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Abstract: With the increasingly available electronic health records (EHR), disease prediction has re-
cently gained immense research attention, where an accurate classifier needs to be trained to map the
input prediction signals (e.g., symptoms, auxiliary examination results, etc.) to the estimated diseases
for each patient. However, most of the current disease prediction models focus on the prediction of a
single disease; in the medical field, a patient often suffers from multiple diseases (especially multiple
chronic diseases) at the same time. Therefore, multi-disease prediction is of greater significance for
patients’ early intervention and treatment, but there is no doubt that multi-disease prediction has
higher requirements for data extraction ability and greater complexity of classification. In this paper,
we propose a novel disease prediction model DLKN-MLC. The model extracts the information in
EHR through deep learning combined with a disease knowledge network, quantifies the correlation
between diseases through NodeRank, and completes multi-disease prediction. in addition, we distin-
guished the importance of common disease symptoms, occasional disease symptoms and auxiliary
examination results in the process of disease diagnosis. In empirical and comparative experiments on
real EHR datasets, the Hamming loss, one-error rate, ranking loss, average precision, and micro-F1
values of the DLKN-MLC model were 0.2624, 0.2136, 0.2190, 88.21%, and 87.86%, respectively, which
were better compared with those from previous methods. Extensive experiments on a real-world
EHR dataset have demonstrated the state-of-the-art performance of our proposed model.

Keywords: disease prediction; multi label learning; disease prevention; deep learning

1. Introduction

With the aging of the population and the increasing awareness of public health care,
people’s demands for medical and health services are becoming more and more frequent.
With the increase in workload, the amount of information that doctors receive and need to
call as the leader of medical services also increases exponentially, so it is very easy to cause
medical deviations, such as missed diagnosis and misdiagnosis. Predicting the disease of a
patient through an automatic diagnosis model can not only help the hospital to carry out
the initial triage and guidance of patients, but also reduce errors in the process of clinical
diagnosis, improve medical quality and work efficiency, and reduce medical costs [1].
Meanwhile, In the vast majority of developing countries, due to the imbalance of urban
development and the distribution of medical resources, there are great differences in the
diagnosis level between doctors. Computer-aided or automatic diagnosis can effectively
help patients with the disease early warning and chronic disease screening and reduce the
difference in the diagnosis level of doctors [2,3].

Clinical electronic health records (EHR) are a document used by medical institutions
to record patients’ condition, clinical treatment, guiding intervention process and final
diagnosis and treatment results by means of informatization [4]. In recent years, with
the vigorous development of computer related technology, the use of data mining related
technology for electronic medical record analysis has become a new direction. An important

Int. J. Environ. Res. Public Health 2022, 19, 9771. https://doi.org/10.3390/ijerph19159771 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19159771
https://doi.org/10.3390/ijerph19159771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-7219-1561
https://orcid.org/0000-0002-9790-9581
https://doi.org/10.3390/ijerph19159771
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19159771?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 9771 2 of 15

application of data mining in healthcare is disease prediction where the task is commonly
formulated as learning a classifier that infers the prediction results from EHR [5].

According to the number of diseases covered by disease prediction, it can be divided
into single disease prediction and multi-disease prediction, corresponding to single label
classification (SLC) and multi-label classification (MLC) in machine learning. SLC refers to
the data to be classified as having only one category. According to the number of categories,
it can be divided into single label two categories and single label multi categories. MLC
refers to that each data to be classified belongs to multiple different category labels [6]. In
the medical field, a patient often suffers from multiple diseases (especially multiple chronic
diseases) at the same time. Therefore, multi-disease prediction is of greater significance
for patients’ early intervention and treatment, but there is no doubt that multi-disease
prediction has higher requirements for data extraction ability and greater complexity
of classification.

Existing multi-label learning algorithms can be divided into problem transformation
(PT) and algorithm adaptation (AA) strategies [7]. The PT strategy entails transforming
MLC into a series of SLC problems, which can be solved using the existing single-label
learning algorithm. PT strategy can be categorized into two schemes: binary relevance (BR)
and label powerset (LP). The core of the BR scheme is to transform an MLC problem into
multiple binary classification problems in which each binary classifier corresponds to a label
to be classified [8,9]. As a conventional multi-label learning strategy, BR is relatively simple
and easy to understand, but it completely ignores the correlation between labels, which
makes it difficult to achieve the optimal performance of the model. To solve this problem,
some scholars have proposed a classifier chain method, which connected constructed
classifiers in series and considered the interaction between all tags [10,11]. However, as
the number of tags to be classified increases, the number of classifiers constructed by
such methods also increases. The LP scheme classifies any number of different label
combinations as a new label to treat a problem as a single-label problem [12]. During the
classification, this scheme cannot consider the combination of tags that do not appear in
the training set [13]. In addition, because the new tags formed by the combination method
are associated with only a limited number of instances, the data are very sparse or there is
a serious imbalance phenomenon. Therefore, the LP scheme often has a poor application
effect when the dataset is large or there are many tags.

The AA strategy entails optimizing and improving the existing single-label learn-
ing algorithm to form an improved algorithm or a new algorithm, which can be divided
into probability model-based methods (e.g., the MFOM model based on a Bayesian algo-
rithm [14]), support vector machine (SVM)-based methods (e.g., Rank-SVM [15]), decision
tree (DT)-based methods (e.g., ML-DT [16]), K-nearest neighbor (KNN)-based methods
(e.g., ML-KNN [10]), and ensemble learning-based methods (e.g., BoosTexer [17]). With the
further development of computer technology, some deep learning (DL) models have been
applied to MLC to achieve certain results. For example, Nam J et al. [18] regarded the MLC
problem as the prediction of the target label sequence of the given original text and used
a recurrent neural network (RNN) to generate label sequences in turn to obtain the corre-
lation between labels; Yang P et al. [19] improved the sequence generation model (SGM)
through the disorder of set decoder to reduce the impact of error tags; Gong J et al. [20] pro-
posed a classification model based on a transformer, which captures text features through
multilayer transformer structure and solved the MLC problem using the hierarchical re-
lationship of labels. Some scholars employed a convolutional neural network (CNN) for
text feature extraction and exploited cyclic neural networks in sequence data to generate
label sequences [21,22]. Nowadays, deep learning has gradually become the mainstream
method of text classification because of its strong text extraction ability [23]. However, these
algorithms still lack the ability to obtain the semantics of texts in a specialized domain,
and it is difficult to capture the high-order correlation between tags only through the tags
themselves [6], which limits the performance of classifiers.



Int. J. Environ. Res. Public Health 2022, 19, 9771 3 of 15

In summary, the existing research still has the following limitations: (1) the semantic
extraction ability of professional text needs to be further strengthened; (2) in the process
of classification, the correlation between tags is not fully considered. Based on this, we
propose a novel disease prediction model DLKN-MLC. The contributions of this paper
include the following: (1) The model extracts the information in EHR through deep learning
combined with a disease knowledge network, quantifies the correlation between diseases
through NodeRank, and completes multi-disease prediction; (2) we distinguished the
importance of common disease symptoms, occasional disease symptoms and auxiliary
examination results in the process of disease diagnosis.

The rest of the paper is organized as follows. Section 2 describes the research datasets
and the DLKN-MLC model. Experiments results and evaluation are presented in Section 3.
Section 4 discusses the results of the model data experiment and comparative experiment.
Section 5 concludes the paper and recommends future works.

2. Materials and Methods
2.1. Datasets

Our experimental dataset is a real EHR of desensitization in the Department of Gas-
troenterology provided by a first-class hospital at grade 3 in Shenzhen China, which
includes two parts: basic clinical information and clinical diagnosis information. The
basic clinical information includes the physical examination, auxiliary examination results,
treatment process, outcome, and other information, whereas the clinical diagnosis informa-
tion is the result of ICD-10 coding by professional coding personnel, including the main
diagnosis and coding as well as several other diagnoses and coding. There are 5040 I in
total, including 76 different diseases. The average number of Chinese characters pIEHR
is 487.75, and the average number of diseases per patient is 3.62. Among them, chronic
gastritis (K29.500) occurred the most, with a total of 2958 times, and esophageal hiatal
hernia (K44.901) occurred the least, with a total of 76 times.

The sequence annotation software, annotation wizard, was selected as the anno-
tation tool. BIO annotation was a form of sequence annotation: each element was la-
beled “B,” “I,” or “O,” where “B” represents the beginning of the fragment where the
element was located, “I” represents the middle position of the fragment where the ele-
ment was located, and “O” represents information that does not belong to any type. In
addition, according to the relevant clinical guidelines, the Baidu health medical dictio-
nary (https://jiankang.baidu.com/widescreen/home/, accessed on 15 April 2021), and
39 Health Net (http://www.39.net/, accessed on 15 April 2021), we constructed a binary-
weighted KN for gastroenterology, which included 182 diseases, 1146 clinical manifesta-
tions, and 513 auxiliary examination results.

To exploit the samples in the experimental dataset and consider the reliability of the
result evaluation, the experimental dataset was divided into five parts on random average,
and the experiment was performed via five cross-validations, i.e., one part was selected as
the test dataset, four other parts were selected as the training datasets, and five repeated
experiments were performed; the dropout mechanism was introduced. Finally, the test
set results of five experiments are used as the data input for multi-label classification. The
performance of DLKN-MLC is evaluated with the main and other diagnoses in the EHR as
the gold standard.

The experimental environment was set as shown in Table 1. When using NodeRank to
complete MLC, D was set to the default parameter of 0.85, and the NR value threshold was
bounded by the NR value of “standard disease” in each subnetwork to output all diseases
whose NR value was greater than or equal to the NR value of “standard disease”.

https://jiankang.baidu.com/widescreen/home/
http://www.39.net/
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Table 1. Experimental environment setting.

Experimental Environment Experimental Configuration

GPU GTX 1050TI
CPU E5-2678V3

Development environment Python3.7.3 TensorFlow1.15.2
Epoch 20

Optimizer Adam
LSTM learning rate 0.001

Dropout 0.5

2.2. DLKN-MLC Model
2.2.1. Overview of DLKN-MLC Model

The framework of the DLKN-MLC model is shown in Figure 1; it includes three main
parts. 1© DL-based feature extraction: by constructing a feature extraction framework
of EHR based on a pretrained word vector, MC-BERT embedded in BiLSTM-CRF (CRF:
conditional random field; BiLSTM: bidirectional long short-term memory; MC-BERT: meta
controller bidirectional encoder representations from transformers), the semantic acquisi-
tion ability is enhanced, and the negative semantic expression is extracted by a negative
word dictionary. 2© Construction of binary-weighted disease KN: for the ICD-10 disease
classification system, the binary-weighted KN between disease and diagnostic indicators
is constructed to reflect the correlation between diseases, and different weights are set for
incidental symptoms, common symptoms, and auxiliary examinations in diagnostic indi-
cators. 3©MLC based on NodeRank: based on the disease KN, the text sequence features
of each patient’s EHR are obtained through DL, and a binary-weighted subnetwork for
each patient is constructed. Using NodeRank, the association between each disease label is
fully considered, and the disease prediction is completed. The following focuses on these
three aspects.
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2.2.2. DL-Based Text Sequence Feature Extraction

The word vector model based on random initialization mainly focuses on the feature
extraction of words or between words but ignores the context or semantic information of
context. Thus, the extracted vector is separated from the context information, so the effect
is general. Therefore, we exploited MC-BERT in semantic representation ability to obtain
high-quality word vectors to complete the text sequence feature extraction. Our MCBERT-
BiLSTM-CRF sequence feature extraction framework is shown in Figure 2, which has three
main modules. First, the MC-BERT pretraining language model is employed to obtain the
word vector of the annotated corpus. Compared with the static word vector obtained by
conventional pretraining language models, the MC-BERT pretraining language model is
trained using a large number of biomedical text corpora; it can exploit context information
in a text to generate a word vector to handle polysemy situations efficiently. Then, the
word vector is input into the BiLSTM module to further obtain the context information and
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semantic dependency of the corpus. Finally, the CRF module is used to decode the output
of the BiLSTM module to obtain the global optimal tag sequence.
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MC-BERT

Owing to its excellent semantic representation ability, the BERT pretraining model has
achieved tremendous success in related tasks of natural language processing. It can obtain
contextualized vectors to improve the extraction performance of text sequence features.
The specific structure of the BERT model is shown in Figure 3.
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In Figure 3, Trm denotes a self-attention mechanism (transformer) encoding converter;
E1, E2, . . . , EN is the input to the model; T1, T2, . . . , TN is the output of the model [24]. The
model adopts a multi-layer transformer encoder structure, which can capture the two-way
context simultaneously, efficiently characterize the semantic information in the context,
obtain more semantic relations, and further enhance the semantic representation ability
of vectors.

MC-BERT is a pretraining word vector model proposed by Zhang N et al. [25] for
the natural language processing problem in the Chinese biomedical field. Based on the
BERT base model, MC-BERT changes the random mask to the medical entity mask and
uses the Alibaba cognitive concept map based on biomedicine to mask an entire process to
solve the complex structure of Chinese: the problem of multiple combinations of phrases.
To enhance the domain applicability of the model, the Chinese medical Q & A, medical
encyclopedia, EHR, and other related corpora were used for pretraining.

BiLSTM

Long short-term memory (LSTM) is a variant of gradient disappearance or gradient
explosion generated by a recurrent neural network (RNN) [26]. LSTM introduces the
concept of gating to capture the sequence information of a text and realizes long-term
memory. For long texts, such as EHR, which have pre- and post-dependence, its application
effect is better than the gated recurrent unit (GRU) model, which is also a variant of
RNN [27].

LSTM mainly includes a forget gate, input gate, output gate, and memory cell. The in-
put and forget gates work together to filter useless information and transmit useful informa-
tion to the next moment. An LSTM network can be formally expressed as Formulas (1)–(6).

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

zt = tanh(Wxcxt + Whcht−1 + bc) (2)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(3)

ct = ftct−1 + itzt (4)

ot = tanh(Wxoxt + Whoht−1 + Wcoct + bo) (5)

ht = ottanh(ct) (6)

where it, ft, and Ot are the output results of input, forget, and output gates, respectively,
at time t; ht is the output of the entire LSTM unit at time t; zt means information to be
added; σ is the activation function; w is the weight matrix; b is the bias vector.

To obtain more information about a text, we exploited the research [2,28] and intro-
duced the bidirectional structure based on conventional LSTM. The bidirectional long,
short term memory (BiLSTM) processes each word sequence through forward and reverse
LSTMs and completes the output merging simultaneously through the connection layer of
the output results. The output is shown in Formula (7):

ht =

[→
ht,
←
ht

]
(7)

CRF

In sequence feature extraction, BiLSTM has the advantage of processing long-distance
text information but fails to consider the dependency between adjacent entities. Therefore,
the CRF algorithm [29] is introduced to obtain the global optimal sequence through the
relationship between adjacent tags, which compensates for the deficiency of BiLSTM.

For any text sequence, X = (x1, x2 . . . , xn−1, xn), and prediction sequence Y = (y1, y2 . . . ,
yn−1, yn), let p be the output score matrix of BiLSTM, P ∈ n ∗ k, where n denotes the number
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of words in the sequence, K denotes the number of tags in the sequence, and the function
formula is shown in Formula (8).

s(X, Y) =
n

∑
i=0

Ayi,yi+1 +
n

∑
i=1

Pi,yi (8)

where A represents the transfer fraction matrix, the size is K + 2, Aij represents the score of
label I transferred to label j, Pij is the score of the j-th tag of the i-th word. The probability
formula of prediction sequence y is shown in Formula (9).

P(Y|X) =
es(X,Y)

∑Ỹ∈YX
s
(

X, Ỹ
) (9)

Taking the logarithm of both sides to obtain the likelihood function of the prediction
sequence, we have Formula (10)

ln(p(Y|X)) = S(X, Y)− ln
(
∑Ỹ∈YX

s
(

X, Ỹ
))

(10)

where Ỹ represents the real annotation sequence, and YX represents all possible annotation
sequences. The formula of the output sequence to obtain the maximum score after decoding
is as follows:

Y∗ = argmax s
(

X, Ỹ
)

Ỹ ∈ YX (11)

Therefore, we combined CRF with BiLSTM to obtain the global optimal marker sequence.
Further, in addition to the direct expression of related diseases and examinations,

there are negative expressions of negative words on semantics, such as no palpitation and
no abdominal mass. To avoid the interference of this part of the information in the final
classification, we constructed a negative word dictionary containing 46 negative words by
referring to the modern Chinese dictionary and previous research [30]. Combining it with
the global optimal marker sequence obtained by DL, the first, second, and third parts of the
marker sequence were analyzed. The negative words in the last two characters and those
in the marker sequence were regarded as negative words negating the semantics in their
jurisdiction, forming a sequence marker containing a negative semantic relationship.

2.2.3. Construction of Binary-Weighted Disease KN

The correlation between diseases in the medical field is more complex than in other
fields. For example, for news, entertainment news is less likely to be related to politics; for
sentiment analysis, the emotional expression of “happiness” and “joy” often appears in
the same comment [31]. However, the comorbidity of patients has a certain relationship
with the population and region of disease [32]. It is not a simple linear correlation, and it is
difficult to be reflected by the label data itself. Therefore, to efficiently obtain the high-order
correlation between diseases, we constructed a binary-weighted KN between diseases and
diagnostic indicators and reflected the correlation between diseases through the correlation
between diagnostic indicators and diseases. This study is based on a confirmed conclusion
in the medical field: “if two diseases have the same or similar clinical manifestations,
they may have the same pathogenic mechanism and genetic basis.” [33]. Based on the
related theory of complex networks, from the perspective of network topology analysis, the
binary-weighted KN G (D,D’) for patients’ clinical manifestations; auxiliary examinations
more intuitively describe the relationship between diseases and diagnostic indicators.
We use nodes of different shapes to represent diseases, auxiliary examination results, or
clinical manifestations of diseases. The connection between nodes indicates that the clinical
manifestation or auxiliary examination results can support the disease diagnosis. The
number on lines indicates the strength of the contribution to the diagnosis. We set the
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corresponding weights for different diagnosis indicators. See Section 3.2 for the weight
setting process and results.

2.2.4. MLC Based on NodeRank

Based on the constructed binary-weighted KN, the clinical manifestations and auxiliary
examination results are extracted from the text sequence features of a patient’s EHR, and the
clinical manifestations and negative examination results containing negative expressions
are removed for matching in the binary-weighted KN, A binary-weighted subnetwork
including all clinical manifestations, auxiliary examination results, and possible associated
diseases was formed. In addition, because the number of tags assigned to each EHR is
different in multi-label classification, to further determine the output threshold of multi
tags we added a “standard disease–gold standard” relationship in each subnetwork to
distinguish the comprehensive contribution of diagnostic indicators to diseases, which
comprises a standard disease node and a gold standard node. The gold standard node
represents the only gold standard used to diagnose standard diseases. It is connected with
only standard diseases, and not related to other diseases. The weight setting is the same as
that of auxiliary examination results. This relationship means that the contribution of the
diagnostic criteria connected with a disease reaches the level of a “gold standard”.

Owing to the poor standardization of writing EHR of some doctors, the use of words
is not unified, and there are many similarities between some clinical manifestations and
auxiliary examination words. There are some differences between the expression and
the diagnosis and treatment guidelines, such as “腹痛 (abdominal pain)” and “腹部
疼痛 (abdominal pain)”. Therefore, we introduce WordSimilarity semantic dictionary
(https://wordsimilarity.com/, accessed on 18 May 2021) to assist in matching words that
cannot be filled directly. The matching pseudocode is as follows:

Matching rules for an EHR
The total number of diagnostic indexes included in the case was extracted, m, I = 1
WHILE i = m
{
Extract the i-th diagnostic index in the EHR
If the i-th diagnostic index can match the diagnostic index in KN
from the KN, the diagnosis index and the weight of all diseases and side links

are extracted
Else uses WordSimilarity semantic dictionary to match the diagnosis indexes in KN

according to the principle of high similarity coefficient first
End if
i = i + 1
}
NodeRank is an improved sorting algorithm based on PageRank with edge weight [34].

The algorithm is based on the idea that “the more links to web pages, the higher the
importance of the web pages”. Similarly, if multiple clinical manifestations or auxiliary
examination results of a patient are related to a disease simultaneously, the more likely the
patient is to develop the disease. The specific formula of NodeRank is as follows [35]:

NR(D) = (1− d) + d
i

∑
i=1

w( fi·D′)
∑m

j=1 w
(

fi· f j
)NR( fi) (12)

where D is the Gini coefficient of a binary-weighted subnetwork, NR(D) is the importance
of the disease in the patient’s binary network, w( fi·D′) denotes the weight that points
to the edge of the disease, and ∑m

j=1 w
(

fi· f j
)

indicates the weight of all-out edges of the
diagnostic index. In this study, MLC is considered to be a ranking problem and uses
NR(D) to complete the classification [36]. The higher the value of NR(D), the higher the
probability of patients having the disease.

https://wordsimilarity.com/
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3. Results
3.1. Evaluation Metrics

To evaluate the performance of DLKN-MLC, we selected five widely used MLC
evaluation metrics, Hamming loss (HL), one-error rate (OE), ranking loss (RL), and av-
erage precision (AP), and micro-F1 [37–39]. We also compared the proposed model with
comparison models.

Let D = {xi, yi|1 ≤ i ≤ N} be a multilabel test set, xi represents the EHR text in the
test set, yi is the real label corresponding to xi, N is the number of samples in the test set, Yi
represents the set of label spaces for the dataset, Q is the total number of labels in the label
space set, h(·) is the multi-label classifier, and h(xi) is the prediction result of the sample xi
in the test set.

Hamming loss (HL) is the proportion of inconsistency between the predicted and real
tags. The calculation is shown in Formula (13), where h(xi)∆yi is the number of real tag
sets different from predicted tag sets.

HL =
1
N

N

∑
i=1

1
Q
|h(xi)∆yi| (13)

One-error (OE) indicates the probability that the tag with the highest prediction
probability is not in the real tag set. The calculation is shown in Formula (14), where
argmax h(xi) indicates the label with the highest prediction probability.

OE =
1
N

N

∑
i=1

[[argmax h(xi)] /∈ Yi] (14)

Ranking loss (RL) is the average number of times that wrong tags appear before
correcting tags in the ranking sequence of the prediction tag set, given by Formula (15).

RL =
1
N
×

N

∑
i=1

|{(h(xi), yi)| f (xi, h(xi))| ≤ f (xi, yi), (h(xi), yi) ∈ yi × yi}|
|yi||yi|

(15)

where yi is the complement of the real label set yi in the label space, and f (·) is the prediction
value generated by the multi-label classifier.

Average precision (AP) is the average number of correct sorting in the prediction tag.
The calculation is shown in Formula (16), where rank (·) is the sorting function.

AP =
1
N

N

∑
i=1

1
Q ∑

h(xi)∈Yi

|{yi|rank( f (xi), yi) ≤ rank( f (xi), h(xi)), yi ∈ Yi}|
rank(xi, h(xi))

(16)

Micro-F1 represents the harmonic average value of micro precision and micro recall
considering the overall situation of all labels. It can better reflect the overall performance of
the sample under the real distribution. The calculation is shown in Formulas (17)–(19). Let
a confusion matrix be generated for a certain type of label as Table 2.

Micro− precision =
∑Q

j=1 TPj

∑Q
j=1

(
TPj + FPj

) (17)

Micro− recall =
∑Q

j=1 TPj

∑Q
j=1

(
TPj + FNj

) (18)
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Micro− F1 =
∑Q

j=1 2TPj

∑Q
j=1

(
2TPj + FPj + FNj

) (19)

Table 2. Confusion matrix.

Confusion Matrix
Predictive Value

Positive Negative

Actual value
Positive TP FN

Negative FP TN

3.2. Comparison Results of Different Weighting Values

Through consulting relevant clinical experts and facing the weight setting in the binary-
weighted KN, five groups of different weight combinations were set for the incidental
clinical manifestations, common clinical manifestations, and auxiliary examination results
of diseases (Table 3). Data experiments were performed for these five groups of weight
combinations; the results are shown in Table 4.

Table 3. Weight setting group of binary-weighted KN.

Group <113> <123> <135> <137> <139>

occasional clinical manifestations 1 1 1 1 1
common clinical manifestations 1 2 3 3 3

auxiliary diagnostic results 3 3 5 7 9

Table 4. Experimental results of weight setting of five groups (MEA ± SD).

HL↓ OE↓ RL↓ AP↑ Micro-F1↑
<113> 0.3076 ± 0.005634 0.2412 ± 0.008233 0.3153 ± 0.009842 0.8623 ± 0.005285 0.8496 ± 0.003933
<123> 0.2966 ± 0.005754 0.2357 ± 0.009018 0.2962 ± 0.009632 0.8642 ± 0.005021 0.8522 ± 0.003828
<135> 0.2687 ± 0.004982 0.2257 ± 0.008721 0.2276 ± 0.010223 0.8786 ± 0.004692 0.8672 ± 0.003468
<137> 0.2624± 0.005004 0.2136 ± 0.009728 0.2190 ± 0.010373 0.8821± 0.004782 0.8786± 0.003587
<139> 0.2695 ± 0.005229 0.2085± 0.009536 0.2162± 0.010648 0.8754 ± 0.004724 0.8654 ± 0.003622

Note: The bold value in the table is the optimal value under the index; “↑” means that the larger the index is, the
better the classification effect is; “↓” means that the smaller the index is, the better the classification effect is.

Therefore, based on the above five groups of experimental results, the odd weight
setting scheme was selected, with occasional clinical symptoms set to 1, common clinical
symptoms set to 3, highlighting the strong evidence and depth of auxiliary examination
results, and the weight set to 7, to distinguish the contribution of different information to
disease diagnosis and further improve the model performance.

3.3. Experimental Results

The experimental results are shown in Figure 4, in which HL is 0.2624, OE is 0.2136,
RL is 0.2190, AP is 0.821, Micro-F1 is 0.8786, and the relevant indicators perform well. At
the same time, we can find that the performance of each indicator is also relatively stable
through each box plot.
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4. Discussion
4.1. Influence of Different Weights on Model Performance

In Table 3, by comparing groups <113> and <123>, we found that the performance
of the model could be improved by distinguishing the incidental clinical manifestations
and common clinical manifestations of diseases. This was because reducing the weight of
the incidental clinical manifestations of the disease could reduce the impact of the same or



Int. J. Environ. Res. Public Health 2022, 19, 9771 12 of 15

similar symptoms among the diseases and further improve the accuracy and ranking loss
of the model. By comparing groups <135> and <137>, we found that increasing the weight
of auxiliary diagnosis results was helpful to further improve the model performance. The
auxiliary diagnosis results are often the in-depth examination of diseases using specific
instruments, which have greater reference values for disease diagnosis. In addition, the
weight of auxiliary diagnosis results in this study is the same as that in the “standard
diseases-gold standard”. Increasing the weight can reduce the output of low-ranking
results and improve the accuracy of the model. In the comparison of groups <135>, <137>,
and <139>, we found that increasing the weight value of auxiliary diagnosis results would
improve the OE and RL of the model, but when the weight was too large, the performance
of the model in terms of HL, AP, and micro-F1 value declined, which was because increasing
the weight could reduce the output of low-ranking results and improve the accuracy of the
model. However, when the weight was too large, the accuracy and completeness of the
model were out of balance, and the model eliminated too many diseases with a relatively
low ranking.

Therefore, based on the above five groups of experimental results, the odd weight
setting scheme is selected, with occasional clinical symptoms set to 1, common clinical
symptoms set to 3, highlighting the strong evidence and depth of auxiliary examination
results, and the weight set to 7, in order to distinguish the contribution of different informa-
tion to disease diagnosis and further improve the performance of the model.

4.2. Comparison Algorithm Selection

To further verify the DLKN-MLC model, we selected the representative algorithm
Text-CNN [40], CNN–RNN [41], and X-BERT [42] as comparison models. The same method
of five cross-validations was used for testing in this dataset. Table 5 shows the information
of the comparison model.

Table 5. Introduction to comparison model.

Comparison Model Model Description

Text-CNN
On the basis of CNN, many sliding windows of different sizes are

added, and the feature extraction is carried out by a
convolution kernel.

CNN-RNN
CNN and RNN are combined to extract the local features of the

text, and RNN is used to obtain the sequence features and
high-order tag correlation of the text.

X-BERT
At the same time, tags and input text are used to generate

semantic tag clusters to make better use of the dependency
relationship between tags for modeling.

4.3. Analysis of Comparison Model Results

The comparison model results are shown in Table 6. By comparing the relevant
indicators, we found that the DLKN-MLC model was better than the comparison model.
Its AP was 88.21%, which was 2.93% higher than that of X-BERT.

Table 6. Model performance comparison results (MEA ± SD).

HL↓ OE↓ RL↓ AP↑ Micro-F1↑
Text-CNN 0.3672 ± 0.009621 0.3112 ± 0.008635 0.2922 ± 0.013585 0.7838 ± 0.005145 0.7838 ± 0.005785

CNN–RNN 0.2914 ± 0.006888 0.2598 ± 0.009537 0.2454 ± 0.008639 0.8204 ± 0.005848 0.8058 ± 0.007243
X-BERT 0.2788 ± 0.006675 0.2412 ± 0.006431 0.2494 ± 0.009972 0.8528 ± 0.007514 0.8362 ± 0.004946

Our method 0.2624± 0.005004 0.2136± 0.009728 0.2190± 0.010373 0.8821± 0.004782 0.8786± 0.003587

Note: The bold value in the table is the optimal value under the index; “↑” means that the larger the index is, the
better the classification effect is; “↓” means that the smaller the index is, the better the classification effect is.
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Outstanding results are closely related to the introduction of binary-weighted KN
to comprehensively consider the correlation between diseases. Although X-BERT also
uses the dependency relationship between labels, compared with other fields, the medical
field is affected by the limitation of sample size and disease complexity. It is difficult to
learn the model and reflect the correlation and dependence between diseases. The HL,
OE, and RL values of the proposed model were 0.5624, 0.2136, and 0.2190, respectively,
which were better than those of X-BERT and CNN–RNN. The superiority in ranking related
indicators highlights the efficiency of using NodeRank with edge-connected weight to sort
and classify texts and using the “standard disease–gold standard” relationship to control
the output nodes. The combined use of the two not only distinguished the contribution of
different diagnostic indicators to the diagnosis but also controlled the output well. In the
comprehensive index micro-F1 value, 87.86% of the research results were also better than
those of comparison models, which proved the comprehensive advantages of the proposed
extraction framework from text feature extraction to final sorting output.

At the same time, most of the current studies are end-to-end models [43]; compared
with such studies, the DLKN-MLC model has better interpretability [44]. We use the DLKN-
MLC model to simulate the process of doctors obtaining patient information and making
diagnosis inferences, and we can obtain the information of DLKN-MLC used to infer
disease through the matching information of patient disease information extracted from the
EHR and binary-weighted network. It is not a black box model. Furthermore, our model
distinguishes the importance of common disease symptoms, accidental disease symptoms
and auxiliary examination results in the process of disease diagnosis through weights,
which enables us to adjust the specificity and sensitivity of the model to a certain extent,
so that it can be applied to different scenarios, such as large-scale disease screening and
diagnosis [45]. Compared with the abstract hyperparameters in traditional deep learning,
this is more conducive to user understanding.

5. Conclusions

In conclusion, we proposed a novel disease prediction model based on a Chinese EHR
named DLKN-MLC. The model extracts the features of EHR through the DL module, uses
the binary-weighted KN to obtain the correlation between diseases, and then uses NodeR-
ank to complete the final sorting classification. The results showed that the model could
further improve the performance of disease prediction. We also verified the effectiveness
and superiority of DLKN-MLC, which had certain methodological significance.

However, there are still some limitations in this paper: the DLKN-MLC model is dis-
cussed from the influence of different weighting values and the quality of model prediction,
and the running cost and time efficiency of the model are not discussed. In future research,
we will compare and analyze the complexity and running time of relevant models and
consider using the public disease knowledge graph for auxiliary classification, so as to
further enhance the correlation between diseases.
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