. Sample Collection and Analysis

In June 2016, fifty surface soil (0–20 cm) samples were collected across the wetland
area, with ten sampling sites for each land use type. A total of fifty sediment (0–20 cm)
samples were collected from the lake sediment that was adjacent to the fifty surface soil
samples for each type of land use (Figure 1). The soil samples are denoted by ‘so’ and the
sediment samples ‘sd’ after each land use abbreviation, such as CPso and CPsd. Each surface
soil or sediment sample was a composite sample that was bulked from three sub-samples
that were taken around the collection point according to the principles of S shape with an
inter-space of 10 m. All the soil and sediment samples were placed into polyethylene bags,
returned to the laboratory, and air-dried at room temperature for four weeks. Stones and
other debris were removed by sieving through a 2 mm nylon sieve. The samples were then
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ground with a pestle and mortar until all the particles passed a 0.15 mm nylon sieve for
determining the soil and sediment chemical properties.

The concentrations of As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn were determined for
all the soil and sediment samples. For As and Hg analysis, a fresh mixture of HCl and
HNO3 (1:3, v/v) was used to digest 0.2 g of soil samples in a water bath for 2 h. Then,
the concentrations of As and Hg in the digested solutions were measured by atomic
fluorescence spectrophotometry (AFS-9130, Titan Instruments, Beijing, China) [30]. For Cd,
Cu, Cr, Mn, Pb, and Zn analysis, 8 mL of mixed acid of HCl and HNO3 (1:3, v/v) were used
to digest 0.2 g soil samples at 105 ◦C for 5 h. Then, the concentrations of the five metals in
the digestion solutions were determined by inductively coupled plasma mass spectrometry
(ICP-MS 7500x, Agilent Technologies, Santa Clara, CA, USA) [31]. To ensure precision
and reproducibility of analytical results, all the analyses were performed on duplicate
subsamples, with blanks and standard reference materials (GBW07309, Chinese Academy
of Measurement Sciences, Beijing, China) added for each batch of samples (1 blank and
1 standard for every 10 samples). The recoveries of samples spiked with standards ranging
from 92 to 106%. The soil and sediment organic matter (SOM) was measured by wet
combustion, and pH in a 1:5 soil: water solution.

2.3. Geo-Accumulation Index

The Igeo was introduced by Muller [32]. It can be used to determine whether soils and
sediments have been contaminated by metals [33], more generally as a measure of soil
and sediment quality [34]. The Igeo for the soils and sediments was calculated using the
following equation:

Igeo = log2(Cn/1.5 Bn), (1)

where Cn is the measured concentration of each metal that was identified in the soils or
sediments (mg kg−1), and Bn is the geochemical background value that was determined
from the concentrations of metals in the A soil layer (0–20 cm) that are naturally present in
Jiangsu province, China [35]. The factor of 1.5 is used as a correction for potential variation
in the background differences. According to the Igeo value, contamination can be classified
in seven grades as shown in Table 1.

Table 1. Pollution classification of geo-accumulation index.

Igeo ≤0 0–1 1–2 2–3 3–4 4–5 ≥5

Pollution
degree

Practically
unpolluted

Unpolluted to
moderately

polluted

Moderately
polluted

Moderately
to heavily
polluted

Heavily
polluted

Heavily to
extremely
polluted

Extremely
polluted

Levels 0 1 2 3 4 5 6

2.4. Potential Ecological Risk Index

The potential ecological risk index (RI) was introduced by Hakanson [36] to assess the
degree of toxic metal pollution in soils and sediments. It can also be applied to infer the
degree of biological risk of contamination [37,38]. This index was calculated as:

RI =
n

∑
i=1

Ei
r =

n

∑
i=1

(Ti
r × Ci/Ci

n) (2)

where RI is computed as the sum of all the potential ecological risk indices for individual
metals in soils or sediments. Er

i is the potential ecological risk index of individual metal
i in the soil or sediment. Tr

i is the toxicity response factor for metal i, where Tr
i is 10 for

As, 30 for Cd, 2 for Cr, 5 for Cu, 40 for Hg, 1 for Mn, 5 for Pb, and 1 for Zn. Ci is the
measured concentration of metal i and Cn

i is the reference value of heavy mental i that
was collected from the natural geochemical background concentrations of metals at the A
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soil layer (0–20 cm) in Jiangsu province, China [35]. According to the value of Er
i and RI,

5 grades of Er
i and 4 grades of RI can be determined as shown in Table 2.

Table 2. Ecological risk classification of metals.

Assessment Criterion Low Risk Moderate Risk High Risk Very High Risk Extremely High Risk

Er
i ≤40 40 < Er

i ≤ 80 80 < Er
i ≤ 160 160 < Er

i ≤ 320 >320

RI ≤150 150 <RI ≤ 300 300 < RI ≤ 600 RI > 600

2.5. Statistical Analysis

General calculations and data handling were performed with Excel 2016 (Microsoft,
Redmond, WA, USA) and Origin 2021 (Origin Lab, Northampton, MA, USA). Statistical
analyses, including analysis of variance (ANOVA), principal component analysis (PCA),
and correlation analysis (CA), were performed using SPSS Statistics 25.0 (IBM, Armonk,
NY, USA). A one-way ANOVA was used to determine whether there were any statistically
significant differences among the five types of land use for the measured parameters in
soils and corresponding sediments. PCA and CA were performed to identify the possible
sources of metal pollution.

3. Results and Discussion
3.1. Concentrations of Metals in Surface Soils and Their Corresponding River Sediments under
Different Types of Land Use

The metal concentrations, soil organic matter (SOM) content, and pH in the surface
soil and its corresponding river sediment under five types of land use are summarized in
Table 3. The mean concentration of As in the surface soils that were calculated across all
five land use types was 4.0 times higher than the background values for soils in Jiangsu
Province (BVSJ), the mean Cd concentration was 1.6 times higher than the BVSJ, the mean
Zn concentration was 1.2 times higher than the BVSJ, the mean Cu concentration was
1.1 times higher than the BVSJ, while the mean concentrations of Cr, Hg, Mn, and Pb
were lower than their BVSJ [35]. This finding demonstrated that As concentrations were
significantly greater than the BVSJ values in all five land use types, indicating that the study
area was polluted with As. A comparison of the different land use types revealed that the
concentrations of As, Cd, Cr, Cu, Pb, and Zn in the surface soils were significantly higher in
Farmland (FLso) compared to Reed land (RLso) and Poplar Forest (PFso) (p < 0.05). It could
be attributed to the use of fertilizers and pesticides on farmland, both of which can contain
metals [39]. According to our field investigation in the study area, the rice-wheat rotation is
the most common cropping system on farmland, and the livestock manures, organic, and
chemical fertilizers were used extensively to boost crop yields. Annual fertilizer application
on agriculture in Jiangsu Province might result in annual inputs of 0.11 g Cd, 6.12 g Pb,
9.63 g Cr, and 20.17 g Zn per hectare [40].
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Table 3. Metal concentrations together with the pH and SOM in surface soils and its corresponding sediments under different types of land use.

Land Uses pH SOM
(g/kg)

As
(mg/kg)

Cd
(mg/kg)

Cr
(mg/kg)

Cu
(mg/kg)

Hg
(mg/kg)

Mn
(mg/kg)

Pb
(mg/kg)

Zn
(mg/kg)

Soil

CPso 8.03 ± 0.15 b 3.84 ± 0.96 b 48.40 ± 13.97 *a 0.18 ± 0.14 c 35.55 ± 8.26 bc 19.65 ± 2.87 *c 0.006 ± 0.005 *b 418.85 ± 53.31 *b 15.40 ± 2.26 *b 70.30 ± 13.53 *bc

FLso 8.09 ± 0.26 ab 10.35 ± 1.69 *a 53.00 ± 14.97 a 0.26 ± 0.04 *a 71.25 ± 24.51 *a 36.20 ± 5.69 *a 0.012 ± 0.006 ab 453.20 ± 65.00 *b 23.65 ± 3.38 *a 110.95 ± 16.97 *a

RLso 8.39 ± 0.21 *a 1.77 ± 0.25 *c 38.01 ± 11.54 *b 0.13 ± 0.01 *d 32.80 ± 4.89 bc 18.55 ± 2.95 c 0.017 ± 0.008 a 413.85 ± 39.74 *b 13.20 ± 1.24 *c 63.30 ± 7.63 c

PFso 8.25 ± 0.25 ab 2.95 ± 0.46 bc 27.64 ± 20.20 *b 0.21 ± 0.07 *bc 31.50 ± 3.22 c 20.20 ± 1.28 c 0.008 ± 0.006 *b 441.55 ± 31.12 *b 12.94 ± 1.17 *c 69.55 ± 9.31 bc

WFso 8.28 ± 0.20 ab 3.16 ± 1.31 bc 31.73 ± 18.56 *b 0.24 ± 0.08 *ab 40.80 ± 10.56 *b 24.45 ± 4.48 *b 0.016 ± 0.011 a 493.30 ± 92.81 a 15.20 ± 2.84 *b 76.15 ± 14.75 *b

Sediment

CPsd 8.07 ± 0.36 b 2.60 ± 1.12 b 9.62 ± 1.85 *b 0.28 ± 0.20 a 36.72 ± 3.74 b 15.55 ± 1.72 *c 0.021 ± 0.008 *a 480.97 ± 35.48 *b 14.11 ± 1.11 *b 53.56 ± 4.57 *c

FLsd 8.30 ± 0.08 ab 5.07 ± 0.34 *a 53.65 ± 16.39 a 0.17 ± 0.02 *b 52.30 ± 8.57 *a 29.20 ± 2.48 *a 0.014 ± 0.012 b 670.90 ± 182.75 *a 17.45 ± 1.67 *a 89.55 ± 10.83 *a

RLsd 8.06 ± 0.05 *b 4.93 ± 1.40 *a 7.90 ± 4.66 *b 0.16 ± 0.04 *b 36.25 ± 8.28 bc 21.95 ± 6.20 b 0.013 ± 0.010 b 617.25 ± 117.25 *a 16.30 ± 2.77 *a 70.70 ± 15.32 b

PFsd 8.27 ± 0.13 ab 4.57 ± 1.60 a 7.52 ± 1.24 *b 0.13 ± 0.02 *b 35.30 ± 11.23 bc 21.10 ± 3.70 b 0.014 ± 0.008 *b 632.70 ± 103.55 *a 15.90 ± 3.55 *a 67.65 ± 12.05 b

WFsd 8.37 ± 0.07 a 3.64 ± 0.78 ab 6.54 ± 1.49 *b 0.14 ± 0.02 *b 31.40 ± 4.17 *c 16.05 ± 3.76 *c 0.012 ± 0.006 b 542.00 ± 70.40 a 13.10 ± 1.68 *b 52.55 ± 10.57 *c

BVSJ Soils - - 10.00 0.13 77.80 22.30 0.29 585.00 26.20 62.60

Data are shown as the mean ± SD. abcd Values in each column with the same letter are not significantly different between different sites (p < 0.05). * Represent significantly different
(p < 0.05) between soils and sediments. BVSJ—Background values for soils in Jiangsu province.
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The mean concentration of As in sediments that was calculated across all five land
use types was 1.7 times higher than the BVSJ, the mean Cd concentration was 1.4 times
higher than the BVSJ, the mean Zn concentration was 1.1 times higher than the BVSJ,
the mean Mn concentration was the same as the BVSJ, while the mean concentrations of
Cr, Cu, Hg, and Pb were lower than their BVSJ (Table 3). This finding is in agreement
with a previous study that showed Cd and As were the predominant contaminants in the
sediments of Hongze Lake [27]. Further statistical analysis revealed that there were no
significant differences in the sediment Cd and Hg concentrations among FLsd, RLsd, PFsd,
and WFsd (p > 0.05, Table 3). However, the concentrations of Cd and Hg in the sediments
under Culture Ponds (CPsd) were significantly higher than those that were under other
types of land use (p < 0.05). This result may be explained by the fact that large amounts of
exogenous aquatic feed release Cd, Zn, Cu, Cr, and other metal elements into the water
body, and then accumulate in the sediments of aquaculture ponds [41]. It is interesting to
note that the concentrations of Cd and Hg in sediments declined along the direction of
water flow, from CPsd to WFsd, indicating a potential pollution risk of these metals in the
river sediments that were associated with culture ponds. Besides, the mean concentrations
of As, Cr, Cu, Mn, Pb, and Zn in FLsd were all significantly higher than those under other
types of land use (p < 0.05). It may be related to anthropogenic processes such as metal
inputs from fertilizers and organic manures, irrigation, and atmospheric deposition into
farmland. With agricultural runoff transporting those metals into the watercourse through
water exchange in the rice fields, they eventually accumulate in their corresponding river
sediments [42,43].

The soil and sediment physicochemical properties such as the pH and SOM can affect
the accumulation of metals [44,45]. As shown in Table 3, the pH values in the CPso were
significantly lower than those in the RLso (p < 0.05), and slightly lower than those in the
FLso, PFso, and WFso (p > 0.05). The relatively low pH in the CPso could be associated with
the adjustment of pH in this system to meet aquaculture requirements [46]. The contents
of SOM in FLso were significantly greater than those in other types of land use soils. One
possible explanation is the region’s heavy use of organic fertilizers, which may result in
soil organic matter accumulation [47]. Similarly, the contents of SOM in the FLsd were
significantly higher than those in CPsd (p < 0.05) and slightly higher than those in other
types of land use-corresponding sediments. It may be due to the offsite movement of
fertilizers that were used in farmland sites to the adjacent sediment samples [48].

3.2. Metal Pollution in Surface Soil and Sediment

The geo-accumulation index (Igeo) can be used to determine whether soils and sed-
iments have been contaminated by metals [33], more generally as a measure of soil and
sediment quality [34]. According to the pollution classification [32], the mean Igeo values for
Cr, Cu, Hg, Mn, Pb, and Zn elements under all types of land use belonged to class zero, in-
dicating that the surface soils in the study area were not polluted by these metals (Figure 2).
However, the surface soils from all types of land use were moderately polluted by As
(Igeo = 1.06) but ranged from being unpolluted to moderately polluted by Cd (Igeo = 0.02).
There were significant differences among the five types of land use. The FLso, CPso, and
RLso soils were moderately contaminated with As, whereas the WFso and PFso soils were
uncontaminated to moderately contaminated with As and Cd. Furthermore, the FLso soils
were uncontaminated to moderately contaminated by Cd, Cu, and Zn. As mentioned be-
fore, substantial anthropogenic activities such as the use of organic and chemical fertilizers,
livestock manures, and aquatic feed under FLso and CPso could account for the greater
pollution of metals under these two types of land use [49].
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As shown in Figure 3, the mean Igeo values that were averaged across all types of
land use were −0.45 for As, −0.21 for Cd, −1.65 for Cr, −0.75 for Cu, −5.61 for Hg, −0.61
for Mn, −1.38 for Pb, and −0.54 for Zn in the sediments, placing them into the class of
practically unpolluted. However, the level of metal pollution in sediments varied among
the five land use types. Specifically, the sediments from CPsd were uncontaminated to
moderately contaminated with Cd (Igeo = 1.78), whereas FLsd sediments were moderately
contaminated with As (Igeo = 0.31). These results are consistent with those of previous
studies [50] and suggest that anthropogenic activities such as fertilization on agricultural
fields and baiting in aquaculture ponds might pollute the sediments of nearby wetlands.

3.3. Potential Ecological Risk of Metals

The potential ecological risk index can be used to assess the degree of toxic metal
pollution in soils and sediments [36]. It can also be applied to infer the degree of biological
risk of contamination [37,38]. The potential ecological risk index of individual metal (Er

i)
and all metals (RI) are shown in Figure 4. The mean Er

i values for all the surface soils
were in the following order: Cd > As > Cu > Pb > Hg > Zn > Cr > Mn. This means
that the Cd and As concentrations posed a greater risk to the environment than the other
elements. In particular, the potential ecological risk index for Cd (Er

i = 48.47) exhibited
moderate pollution. However, the mean Er

i values of Pb, Hg, Zn, Cr, and Mn were lower
than 40, which suggests slight potential ecological risk of the corresponding metals in all
the surface soils. In addition, the RI values for all the surface soils across five land use
types ranged from 45 to 167, with a mean of 101. This indicates that the measured metals
in surface soils pose a low overall ecological risk. The mean RI values decreased in the
following order for the five types of land use: FLso > WFso > CPso > PFso > RLso. This finding
implies that farming poses the largest potential ecological risk of the five land use types
that were studied. The mean Er

i values of As and Cd in farmland soils were greater than 40,
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indicating that these two metals were the primary elements that pose a potential ecological
risk to the environment.
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Figure 4. The potential ecological risk index (RI, Er
i) of metals in the surface soil samples that were

associated with five types of land use (CP, FL, RL, PF, and WF). The blue bar-plot on the left Y-axis
represents the mean Er

i values of the 10 or 50 replicate samples per metal, and the blue dashed line
indicates Er

i = 40. The red bar-plot on the right Y-axis represents the mean RI value of the 10 or
50 replicate samples, and the red dashed line indicates RI = 150.

Figure 5 depicts the potential ecological risk index (RI, Er
i) of metals in sediment

samples that were associated with five different types of land use. The mean Er
i values

for individual metals that were averaged across five types of land use were ranked as
Cd > As > Cu > Pb > Hg > Zn > Mn > Cr, indicating the concentrations of Cd had greater
potential ecological risk than other elements in the sediments. The RI values for all the sedi-
ment samples ranged from 42 to 168, with a mean of 71. This result indicates that the metals
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that were measured in this study pose a low overall ecological risk. For the five types of
land use, the mean values of RI decreased in the order of FLsd > CPsd > RLsd > PFsd > WFsd.
This suggests that the sediments from the FLsd and CPsd land use types posed a higher
potential ecological risk than the sediments from other types of land use. The mean Er

i

values of Cd (Er
i = 65.68) in CPsd and As (Er

i = 53.65) in FLsd, posed a moderate risk to
the environment. Furthermore, the present study further supported the previous obser-
vations that Cd and As posed the higher potential ecological risk for the Hongze Lake
wetland [27,29,50].
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This study demonstrated that the concentrations of metals in the sediments were
closely related to those in the adjacent soils. There was a significant and positive correlation
between the soil RI values and their corresponding sediment RI values (Figure 6). This
indicates that the risk of pollution in wetland sediments increased with the increasing risk
of pollution in the adjacent soils. The present finding is in line with previous research,
which found that land use activities near wetlands had a significant impact on the sediment
metal concentrations [51].
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3.4. Identification of Possible Sources of Metals

Various multivariate approaches have previously proved effective for source identifi-
cation of metals in environmental samples [52–54]. In this study, both PCA and CA were
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used to identify the possible source of metals in the soils and sediments. The results are
shown in Figures 7 and 8. For the surface soils, the first two principal components (PC1
and PC2) explained 73.99% of the total variance in the soil metals. The PC1, explaining
56.32% of the total variance, was strongly and positively related to the concentrations of
Cd, Cr, Cu, Pb, and Zn (Figure 7a), which were strongly correlated (Figure 8a). It suggests
that Cd, Cr, Cu, Pb, and Zn may come from the same source. The concentrations of Cd,
Cr, Cu, Pb, and Zn in soils varied among the different types of land use, with the highest
level in FLsd and lowest in RLsd (Table 3). This suggests that anthropogenic activities had
an impact on the spatial distribution of Cd, Cr, Cu, Mn, Pb, and Zn in surface soils. The
application of chemical and organic fertilizers and livestock manure in the study area are
likely an important source of Cd, Cr, Cu, Pb, and Zn pollution [28,55–57]. The previous
study has reported concentrations of Cd in chemical fertilizers, Pb and Cr in commercial
organic fertilizers, and Cu and Zn in livestock manure were relatively high in this area [49].
In addition, the application of local residential waste onto farmland may provide another
origin of Zn, Cu, and Cd in topsoil [58]. The PC2, explaining 17.68% of the total variance, ex-
hibited strong loadings of As and Mn concentrations. Many previous studies have reported
that a high concentration of As may be associated with coal combustion and industrial
production followed by atmospheric deposition [57,59]. However, according to our field
investigation, the study area has a history of long-term irrigation with treated sewage
from the Laozishan town domestic sewage treatment plant, which could be the most likely
source of As pollution. Although Mn is normally derived from geogenic sources [53,60],
it was grouped into PC2 with a factor loading of >0.5 in this study. This finding implies
that Mn was primarily related to geological anomalies or ore mining [61]. Moreover, the
weak correlation between As and Mn in the surface soil (Figure 8a) further ruled out the
possibility of agricultural and atmospheric sources as the sole source of contamination.
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Figure 7. Results of principle component analysis of metal concentrations in the surface soil (a) and
sediment (b) samples.

For the wetland sediments, the first two principal components (PC1 and PC2) ex-
plained 74.46% of the total variance in sediment metals. The elements with high positive
factor loading on PC1 (Figure 7b) were As, Cr, Cu, Mn, Pb, and Zn, and the Pearson
correlation coefficients among these metals ranged from 0.43 to 0.98 (p < 0.05) (Figure 8b),
indicating similar origins. The concentrations of As, Cr, Cu, Mn, Pb, and Zn in the sedi-
ments varied among the different types of land use, with higher levels in CPsd or FLsd and
lower levels in WFsd (Table 3). It further confirmed that the adjacent land use had an impact
on the spatial distribution of these metals. PC2, explaining 19.04% of the total variance,
exhibited highly positive factor loadings for both Cd and Hg. The concentrations of these
two metals were highly correlated across the samples (p < 0.01; Figure 8b), indicating a
shared source which significantly different from the source of other heavy elements. As
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discussed before, polluted water from industrial activities was discharged into the Hongze
Lake from the Huai River, and inevitably contributed to the relatively high pollution levels
in the sediments. The discharge of metal-containing wastewater from metallurgical plants,
chemical plants, coking plants, electroplating plants, and leather factories is the main
source of Cd and Hg in the Huai River, which causes the Cd content in the river to rise
dramatically, with maximum and average values of 6.86 and 2.07 times higher than the
average value (0.14 mg/kg) of Cd content in China water system sediments [50].
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4. Conclusions

This study demonstrated that the land use activities in the study area had a large
impact on the metal pollution in the sediments of lake wetlands. Farmlands and culture
ponds had a significantly greater impact on the metal concentrations of their surrounding
sediments than reed land, poplar forests, and willow forests. The long-term accumulation
of metals from these two land use practices also posed a greater ecological threat to the
river sediments around them. Furthermore, this study revealed that the pollution risk of
metals in wetland sediments increased with the increasing risk of metal pollution in the
adjacent soils. The results of multivariate analysis further confirmed that the adjacent land
use had an important impact on the sources and spatial distribution of these metals. Our
findings have important implications for the development of pollution prevention and
control strategies to reduce metal pollution for the wetlands of this region.
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