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Abstract: We provide a game-theoretical epidemiological model for the COVID-19 pandemic that
takes into account that: (1) asymptomatic individuals can be contagious, (2) contagion is behavior-
dependent, (3) behavior is determined by a game that depends on beliefs and social interactions, (4)
there can be systematic biases in the perceptions and beliefs about the pandemic. We incorporate
lockdown decisions by the government into the model. The citizens’ and government’s beliefs can
exhibit several biases that we discuss from the point of view of behavioral economics. We provide
simulations to understand the effect of lockdown decisions and the possibility of “nudging” citizens
in the right direction by improving the accuracy of their beliefs.
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1. Introduction

The 2019 coronavirus disease outbreak (COVID-19) has posed a significant threat
to human health and the global economy, resulting in a global public health emergency.
Access to approved treatments and vaccines for this disease had only recently become
available when writing this article. That means that for several months during the pan-
demic, governments and organizations have had to rely on preventive measures such
as lockdowns, social distancing, and hygienic behaviors, e.g., the use of face masks and
hand-washing. As a result, a clear goal of public health policy during this outbreak has
been to encourage people to practice responsible preventive behavior to limit the spread of
COVID-19. Behavioral economics can help us understand how to design effective policies,
implement them, and who the target population should be. This field applies insights from
psychology and neuroscience to explain why people deviate from rational choice theory
due to biases people may face during their decision-making process. Various scholars have
pointed out that identifying these behavioral biases in the population can help predict how
public health policies will be received and thus prevent them from backfiring in the current
global situation [1–3]. Indeed, behavioral economics has been shown to produce highly
effective and low-cost policies on health-related issues [4–6]. In addition, several articles
have echoed the importance of policymakers taking into account individuals’ cognitive
biases, as this allows for more efficient policy design, including policies related to public
health [3,7,8].

We incorporate these insights of behavioral economics into a formal epidemiolog-
ical model (SEIR-like). Our research hypothesis is that including those insights would
change the predictions of SEIR-like models in relevant ways. In particular, we expect that
“behavioral interventions” (that change the individual’s perceptions of the environment)
can mitigate contagion. Therefore, such epidemiological models incorporating behavioral
economics can be used to study how the dynamics of the pandemic (i.e., people infected
and recovered) may change due to both individual and government behavior and their
interaction as people’s behavior determines to some extent, the severity of the pandemic,
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and thus its economic consequences. We are the first, to the best of our knowledge, to
combine epidemiological, game-theoretical, and behavioral assumptions to predict the
progression of a pandemic. Indeed, ref. [9] argues that cooperation between economists and
epidemiologists is required to tackle pandemics because it is a complex, cross-disciplinary
issue that affects all aspects of society.

We build on two different kinds of literature. The first combines economics and
epidemiology. Examples of this strand of literature are the studies on endogenizing eco-
nomic behavior in a rational framework [10]; considering that the rate at which individuals
change their sexual partner is endogenously determined by the prevalence of HIV [11]; a
rational choice framework in which individuals decide on several aspects of their sexual
relationships [12]; and allowing for forward-looking risky behavior [13]. More recently, this
type of model has been applied to the study of COVID-19 [14–16]. The second literature
incorporates game theory into epidemiological models, for example, considering myopic
agents who can choose a continuous variable of protection [17]; and, more recently, ad-
dressing variants of the SIR model in which individuals reduce contacts as a function of
the current or cumulative number of cases [18].

However, to the best of our knowledge, there has been no attempt to incorporate
behavioral economics into a game-theoretical epidemiological model. This means that
the analysis either comes from behavioral economics but with no formal epidemiological
models or from epidemiological models that do not consider behavioral economics. In
the present article, we aim to integrate behavioral economics into a game-theoretical
epidemiological model with the goals of improving the predictions of the model and to
better formalize some of the arguments that have been advanced from behavioral economics
about the management of COVID-19.

2. Materials and Methods
2.1. SEIR Model, Game Theory, and Behavioral Economics

In this paper, we build upon the well-known compartmental epidemiological models
as Susceptible-Exposed-Infectious-Removed (SEIR) that have been useful in studying
pandemic dynamics. These models demonstrate how various public health strategies can
influence the epidemic’s outcome. However, we believe that considering how behavioral
biases can influence pandemic dynamics through individual actions can yield a wealth of
information. Concerning this, we are the first, to our knowledge, to combine game theory
and behavioral economics with an epidemiological model. This allows us to (1) endogenize
the behavior of the population and, in particular, to allow agents to react to incentives
and their perceptions of the progression of the pandemic; (2) to formalize how cognitive
biases affect people’s perceptions, which in turn affect their behavior and, ultimately, the
dynamics of contagion.

Our model has three components that, as we discussed, have never been jointly used
before:

1. A SEIR-type epidemiological model that, in particular, considers asymptomatic trans-
mission for the case of COVID-19.

2. A game-theoretical component in which individuals choose their level of responsible
behavior (and thus the probability of contagion).

3. Mechanisms from behavioral economics, considering that individuals’ perceptions
and beliefs might be biased, especially as applied to COVID-19 [1,2,7,8,19]. In partic-
ular, we consider the following channels (we provide additional details about these
channels in Online Appendix D).

(a) Optimism bias and overconfidence, by which people tend to be excessively
optimistic about future events and excessively confident in their own beliefs
and skills to face those events [20].

(b) Availability heuristic, in which the probability of an unknown event (a severe
pandemic COVID-19) is estimated using the probability of a known event (a
severe pandemic of seasonal influenza).
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(c) Fallacy of lack of evidence, whereby an absence of evidence for an event is
interpreted as evidence for the absence of that event [21].

(d) Status quo bias, by which people tend to prefer the current baseline (or status
quo) over any change in such a way that there is a risk of doing nothing in the
face of such a novel event as the pandemic [22].

(e) Social influences have been extensively studied as a critical element in their
effect on people’s choices and behaviors [23], especially on health-related
outcomes.

2.2. Calibration

The simulations are all 360 periods long, e.g., t = 1, . . . , 360, except those for the
extended model, where we use 180 periods in the interest of computational time (included
in the Online Appendix A). (However, this does not affect the shape of the dynamics, e.g.,
in terms of the evolution of cases, and therefore we can still compare the results across
simulations.) To solve the system of non-linear differential equations, we have used a
standard Runge-Kutta algorithm for the integration. Moreover, the parameters included in
the model can be divided into two groups: medical-epidemiological parameters and be-
havioral parameters. The first group includes the subclinical infectious rate Asymptomatic
vs. Infected, α; the (baseline) transmission rate, β; the recovery rate, γ; the proportion of
asymptomatic/subclinical cases, ρ; the mortality rate, δ; and the incubation rate, κ. These
parameters are summarized in Table 1, where the value used in the simulations and its
corresponding reference can be seen. Some of these values are directly given by the SARS-
CoV-2 characteristics themselves, such as the recovery rate (the inverse of the days needed
for full recovery) and the incubation rate (the inverse of the days needed to incubate the
virus). However, the remaining values are taken from the existing literature, which has
estimated them using epidemiological models.

Table 1. SEAIRD epidemiological parameter values.

Parameter Value Used Range Description Reference

α 0.5 - Subclinical infectious rate A vs. I [24]
β 0.65 0.1–1 (Baseline) Transmission rate [25]
γ 1/14 - Recovery rate for mild infections [26]
ρ 1/3 0.05–0.6 Proportion of subclinical cases [27]
δ 0.021 0.005–0.03 Death rate [28]
κ 1/6.4 - Incubation rate [29]

Notes: This table shows the values of the parameters used for the model simulations. The first two parameters are
taken from the epidemiology literature, being the baseline contagion rate a calibration. The last four are medically
known parameters.

The set of behavioral parameters that are included in the model are summarized in
Table 2, where the theoretical value in the model, the value used in the simulations, and a
summary of its interpretation from a behavioral economics point of view are presented.
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Table 2. Relevant Behavioral and Economic parameters.

Parameter Value Used Theoretical Range Description Behavioral Interpretation

pC , pG 0.5 [0, 1] Citizen’s and government’s prior

• Optimism bias and overconfidence
• Availability heuristic
• Anumerism/failure to understand ex-

ponential growth
• Fallacy of lack of evidence
• Status quo bias
• Present bias

−D -0.5 [−∞, 0) Disutility of contracting COVID-19 –

c ∼
N (µc, σc)

[−∞, ∞] Economic/psychological cost –

µc 0 [−∞, ∞] Population mean of the cost c
σ2

c 1 [0, ∞] Population variance of the cost c
S I .5 (0, ∞] Extra “moral” utility (for I) –

ℵL
ℵ0 = 0.3,
ℵ1 = 1

ℵL ={
ℵ1, if Q=1
ℵ0 otherwise

Lockdown efficacy –

ν 0.8 [0, 1] Protective measures efficacy (for S and I) Wrong beliefs ν̂: Availability heuristic
ς 0 [0, ∞] Strength of social norms Social/Country norms

Notes: These are the relevant values given to behavioral and economic parameters in the model. Each simulation
in the model keeps these values constant while changing the parameter of interest analyzed.

3. Theory
3.1. SEAIRD Baseline Model

We describe a discrete-time SEAIRD model of COVID-19: Susceptible, Exposed,
Asymptomatic (subclinical) infected, symptomatic (clinical) Infected, Recovered, and De-
ceased. (The SEAIRD model is an SEIR model with an additional category for infected but
asymptomatic and another for deceased. Those in both E and A are unaware of their status.
The implication of the model is that both exposed and asymptomatic individuals will
behave as susceptible. However, asymptomatic infected individuals will have an infectious
potential). We build our model following [30] (note that all variables depend implicitly on
time t):

∆S = −S[βA(a)A + β I(a)I], (1)

∆E = −κE + S[βA(a)A + β I(a)I], (2)

∆A = −γA + ρκE, (3)

∆I = −γI + (1− ρ)κE, (4)

∆R = γ[A + I(1− δ)], (5)

∆D = δγI, (6)

where a represents the profile of actions taken by the population, which remains constant
over time. Hence, we consider that the contagion rate depends on actions taken by citizens
(such as protective measures) and take the rest of the medical parameters as independent
from behavior. Following other models that consider asymptomatic individuals, e.g., [31],
we consider that those in A and I have different infectious potential and behavior. In terms
of the dynamics of the disease, successful individuals first become exposed with a certain
probability that, as we have mentioned, depends on the behavior of asymptomatic and
symptomatic infected individuals, which we explained below in more detail. (There is
not a single “beta” parameter, but rather two: βA(a) and β I(a), and they depend on the
individual’s behavior. Indeed, it is precisely this dependence on behavior for the two
categories that generate the need for two such parameters.) Those who are exposed will
develop the disease with probability κ, and of those, they will either become infected
asymptomatic (with probability ρ) or infected symptomatic (with probability 1− ρ). Finally,
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individuals who are infected (either symptomatic or asymptomatic) will recover with
probability γ, except for a fraction δ of those, who will die of the disease.

3.2. Individual Behavior

At each period of time, individuals decide whether to engage in responsible behavior
or not. This responsible behavior (that we label “protect”) can include taking protective
measures such as wearing a face mask, washing hands regularly, keeping social distance,
etc. (Deceased individuals do not choose any action, and so from now on when we discuss
behavior, we will refer exclusively to each of the other categories.) Moreover, individuals
have a belief pC about the probability of the disease being capable of causing a pandemic.
We argue that the several biases that we considered in Section 2, imply that pC < p, i.e., the
individual undervalues the probability of a severe pandemic (in Online Appendix D we
provide a detailed account about how these biases would affect pC). This parameter allows
us to capture several cognitive biases that could potentially happen at the beginning of the
pandemic when individuals might underestimate the probability of the virus generating
a pandemic. In addition, each individual has beliefs β̂(a) about the contagion that takes
place (depending on the action she takes). While we give the explicit definition below, β̂(a)
should be interpreted as the probability that an interaction between an individual who
chooses a and another random individual in the population will result in contagion.

Individuals suffer a disutility −D < 0 from contracting the disease, and each individ-
ual has a private cost c of protecting oneself, normally distributed N (µc, σc). Moreover, we
assume that the psychological benefit or cost from protecting oneself S(ā) depends only on
the average action ā taken by the population. Function S(ā) could be negative (i.e., at the
beginning of the pandemic, when few people are engaging in protective measures, they can
be ridiculed for doing so) or positive. We assume that those infected always have an extra
“moral” utility S I > 0 when engaging in responsible behavior. Thus, the payoffs for taking
a certain action depend on the individual’s status, as described in the table below (Table 3).

Table 3. Payoff matrix.

Protect Don’t Protect

S, E, A S(ā)− pCDβ̂(1)− c −pCDβ̂(0)

I S(ā) + S I − c 0

R S(ā)− c 0

There are several important details to consider. First, we follow the epidemiological
literature that incorporates game theory, such as [17], assuming that individuals are not
forward-looking but rather that they best respond to their incentives each period. Second,
since we assumed that individuals in the categories S, E, and A cannot differentiate between
them (that is, individuals are unable to identify whether they are susceptible, exposed, or
infected but asymptomatic), the incentives for individuals in those categories are identical.
Note also that the government can influence the citizens’ perceptions, for example, by
making them aware of the severity of the pandemic (hence making pC more accurate) or by
using nudges that influence their perception β̂(a) over the contagion rate, something we
discuss in Section 4.2.3.

As we noted in the Introduction, our model departs from many epidemiological
models in having two distinct functions βA(a), β I(a), the rate at which susceptible agents
become infected by asymptomatic and infected individuals, respectively. These rates are
derived by assuming that each individual interacts randomly with another individual
each period. Following [30], we assume that parameter β measures the baseline contagion
rate from those in I when there is no lockdown and no protective measures are taken.
In contrast, for those in A, this rate is multiplied by a factor α < 1, willing to capture
the biological difference in the contagion rate between asymptomatic and symptomatic
individuals. Moreover, we assume that for any infectious individual (symptomatic or not),
their contagion is reduced by a factor of ν when they use protective measures and by a
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factor ℵL that depends on whether lockdown is in effect (L = 1, a case that we discuss
below in Section 3.3), or not L = 0. (In particular, if there is no lockdown L = 0, then ℵ0 = 1.
If there is a lockdown, then ℵ1 is an exogenous parameter determining how effective the
lockdown is in reducing contagion when agents respect the lockdown. Ref. [32] consider
instead the effectiveness of lockdown λ. Therefore, ℵ1 = 1− λ.) With these assumptions in
place, we have that βA(a) and β I(a) are given by:

βA(a) = αβ ·E[(1− νℵLaS)(1− νℵLaA)], (7)

β I(a) = β ·E[(1− νℵLaS)(1− νℵLaI)], (8)

where the expectation is taken over behavior in each compartment (i.e., aS, aA, aI), as the
cost of choosing protective measures is idiosyncratic for each individual. Note that for a
susceptible individual, the relevant rate is given by β(a), that is a weighted sum of βA(a)
and β I(a), conditional on the action a chosen by the individual

β(a) = β(1− νℵLa)E[αA(1− νℵLaA) + I(1− νℵLaI)].

However, we allow individuals to have a biased belief about ν, which we denote by
ν̂, and therefore they might have a biased belief about β(a), which we denote β̂(a). (β̂(a)
would be defined as β̂(a) = β(1− ν̂ℵLa)E[αA(1− ν̂ℵLaA) + I(1− ν̂ℵLaI)]. In other words,
individuals understand the basic dynamics of the contagion rates when they compute the
utility of choosing actions, but we allow for the possibility that they are biased in their
estimation of the effectiveness of responsible behavior ν and, therefore, believe that it is
given by ν̂. Obviously, if the individuals held correct beliefs about ν, then β̂(a) = β(a).)

Solving the Baseline Model with No Lockdown

From the game payoffs it follows immediately that an individual with cost c uses
protective measures whenever S(ā) + S I > c if she is in I, and whenever S(ā) > c if
she is in R. Pre-symptomatic individuals (in S, E, A) with cost c use protective measures
whenever

S(ā)− pC β̂(1)D − c > −pC β̂(0)D ⇐⇒ S(ā) > c− pCD[β̂(0)− β̂(1)].

Therefore, for each category of individuals X ∈ {S, E, A, I, R} there is a threshold
cX (with cS = cE = cA), such that the individual protects herself if her cost is below the
threshold. Hence, the fraction of individuals in S who protect themselves is Φ

(
cS−µc

σc

)
(where Φ is the standard normal CDF), and analogously for the other four categories. Note
that at the beginning of the pandemic, we have A ≈ I ≈ 0, and, therefore, the incentives for
susceptible individuals are approximately the same as for recovered individuals, namely
those given by social norms.

3.3. Lockdown

Having mentioned the possibility of lockdown in the previous section, we now con-
sider how it might occur. In our model, we assume that the government is the only player
who can choose the lockdown. The government derives a disutility q from lockdown (as it
reduces economic activity or increases criticism) per period that the lockdown is enforced.
However, the government also derives a disutility from the deaths during the pandemic.
Therefore, the expected utility of the government (we assume no time-discounting at this
stage) at time T when a successful vaccination campaign is implemented and the pandemic
ends is:

Vg
y = −

T

∑
t=0
{qQt + pGDt}, (9)
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where pG is the probability the government assigns to the pandemic, and Qt = 1 if there
was a lockdown at time t, and 0 otherwise. As we assume that deaths can only be produced
by the pandemic, we then have that E[Dt] = pGDt + (1− pG) · 0 = pGDt.

Assumption 1. The lockdown enacted by the government has the following restrictions: (1) the
lockdown can only be approved in discrete segments of duration τ; (2) once a lockdown is not in
place, the government must wait for a period τ to begin a new lockdown; and (3) the first time a
decision about lockdown must be made is at time t = 0.

In practice, Assumption 1 means that the government can only enact lockdown at
time t = 0, τ, 2τ,. . . , until time T when a vaccine is discovered and implemented (for
simplicity, we abstract away from considering the issues associated with implementing
the vaccine). (In Online Appendix A, we consider an extension with a political economy
model that allows for two types of government (authoritarian and democratic), as well
as the possibility of declaring the state of alarm. We then explore the interaction between
beliefs about the pandemic and the government’s response.)

4. Results
4.1. Theoretical Results

Asymptomatic individuals are biologically less contagious than symptomatic Infected
individuals (because of α < 1 in Equation (7)). However, they can be more contagious once
we take into account their behavior. Let āI , āA be the average action taken by Infected and
Asymptomatic individuals, respectively.

Proposition 1. Let α∗(ν,ℵL, āI , āA) be defined as

α∗ =
1− νℵL āI
1− νℵL āA

. (10)

Then, whenever α > α∗, Asymptomatic individuals are more contagious than symptomatic
Infected individuals.

While Asymptomatic individuals are biologically less infectious, Proposition 1 high-
lights the case when they are behaviorally more contagious than infected individuals, as
they are not aware of transmitting the disease. Therefore, we have two opposing forces. In
our model, when α > α∗, the behavioral contagion channel is stronger than the biological
channel, and that is why Asymptomatic are more contagious than symptomatic Infected
individuals. This is a crucial insight to understanding the transmission of SARS-CoV-2: as
asymptomatic individuals may not take precautions (e.g., by wearing face masks, washing
hands), they become more contagious than symptomatic individuals, and they are then
more likely to transmit the virus to the susceptible population.

Proposition 2. The threshold α∗ is increasing in ν̂. A sufficient condition for α∗ to be increasing
in ν and ℵL is that āA > āI .

Proposition 2 shows that when the citizen’s perception ν̂ of the efficacy of protective
measures increases, it becomes more difficult for Asymptomatic individuals to be more
contagious than symptomatic Infected individuals. The intuition for this is that when ν̂
increases, Asymptomatic individuals (who behave as Susceptible, as they are not aware
of being infected) are more willing to engage in protective behavior, which reduces their
infectiousness. On the other hand, when the actual effectiveness of protective measures ν or
lockdown ℵL increase, the effect on α∗ is a priori ambiguous; however, when āA > āI , we
can say with certainty that α∗ is increasing. Therefore, beyond the efforts that governments
can make to improve the actual effectiveness of protective measures, it is essential to
note that increasing citizens’ perceptions another helpful strategy for fighting COVID-19,



Int. J. Environ. Res. Public Health 2022, 19, 9557 8 of 23

something we discuss further in the next section. (We perform similar simulations for the
efficacy of lockdown measures in Online Appendix C).

4.2. Numerical Results

In this section, we present the results of the model simulations for each of the six
categories contained in the SEAIRD behavioral epidemiology model. We want to stress
the fact that there is great uncertainty about the key parameters for the COVID-19 epi-
demic [33]. This uncertainty extends to the design of an optimal policy, as these parameters
are extremely sensitive to changes [34–36]. Moreover, simulations are often performed
under strong assumptions about the impact of social distance policies without connecting
to the necessary data [37]. As a result, since the exact numbers in terms of economic cost
and public health are affected by this [38], our analysis will focus solely on assessing the
effects on the relative change in pandemic dynamics. For example, comparing the evolution
of the number of infected between various scenarios rather than in absolute terms (e.g.,
the total number of infected). These results should then be interpreted as changes in the
dynamics (evolution) between categories. Concerning this, any policy that has focused on
containing the spread of the virus has aimed to “flatten the curve”, and thus reduce the
rate at which society as a whole goes from Susceptible to Exposed, that is, the contagion
rate. Based on the model and the results presented below, any policymaker should consider
several factors that may influence the dynamics of the pandemic. In this regard, two factors
that have a major effect on this evolution and have a direct link to behavioral economics
are (1) the effectiveness of preventive measures ν (as well as the perception that individuals
have of them, ν̂), and (2) the social norms that prevail in the country or “country” norms.
In the following subsections, we will further analyze the two factors mentioned above.

4.2.1. Effectiveness of the Use of Protective Measures

As we can see in Figure 1, an increase in efficacy ν translates into a slowing down of the
outbreak. (Other factors that affect the time-course of the outbreak. The graph for the efficacy
of lockdown ℵL=1 is similar to that in Figure 1 and can be found in the Online Appendix C.
These parameters directly affect the contagion rate of A (βA), and I (β I), decreasing the rate
at which individuals in S flow to the E category.) That is to say, as the efficacy increases,
the number of infected cases becomes more homogeneously distributed during the period
of time considered in the simulation. In other words, a public health policy aimed at
increasing the effectiveness of the use of protective measures will produce a flattening
of the curve in terms of the proportion of cases. Examples of such policies could be an
introduction of mandatory face mask use, the use of hydroalcoholic gel in establishments,
or a policy that establishes social distance.

Figure 1. Disease dynamics of the combined infectious category (A + I) with different protective
measures effectiveness.

4.2.2. Social Norms

Social norms have been emphasized as one of the key factors in determining behavior
during the pandemic, and, therefore, effective rates of contagion [3,7,39–45]. We have
modeled social norms by including S(ā) as a payoff for engaging in protective measures for
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all individuals (symptomatic individuals derive an extra S I > 0). For the sake of deriving
numerical results, we model function S(ā) = π(ā) + ς, where π(ā) is a sigmoid function,
and ς is a constant that is intended to capture “shifts” in the importance of social norms
across differences societies (thus, ς is also a “behavioral” parameter).

As we can see in Figure 2, an increase of ς has the expected effect on the evolution of
the number of cases in terms of flattening the curve over the time period. Higher values of ς
reflect stronger norms (possibly country-specific), which translates into a higher proportion
of individuals being protected from the onset of the pandemic. For instance, in the case of
face masks, those countries that started their widespread use (mask-wearing culture) have
been able to contain the virus better in terms of the rate of contagion. This is because public
mask-wearing is most effective at preventing virus spread when compliance is high [46].
Concerning this, in the absence of widespread vaccination for COVID-19, governments and
public health institutions have ended up being advocated for individuals to use preventive
measures during the pandemic. Therefore, developing public health policies that affect (in
this case, social norms) is vital to slow down the time-course of the outbreak. In addition,
policymakers must also take into account potential free-riding behavior. In the case of
face masks, a greater use of them in the community may encourage others to follow the
norm. However, it also creates incentives for others not to assume the cost of protecting
themselves since others already do so [45].

Figure 2. Evolution in the number of cases of the combined infectious category (A + I) depends on
the strength of social norms (ς).

Additionally, it is different to start at an early stage of the pandemic in a country with
a culture of preventive measures from another society that promotes this social norm in
more advanced pandemic stages. Thus, in the following simulation, we exploit the timing
of a policy aimed at shifting social norms in two different periods. We can see in Figure 3
that the model captures well this “timing effect” or anticipation in the public policies. This
is of great importance since nudges that directly affect social norms by inducing a change
in behavior at the beginning of the pandemic have a more significant effect at “flattening
the curve” than when it is at a more advanced stage.
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Figure 3. Timing effect in a nudge on social norms.

4.2.3. Mandates vs. Nudges to Fight COVID

Individuals’ decisions to use preventive measures are greatly affected by both their
beliefs about their efficacy as well as the prevalence of their behavior, e.g., the use of face
masks in public [45]. As part of these preventive measures, wearing a mask is highly
effective. It may protect both the user and those around them from contracting COVID-
19 [40,46–50]. Moreover, the effectiveness of other measures, such as hand-washing or
social distancing, is also decisive in influencing the number of reported daily cases, for
instance, in Thailand, ref. [51]. Thus, the effectiveness of any preventive measures against
the transmission of the virus can be very high. However, if citizens believe that it is
not effective, that will guide their beliefs and, therefore, their actions (they might fail to
protect themselves). Instead of trying to change individuals’ beliefs, the government might
use mandates that increase the effectiveness of protective measures, corresponding to an
increase in ν in our model (imposing mandatory use of masks, use of hydroalcoholic gel
in establishments, social distancing, etc.), as discussed in Section 4.2.1. (In our model,
mandates have a qualitatively similar effect to a change in social norms, leading to a
flattening of the curve.)

In terms of changing not only the actual effectiveness ν, but also the perception about it
ν̂, a policy maker might at first think that both would have the same effect on the evolution
of cases (although not in proportion). However, the intuition is not straightforward. In our
model, a shift in perception ν̂ has minimal effect on the dynamics of the pandemic, which
is striking because it is the perceptions that guide, to some extent, individuals’ behavior. To
better understand this phenomenon, note that at the beginning of the pandemic, the number
of cases is so small that a change in perception does not generate sufficient incentives to
move the average behavior of society (behavioral force). However, when the number of
cases grows sufficiently enough so that perceptions can cause such incentives, it is “too
late” because then a nudge on perception does not achieve the desired objective due to
the sheer inertia of the dynamics (epidemiological force). Indeed, ref. [52] find using a
causal structural model that in the US, a nationwide mandate on the use of face masks for
employees in the early stages of the pandemic could have resulted in a reduction of weekly
case growth by more than ten percentage points in late April.

About a mandate forcing individuals to wear face masks in the early stages of the
pandemic versus later stages, we find the same timing effect as with social norms. (As was
the case with social norms, the timing of behavioral policies also matters. In the Online
Appendix C, we include an exercise similar to that in Figure 3 and find a similar result:
implementing the nudge earlier is more effective in flattening the curve.) This emphasizes
the importance of taking direct and unhesitating action even when the number of cases is
low, as the number of cases is growing exponentially. As [53] noted, there are two main
reasons why countries like Taiwan have been able to control the virus much more quickly:
first, Taiwan had a robust public health infrastructure in place before COVID-19, allowing
for faster and more coordinated responses; and second, widespread use of face masks to
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reduce transmission from infected people (regardless of symptoms) while also protecting
wearers (mass wearing). This leads us to propose the exercise of comparing two scenarios:
one in which a mask-wearing culture with citizens with greater accuracy in their beliefs
about the actual effectiveness of protective measures, against the opposite scenario. As we
can see in Figure 4, a country with higher social norms and more accurate beliefs about
the effectiveness of protection can flatten the curve, reducing then the incidence of the
pandemic.

Figure 4. Mask wearing vs. non-mask-wearing culture comparison: the effect of social norms and
efficient use of protection.

5. Conclusions

As stated in the Introduction, our research hypothesis was that introducing behavioral
insights and game theory into an SEIR-like epidemiological model would change the
predictions of those models in relevant ways. We have validated this hypothesis by
providing a series of novel results. We provide here a summary of those results.

A relevant finding is that, even if asymptomatic infected individuals are biologically
less contagious than symptomatic individuals, for example, due to a lower virus load,
ref. [54], they can be effectively more contagious (Proposition 1), the reason being that those
with no symptoms might not take preventive measures against COVID-19 with enough
intensity. However, we show that this is less likely to happen if the perceived effectiveness
of protecting oneself increases (Proposition 2), as this in turn increases the perceived
incentives for asymptomatic individuals to engage in protective behavior, thus reducing
their infectiousness and lowering contagion. Theoretically, this means that governments
can then mitigate the pandemic not only through lockdowns or by making it mandatory
to wear face masks but also by “nudging” people to protect themselves and the rest of
society [3].

Concerning our numerical results, we show that an increase in the effectiveness of
protective measures “flattens the curve” of contagion, as is to be expected. However,
an interesting result is that, perhaps surprisingly, improving citizen’s beliefs about the
effectiveness of protective measures has a small effect on the pandemic dynamics. This
is because at the start of the pandemic, improving citizens’ perceptions about protective
measures has a small effect because there are few cases (and thus individual incentives are
small), and by the time there are enough cases, it is “too late” to affect the dynamics of
contagion meaningfully. The same is true for social norms which, by themselves, might not
be enough to stop the spread of the pandemic in countries in which the initial social norm
is not to engage in protective behavior, for a similar reason as the one discussed for nudges
about preventive measures effectiveness. For these reasons, mandates might be more
effective at the beginning of the pandemic, in terms of reducing contagion, than nudges
or a sudden increase in social pressure. (However, as we argue in [55], nudges are also
easier and faster to implement, and thus governments might be better off by implementing
nudges in the interim while mandates are being approved.) This is one of the reasons why,
in coherence with our results, mask-wearing societies with populations used to the use of
protective measures have had a faster control of the pandemic[46]: the more normalized
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in society the use of protective measures is, the higher the probability of adopting them
initially and thus when it matters most for controlling contagion and flattening the curve.

These results show that our research hypothesis was correct, and our model has
produced meaningful insights that could not have been derived without considering
the behavioral biases of the individuals in their decision on whether to take preventive
measures. This is obviously one of the strengths of our model. However, our framework
has some limitations that we would like to discuss, as well as future research directions
that can solve these limitations and provide new results.

One of the limitations of our framework is that we use a “reduced form” approach,
where several biases are mapped to the same behavioral parameters: a future research
direction is to incorporate specific biases explicitly into the model, for example, present bias
through models of hyperbolic discounting, ref. [56]. Another limitation is that the action
space is small, with only two possible actions for individuals to take; an immediate avenue
for future research consists of enriching the action space to include multidimensional
actions (to allow for the possibility that wearing face masks may relax other protective
measures), as well as heterogeneity by age and other characteristics, in such a way that the
payoffs of the game depend on such characteristics. (As older people have a demonstrated
higher risk of suffering the consequences of COVID-19 [57], public health policies would
also affect them heterogeneously depending on age.) In addition, social networks could be
included together in the epidemiological-behavioral model.

We view our paper as the first step in a research agenda that combines epidemiological
models, game theory, and behavioral economics, and we believe that it opens the possibility
of incorporating interesting extensions. For example, we have included a political economy
model in the Appendix, in which the government must decide how to react to the pandemic.
However, there are many other economic applications that can be incorporated, among
others, vaccine R&D, vaccination campaigns, etc. We view all of these as fruitful extensions
that can be incorporated into our framework.
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Appendix A. Initial Reaction to the Pandemic

This section expands the model that we presented to include the initial reaction to
the pandemic. If one thing has become clear, the government plays an important role
in the course of the pandemic. In addition, it may suffer from biases that undermine its
initial ability to react to the outbreak. In this new context, the players are the government
and a continuum of mass 1 of citizens. There are two states of the world, Θ = {N, P};
for no pandemic and pandemic, respectively. (If there is no pandemic, no measures will
be required; if there is a pandemic, then protective measures will be needed to reduce
contagion. One possibility is that when there is no pandemic, the R0 = r < 1, and when the
state there is pandemic, R0 = r > 1.) The objective probability that θ = P is p; however,
the government assigns probability pG, and the citizens’ probability pC (and this is common
knowledge). (Since these probabilities can be different, we are implicitly assuming that
government and citizens have different priors [58].) We assume that pC, pG < p, due to the
behavioral biases discussed in Section 2, and explained in detail in Online Appendix D.

The government can be democratic (with probability ω) and authoritarian (with
probability 1−ω). The government can take two actions: Alarm or Wait. An authoritarian
government derives extra utility B > 0 from choosing Alarm. Moreover, these states are
connected to the possibility of enforcing a lockdown.

Assumption A1. At period t = 0, the government must choose Alarm if it decides to enforce a
lockdown.

In other words, at t = 0, no lockdown can be enforced unless the government chooses
alarm. After the government decides whether to choose Alarm or Wait, each citizen decides
whether to Protest or Not protest. (We must not overlook the importance of political
economy in the current pandemic. Ref. [59] show, for instance that countries under more
significant electoral pressure took less stringent public health measures to prevent the
spread of COVID-19. The effect of such policies is more likely to harm the economy.
Moreover, in the early stages of the pandemic, protests against the lockdown erupted all
over the world [60].) We assume for simplicity that this decision only happens during the
initial period (although the model could be easily extended to allow for multiple protests).
The government derives a disutility −ψ× f , where ψ > B and f is the fraction of citizens
that protest. The payoffs for citizen i, depending on the type of government, are as follows:

Protest No Protest

Democratic −k 0

Authoritarian f × β I − k 0

Here k is to be interpreted as the private cost the individual must bear to protest, and
we assume that β I = b + εi, for some constant b, and εi is distributed i.i.d. N(0, Σ), what
makes this subgame a global game. The interpretation is that the individuals derive a
benefit from protesting against an authoritarian government. However, this benefit depends
on the fraction of citizens who participate in the protest (we consider these as reduced-
form payoffs, although they could be microfounded). The payoff for the government for
choosing Alarm is:

Vg
A + 1{authoritarian} × B− fA × ψ, (A1)

(1 is the indicator function), and for choosing Wait:

Vg
W − fW × ψ, (A2)

where Vg
A and Vg

W are the continuation payoffs for the government from choosing either
action, as determined by Equation (9), and fA, fW are the fractions of citizens that protest
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when the government chooses either action. Note that in Equation (9), both Dt and Qt
depend implicitly on the action y selected by the government (Alarm vs. Wait), as that
action determines the entire path of lockdown decisions until time T, that in turn determines
the death rate, and hence the total disutility to the government.

Appendix A.1. Government Equilibrium Behavior

We consider the concept of Sequential Equilibrium. First, we solve the behavior of
the citizens, and then we “backward induct” the behavior of the government. Let ω̂y be
the posterior that the government is democratic after it has chosen a particular action y.
First, note that if ω̂y = 1, i.e., there is a certainty that the government is democratic, it
is a dominant strategy for every citizen not to protest. Let fy be the fraction of citizens
who oppose. Using standard techniques in global games [61], we know that a threshold
will give the solution b∗y , such that a citizen chooses to protest whenever β I > b∗y , as
proved in Proposition A2 in Online Appendix B (note that the threshold depends on the
action y chosen by the government, that in turn influences the citizens’ posterior that the
government is democratic). (Note that fy appears in the government’s payoffs in Equations
(A1) and (A2), and fy depends on the posterior ω̂y, that in turn depends on the behavior of
each of the two types of government.) We need to consider four possibilities: two pooling
equilibria, in which both types choose the same action, and two separating equilibria.

Proposition A1. There exist three sequential equilibria.

1. Pooling equilibrium with Alarm, when: Vg
A ≥ Vg

W .
2. Separating equilibrium in which the democratic government chooses Wait, and the authoritar-

ian government chooses Alarm, when:

Vg
A + B− fA × ψ ≥ Vg

W ,

Vg
W ≥ Vg

A − fA × ψ.

3. Pooling equilibrium with Waiting, when Vg
W ≥ Vg

A + B− fA × ψ.

Appendix A.2. The Economic versus Health Trade-Off

Most actions during COVID-19 have highlighted the uncomfortable trade-offs that
societies suffer or will suffer in the future in response to the pandemic. As noted above, the
immediate response of governments has focused primarily on “managing” the pandemic
with the objective of “flattening the curve” or simply saving lives. In this appendix we have
presented a conceptual framework that allows us to account for this feature: in the model,
the government faces such trade-offs. It can impose lockdowns, but these policies come
at a cost [62]. Figure A1 represents three scenarios: two of them in which the lockdown
is imposed or not in an exogenous way for all the periods against a scenario in which the
government chooses endogenously whether to impose or not a lockdown. The results
of the model are predictable, yet it matches the reality. Any government has a trade-off
between public health and the economy. This trade-off is represented in the government’s
utility function in Equation (9). Thus, a policymaker would choose in between a permanent
lockdown and no lockdown. Concerning this, lockdown policies are highly effective: in
the U.S. and using a causal structural model framework, Chernozhukov2021 show that
without stay-at-home orders, cases would have been higher by 6 to 63 percent, and without
business closures, the number of infected cases would have been higher at 17 to 78 percent.
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Figure A1. Exogenous lockdown and Non-lockdown vs. endogenous lockdown (Alarm pooling
equilibrium).

Appendix A.3. Unexpected versus Expected Pandemic

Just as crucial as the trade-off faced by governments in establishing policies that have
an economic cost, the initial reaction to the pandemic by governments was decisive for its
evolution in the early stages [52]. Figure A2 shows the effect on pandemic dynamics of
a government that fully expects it to occur versus one that does not expect it to happen.
As can be seen, not expecting it to be realized ends up delaying decision-making on the
policymaker. Even China took a long time to respond to the outbreak: it took 51 days
from 1 December 2019 to 20 January 2020 for the Chinese central government to take
complete control. Despite this, disease control strategies were quickly centralized by
the government [63]. Including these strategies, early detection and isolation of cases
were more effective in preventing more infections than travel restrictions and contact
reductions [64]. On the other hand, we perform the same simulation to test the effect of
citizens’ anticipation on the dynamics of the pandemic. However, there is no change large
enough to be graphically perceived. This points to the conclusion that expectations about
the realization of the pandemic are of vital importance when it comes to the government
since its initial reaction depends on it.

Figure A2. Unexpected vs. Expected Pandemic.
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Appendix B. Mathematical Proofs

Proof of Proposition 1. We want to find α∗ that makes contagion for A and I equal, there-
fore βA(a) = β I(a), that is:

α∗ · β ·E[(1− ℵL āS)(1− νℵL āA)] = β ·E[(1− νℵL āS)(1− νℵL āI)],

or equivalently

E[(1− νℵL āS)(α
∗(1− νℵL āA)− (1− νℵL āI))] = 0. (A3)

However, since (1− νℵL āS) > 0, for Equation (A3) to hold, it must be that

α∗(1− νℵL āA) = 1− νℵL āI ,

and that is precisely Equation (10).

Proof of Proposition 2. From the definition of α∗ in Equation (10):

∂α∗

∂ν̂
=

νℵL
∂āa
∂ν̂

(1− νℵL āa)2 > 0, and

∂α∗

∂ν
=
−ℵL āI(1− νℵL āA) +

(
ℵL āA + νℵL

∂āA
∂ν

)
(1− νℵL āI)

(1− νℵL āa)2 =

= ℵL
āA − āI + ν ∂ν̂

∂ν
∂āA
∂ν̂ (1− νℵL āI)

(1− νℵL āa)2 , (A4)

and assuming that ∂ν̂
∂ν ≥ 0, i.e., that a higher actual effectiveness makes the perceive

effectiveness weakly higher, then a sufficient condition for the expression in Equation (A4)
to be positive is āA > āI . Finally, note that the proof for the comparative statics of ℵL is
completely analogous to that of ν, what concludes the proof.

Proposition A2. The threshold b∗y and fraction fy are given, respectively, by

b∗y =
k

(1− ω̂y)Φ
(

b−b∗y
Σ

) . (A5)

fy = P[bj ≥ b∗y ] = Φ
( b− b∗y

Σ

)
. (A6)

Proof. of Proposition A2. Note that the threshold b∗y must be such that the agent is indif-
ferent between the two actions, i.e.:

ω̂y(−k) + (1− ω̂y)( fyxb∗y − k) = 0 ⇐⇒ b∗y =
k

fy(1− ω̂y)
.

But of course, fy is endogenous, as it depends on the citizens’ behavior. Therefore, we
have that

fY = P[bj ≥ b∗y ] = P[b + εj ≥ b∗y ] = 1−Φ
( b∗y − b

Σ

)
= Φ

( b− b∗y
Σ

)
.

Therefore, b∗y is the solution to:

b∗y =
k

(1− ω̂y)Φ
(

b−b∗y
Σ

) ,

what in turn pins down fY in Equation (A6).
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Proof of Proposition A1. First, we will prove that the two proposed equilibria are indeed
sequential equilibria.

1. Pooling equilibrium with Alarm: in this case, ω̂A = ω̂W = ω, and therefore f = fA =

fW and it must be the case that Vg
A ≥ Vg

W . This is the condition for the democratic
government, which implies the condition for the authoritarian government.

2. Separating equilibrium in which the democratic government chooses Wait, and the
authoritarian government chooses Alarm. In this case ω̂A = 0 and ω̂W = 1, what
implies fW = 0:

Vg
A + B− fA × ψ ≥ Vg

W ,

Vg
W ≥ Vg

A − fA × ψ.

3. Pooling equilibrium in Waiting. In this case, ω̂A = 0, ω̂W = ω. The type that has the
most incentives to deviate is authoritarian, so this equilibrium exists whenever

Vg
W ≥ Vg

A + B− fA × ψ.

Moreover, we can rule out the separating equilibrium in which a democratic gov-
ernment chooses Alarm and an authoritarian government chooses Wait. In that case, the
authoritarian government would benefit from deviating to Alarm (as that would induce
citizens to believe it is a democratic government and protest with lower probability) and
would derive the extra payoff of B.

Appendix C. Additional Simulations

This appendix contains some additional simulations to those presented in the main
text. Figure A3 shows then the variation in the proportion of cases (symptomatic and
asymptomatic infected) in response to variations in the effectiveness of the lockdown
measure, ℵ1. As can be seen, an increase in efficiency translates into a “flattening” of the
curve, reducing the rate at which the number of cases grows by affecting the infection rate.

Figure A3. Endogenous lockdown efficacy. The role of the the relative contagion in the evolution of
cases when the agent respects lockdown.

Figure A4 depicts two extreme scenarios taking government actions as exogenous:
imposing lockdown during the entire pandemic or not imposing it at all during any period.
In terms of health and social welfare, the first measure has a positive effect on the proportion
of infected in reducing its upward trend.
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Figure A4. Exogenous lockdown vs. Non-lockdown.

Figure A5 depicts the effect of an increase in the cost heterogeneity of protective
measures, c. It can be seen that an increase in cost dispersion σ2

c results in a more rapid
increase in the number of infected people when the mean population cost is low enough
(µc = 0 as, for the simulations, we have assumed that the cost follows a standard normal).
The effect is mechanical since, with a higher dispersion, there are more people with a
higher cost (the tails of the distribution widen) and fewer people end up being protected in
comparison to a situation in which the dispersion is smaller.

Figure A5. Disease dynamics with an increase in cost heterogeneity.

Figure A6 is similar to Figure 3 in the main text. However, in the first, the “timing
effect” of a nudge on the effectiveness of protective measures µ is evaluated rather than its
effect on a ’shift’ in social norms. From both, we can draw the same conclusion: measures
taken in the early stages of the pandemic have a greater effect in reducing the increase
in cases.

Figure A6. Timing effect in a nudge on protection efficacy.
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Appendix D. Behavioral Channels

As we discussed in the paper, several factors studied in behavioral economics con-
tributed to the scope and magnitude of the SARS-CoV-2 pandemic as we discussed in the
Introduction. We provide here a detailed explanation of the channels we considered.

Optimism bias and overconfidence. People tend to be excessively optimistic about
future events. Moreover, people are excessively confident in their own beliefs and skills to
face future events [20]. In particular, citizens and politicians might believe that a serious
and uncontrollable pandemic is less likely to occur than it is. This, in relation to our model,
implies that pC < p, and pG < p. That is, both citizens and the government assign the
pandemic a lower probability than it has. This, in turn, will affect the timing of public
health policies to contain the spread of the virus. As we have seen in Section 4.2.3, the
timing of policies is crucial to stop the evolution of cases. Therefore, a government who
has more accurate beliefs about the objective probability of a pandemic will have a greater
initial capacity to react. We could include another related bias within this behavioral
bias: anumerism/failure to understand exponential growth. This implies that citizens and
governments underestimate the potential of the pandemic to grow exponentially. As we
can see in Equation (9), a lower value of pG implies giving less weight to the total number
of deaths during the pandemic in the government’s utility. On the other hand, from a
citizen’s point of view, this leads to the belief that both the severity of contracting the virus
and the rate of contagion is lower than they are (see Table 3). In other words, the severity
of the pandemic is again underestimated, causing citizens to protect themselves less than
they should. As Soofi2020 noted, providing peer comparison feedback or communicating
risks accurately are potentially helpful ways to tackle optimism and overconfidence in this
context. In addition, emphasizing an adverse outcome resulting from COVID-19 that has
occurred to individuals or a population similar to the target population could increase the
tendency of citizens to protect themselves [65]. The use of role models such as celebrities
could help promote preventive measures in adolescents because, although their risk of
severe symptoms from COVID-19 is reduced [57], they still play a role in the transmission
of the virus.

Availability heuristic, in which the probability of an unknown event (a severe pan-
demic COVID-19) is estimated using the probability of a known event (a severe pandemic
of seasonal influenza). It has been proved that this behavioral bias affects the information
that people refer to when deciding whether to engage in certain health-related behaviors.
An example would be how recall of a drug advertisement affects the perceived prevalence
of that disease [66], just as a physician diagnosing a patient might increase the likelihood of
diagnosing the subsequent patient with the same illness [67]. In the present model, this bias
could affect the citizens’ perceptions of the effectiveness of responsible behavior for oneself
(ν̂), as well as pC and pG. Concerning the former, from the individuals’ point of view,
COVID-19 preventive measures may be affected by their perception of their effectiveness.
In this sense, lower values of this perception lead to a lower use of protection (Propo-
sition 2). Therefore, the information people receive about a particular type of behavior
becomes vital because it influences their health decisions. This behavioral bias suggests that
creating a negative sentiment about adherence to COVID-19-related preventive measures
may increase the perceived risk of non-adherence [1]. In Section 4.2.3, we further explore
the comparison in terms of the effectiveness of public health policies that may affect this
perception that individuals may have about the efficacy of the use of preventive measures
versus government mandates. For the effect that the availability heuristic bias may have
in terms of the model, we should also mention the consequent underestimation of the
objective probability that the pandemic will occur. For example, despite initial fears that the
H1N1 pandemic of 2009 had the same intensity as the Spanish flu, it turned out to be rela-
tively mild, with an estimate of fewer than 300,000 deaths worldwide [68]. However, as far
as the current pandemic is concerned, the opposite is true (it was initially underestimated).
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Fallacy of lack of evidence, by which an absence of evidence for an event is inter-
preted as evidence for the absence of that event [21]. Again, this could lead to underesti-
mating pG and pC.

Status quo bias, by which people tend to prefer the current baseline (or status quo)
over any change in such a way that there is a risk of doing nothing in the face of such a
novel event as the pandemic [22]. There are other connected biases such as anchoring and
insufficient adjustment and loss aversion. These predict that people take the status quo as a
reference point and any change from that reference point is either undervalued (reflected
typically in an insufficient adjustment to the new situation) or perceived as a loss (which
stimulates doing nothing), ref. [69]. In all the cases pC and pG are underestimated. Related
to this, we have the omission bias, which is people’s tendency to prefer that if harm must
happen, it does so because of a lack of action on their part, rather than due to an active
choice they made [8].

Social influences have been extensively studied as a critical element in their effect on
people’s choices and behaviors [23]. In particular, social norms are a significant determinant
in the engagement of health-related decision-making, e.g., starting to drink alcohol and
smoke cigarettes [70–73]. In the present model, social norms also influence the actions
of individuals since they constitute a decisive factor in the take-up rate for COVID-19
preventive measures. A direct implication of this result is that when designing public
policy to increase the number of people using protective measures, policymakers should
consider that peers such as work colleagues, friends, and family affect the individual’s
behavior. This effect is related to the status quo bias. For example, in the early stages of
the pandemic, in those societies where the social norm did not contemplate the use of face
masks, individuals were in an equilibrium in which there were insufficient incentives to
start protecting themselves. (Spain, for example, is among those countries with a non-
mask-wearing culture. In this country, evidence has been found that there is a profile of
individuals who are more resistant to mask-wearing: young, educated, unconcerned with
being infected, and with an introverted personality. On the other hand, the propensity to
use masks is incredibly high among the elderly living in localities where mask-wearing
behavior is popular [44].) This status quo was in part affected by social norms. (There is
evidence that we can consider wearing a face mask as part of a social norm. For example,
in Germany, a recent survey suggests that people who wear face masks in public view
others who also wear them more favorably than those who do not [42]. In addition, those
who report that their immediate circle, e.g., friends and family, wear masks at a higher
rate are more likely to wear them as well [43].) However, as the authorities emphasized its
use, behavior moved away from this equilibrium. Indeed, there is evidence that nudges
(in the form of persuasive health communication) are effective when appealing to protect
others. For example, in this regard, a message that emphasizes how COVID-19 threatens
“your community” increases people’s intentions to wear a face mask [41]. About our model,
this type of public policy would provoke a strengthening of social norms, which would be
reflected in the parameter ς. As we have seen in Section 4.2.2, changes in the value of this
parameter have a significant impact on the dynamics of the pandemic in terms, i.e., of the
evolution of cases.

From these behavioral channels, we can group them according to the parameter
they affect in our model: (1) the probability that citizens pC and government pG assign
to the pandemic that we claim is smaller than the actual probability p; (2) the citizens’
perceptions of the effectiveness of responsible behavior: ν̂, might also be smaller than the
actual effectiveness ν; and (3) the social norm parameter ς that determines how strong
social norms are (included in function S(ā), that depends implicitly on ς) is a function on
the social perception of the pandemic.
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