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Abstract: Presently, the public’s perception of risk in terms of topical social issues is mainly measured
quantitively using a psychological scale, but this approach is not accurate enough for everyday data.
In this paper, we explored the ways in which public risk perception can be more accurately predicted
in the era of big data. We obtained internal characteristics and external environment predictor
variables through a literature review, and then built our prediction model using the machine learning
of a BP neural network via three steps: the calculation of the node number of the implication level, a
performance test of the BP neural network, and the computation of the weight of every input node.
Taking the public risk perception of the Sino–US trade friction and the COVID-19 pandemic in China
as research cases, we found that, according to our tests, the node number of the implication level
was 15 in terms of the Sino–US trade friction and 14 in terms of the COVID-19 pandemic. Following
this, machine learning was conducted, through which we found that the R2 of the BP neural network
prediction model was 0.88651 and 0.87125, respectively, for the two cases, which accurately predicted
the public’s risk perception of the data on a certain day, and simultaneously obtained the weight
of every predictor variable in each case. In this paper, we provide comments and suggestions for
building a model to predict the public’s perception of topical issues.

Keywords: prediction; public risk perception; big data; BP neural network; Sino–US trade friction;
COVID-19 pandemic

1. Introduction

As the availability of information increases to levels too large to manually intercept,
manage, process, and organize within a rational timescale due to the Internet and infor-
mation clustering, the concept of “big data” thus emerges [1]. In addition to the large
volume, big data also involve issues relating to veracity [2]. Since big data come from
human activities, people’s attitude and behavior can be reflected by the analysis of big data;
therefore, big data analysis is widely applied in the psychological and behavioral analy-
sis of humans, and risk perception is one of the recognized facets of human psychology.
Public risk perception, especially towards topical issues or crisis scenarios, is an important
indicator of individuals’ psychological health. In the era of big data, understanding how to
obtain effective, scientific, and real-time predictions of risk perception is an important path
to promote human health.

Research on risk perception originated from the understanding of the concept of risk.
Risk refers to the possibility of an adverse event taking place. The understanding of the
concept of risk has been divided since the 1950s, and involves different objective and
subjective views. According to the objective view, there is no difference at the level of
subjective cognition in terms of risk, but risk is a phenomenon that exists universally in post-
modern society [3]. However, research scholars who take the subjective view have reached
two consensuses on the concept of risk. 1. Risks vary along with changes in people’s
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cognition. For example, Douglas and Wildavsky (1983) [4] thought that risks did not
increase or intensify in modern society; on the contrary, the conscious risks observed were
found to both increase and intensify. Lash and Wang (2002) [5] thought that the perception
of risk increased from the perspective of the subject’s consciousness enhancement. In this
paper, the notion of risk perception—the core object under study—originated from the
consensus: i.e., it is the subjective judgment of people concerning risks [6], namely, people’s
assessment of the risks actually or potentially affecting them [7,8], for example, a risk’s
possibility, control, and expectedness [9]. Another consensus reached by research scholars
of subjective risk theory on the cognition of the risk concept is that people’s subjective
judgment of risks may be influenced by social construction. From the perspective of Slovic
(1987), a risk event might influence risk perception after passing through the process of
social interpretation when analyzing the ripple effect caused by the risk event [7], and
thereby the Social Amplification of Risk Framework (SARF) was proposed. Dake and
Wildavsky (1991) posited that personal risk perception is influenced by public social values
and ideology [10]. Such consensus provided us with the theoretical basis for the prediction
of risk perception’s influence factors: risk perception is constructed by society, so we can
effectively predict risk perception if we can identify the factors constructed by society.

Many scholars have researched risk perception and its influence factors. Many schol-
ars verified the effective influence of various influence factors on risk perception using
quantitative research methods [11,12], which provided literature-based support to the con-
struction of a predictive model in this paper. Most of the measurements of risk perception in
existing quantitative research focused on the psychological scale [13,14] and questionnaire
method, both of which have been verified for their validity and effectiveness. However,
there are certain problems with these approaches, namely, that the means of acquiring data
is possibly too subjective, and there is no way to obtain dynamic measurements on a daily
basis. In the current era of information, an increasing number of people prefer to express
their intentions on the Internet, so mining and analyzing the big data of such intentions
and their influence factors can help to measure the extent of the influence factors of risk
perception more objectively and accurately, and even make predictions, but there is very
little research available on this topic currently. In this paper, our research attempted to
add to the literature on risk perception using big data and supplement the risk perception
research using a traditional questionnaire method.

In the literature review, we first acquired the influence factors of two dimensions,
namely, external environment and content characteristics, that are possibly involved in risk
perception, and then selected the most appropriate method to measure and predict risk
perception in the era of big data. Secondly, we explored the ways in which to acquire the
data pertaining to public risk perception and their predictive factors using big data from a
risk event before constructing the predictive model. Lastly, we analyzed two risk events
related to the economic environment and public health environment, namely, the “Sino–US
Trade Friction” and the “COVID-19 pandemic”, using the BP neural network (i.e., machine
learning) method, and then effectively predicted Chinese people’s risk perception of these
two events. All of the results in the paper can help decision makers to effectively predict
and cope with risk perception in terms of social risk events, and simultaneously provide an
innovative method for realizing the dynamic prediction of the public’s risk perception in
terms of a specific day.

2. Literature Review
2.1. Factors Influencing Risk Perception

In this paper, we built a prediction model of public risk perception based on the factors
influencing risk perception. Whilst identifying the literature concerning risk perception,
we found that there were many factors that have an influence, which not only affect risk
perception independently, but also through a cross-action effect. In general, the factors
influencing risk perception according to the existing studies can be divided into two
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categories: the internal characteristics of a public group, and the external environmental
influence on a public group.

2.1.1. Internal Characteristics

The factors that have an influence on a public group’s internal characteristics for risk
perception include three types: personal characteristics, risk experience, and cultural and
economic characteristics.

1. Personal Characteristics

The factors influencing public risk perception that are analyzed from the dimension of
personal characteristics include age, gender, education level, annual income, profession,
residential community, belief, and ethnicity [15]. Among the existing studies, certain
scholars asserted that there was significant correlation between personal characteristics and
personal risk perception. For example, Seeger et al. (2010) [16] believed that the individual
characteristics of the public were the direct reason for the differences in their attitude
towards risk, and risk attitude directly affects the public risk perception. There are plenty
of studies on this aspect. For example, Cutter (1992) [17] studied the differences in public
risk perception among different genders, and found that females were more pessimistic
than males. Lindell et al. (2008) [18] found that lower educational and income levels,
being female, and being of a minority group or ethnicity with lower status might lead to
individuals having higher risk perception. Hakes (2004) [19] posited that education could
enable people to perceive risks more closely to objective fact, and people with older age
might be more reasonable. Additionally, Sjöberg (2003) [20] and Siegrist (2020) [21] asserted
that the aforementioned factors were slightly correlated with risk perception. Among
many studies, personal characteristic factors, especially population characteristics, were
frequently used as the control variables, as they do not have a decisive influence on the risk
perception of the relevant subjects. However, in this paper, our purpose was not to verify
influence factors, but to verify predictive factors, in order to put personal characteristics into
the prediction model to investigate whether personal characteristic factors could predict
risk perception or not.

2. Risk Experience

Risk experience refers to whether individuals have experienced a similar risk event or
not. Most people might improve their risk perception of correlation, frequency, and haz-
ard [22,23] after actually experiencing a risk event, making it easier for them to understand
the controllability and seriousness of a risk, and thus become more likely to actively search
for and understand the relevant risk information. People’s feelings of a situation being out
of control might give rise to the improvement of personal risk perception. Other scholars
assert that risk experience might be embodied as the accumulation of risk knowledge. For
example, Mutz (1992) [24] believed that risk perception might be correlated with views
on social problems. Additionally, certain scholars identified two factors, namely, scientific
knowledge and personal knowledge, respectively as objective knowledge and the subjective
knowledge, but both of these factors were collectively named “knowledge structure” by
other scholars. The issue of how crisis knowledge affects public risk perception is in dispute.
For example, Slovic (1981) [25] discussed how the difference in risk knowledge structure
was the reason for the difference in risk perception, but Rowe et al. (2001) [26] disagreed
with the viewpoint. Thus, in this paper, we incorporated whether people went through risks
into our model, instead of incorporating the knowledge in dispute into our model.

3. Cultural and Economic Characteristics

Culture is deemed one of the most important factors affecting public risk perception,
and the cultural characteristics of every social subject (such as the difference in culture
and social background) decide the type of the risk people are concerned about [27]. An
important research paradigm of risk perception, the sociocultural theory of risk, originated
from the perspective of culture. Knight et al. (2010) [28] believed that the ideology (includ-
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ing political orientation, religion, and views of value) should also be covered by a cultural
dimension, where personal perception and attitudes towards a certain issue do not emerge
out of thin air, but are decided by personal socialization and personal belief systems for
politics and society. Yang (2015) [29] found that power distance and collectivism were the
cultural factors affecting the risk perception of Asians.

Economic factors are also deemed important factors influencing changes in risk percep-
tion [30]. Generally, economic factors mainly involve the public’s income level, including
various variables such as monthly income, annual income, and household income. Gaillard
(2008) [31], on the basis of natural disasters, conducted an analysis based upon personal
economic characteristics and found that communities with limited or unstable income might
be more vulnerable and have higher risk perception when faced with disasters. Zhang et al.
(2021) [32], on the basis of a public health event, analyzed urban economy characteristics
and reached the following conclusion: the higher the average wage in a region, the larger the
population density, and the higher the risk perception of the public in the region. In typical
analyses, economic factors are always combined with cultural factors, social composition
factors, and other related factors [32]. In this paper, we combined cultural factors and
economic factors into one factor and incorporate it into our predictive model.

2.1.2. External Environment

1. Crisis Information

Certain scholars studied the influence of environmental factors on risk perception
beyond public groups. Among the external environment factors, most studies focused
on the influence of the information dimension. According to the results, the spread of
crisis information promoted the formation of public risk perception [33], and worked as
an important means of enabling the public to deal with a crisis as they may continue
exploring and accumulating information, thereby making decisions based on avoiding
risks and reducing the degree of threat from the crisis. For the analysis of the influence
of the information dimension on risk perception, the factors include information amount,
type, difference, and subject [34].

Information amount is the amplifier of risk; however, studies on the influence of
information amount on risk perception are still in dispute in academic circles. For example,
Renn and Rohrmann (2000) [3] posited that a shortage of information could lead to the
high-risk perception of the public. However, Weinberg (1977) [35] asserted that too much
information might intensify a crisis event and thereby result in an overestimate of the risk.

Language is the carrier of information. Public risk perception tends to be heavily
influenced by the speeches made regarding risk events. Through pictures, videos, and
other similar information sources, a vivid presentation of an event can be provided, and
more intense emotion and higher risk perception can be induced [36]. Moreover, differences
in the information acquired by the public (such as frequency, type, etc.) may cause the
public to respond to risks and crisis events differently [37].

According to most of the studies, the media should be considered and measured
as the core element influencing public perception; the media may promote the spread
of risk information under the risk amplification framework, thereby promoting the risk
perception of the public [38]. Additionally, the factor of people’s trust in the information
source is also frequently considered in the studies of risk perception. The evolution of
public risk perception is somewhat subjective, and moreover, there is the phenomenon of
information asymmetry between the public and the information source, where government,
news media, and experts are the uppermost risk information sources and are trusted the
most by the public [39]. Giddens (1990) [40] found a positive correlation between trust and
the risk perception of a spreading subject. When the public’s knowledge is not sufficient
to cope with a risk or crisis, they may possibly maintain their relative safety by trusting
experts or scientists. Later, Vandermoere (2008) [41] further verified there was a positive
correlation among experts’/scientists’ objective assessment of crisis fact, risk perception
status, and public risk perception. This can also explain the reason why governments
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frequently convene higher-level expert forums and popularize scientific facts when coping
with crises. On this basis, in this paper, we opted to incorporate medium information
intervention and government information intervention into the prediction model.

2. Risk Characteristics

Generally, risk characteristics refer to the time characteristics of risk, namely, the
possible influence on risk perception at different stages of risk development. Moser et al.
(2012) [42] posited that risk’s temporal representation (including linear time and periodic
time) might influence risk perception, where linear time refers to when a risk is irreversible
and will not happen again once it has occurred, and periodic time describes risks that may
happen repeatedly. According to the consensus from present studies, risk perception may
reduce as the linear time of a crisis event increases. For example, according to Wei et al.
(2012) [43], the public might forget the crisis information in accordance with the Ebbinghaus
forgetting curve. However, studies on how periodic risk time characteristics vary with
risk perception are few; therefore, there is much room for researching the influence of the
periodic time factor on public risk perception. In order to increase studies of this type, we
incorporated the periodic time factor into the prediction model in this paper.

2.2. Big Data Measurement Method of Risk Perception

Existing studies acquired the data regarding public risk perception in crisis situations
using static and microcosmic personal questionnaires [18,44]. However, this method has
the shortcomings of being time consuming, hysteretic in nature, and costly. Thus, scholars
began exploring ways of realizing dynamic and real-time monitoring of risk perception
using cutting-edge big data technology, with two main methods being adopted. The first
method is based on network searching behavior: the higher the searching behavior of the
public in a network space, the higher the attention of the public on event, and the higher the
risk perception [45]. The dynamic data regarding these searches are obtained from Baidu
or Google searching indexes. The second method is based on negative emotions online.
The public expression of negative emotions is closely correlated with the risk perception at
the psychological level: the higher the negative emotion, the higher the risk perception [46].
Here, the dynamic data are sourced from the information posted by the public on the
Internet (tapped from big data texts), where emotion lexicon technology is used to analyze
emotions within information [47]. In this paper, the first method was used to acquire the
big data concerning public risk perception.

Most western scholars used Google search to identify the risk perception in their
studies. For example, Da et al. (2011) [48] measured the search volume of 19 keywords
related to stock names in 2011 using the Google search engine, and then analyzed the
keywords with Russell 3000 indexes in 2004–2008, and finally obtained the result that
search volume is positively correlated with the short-term yield of the Russell index, but
is negatively correlated with the long-term yield, signifying that the searching behavior
of the public using keywords related to stocks represents their perception of financial
and economic risks. Moreover, certain scholars also used search behaviors to analyze the
relationships between the macro-economic index and consumer confidence index, and the
predicating effect of keyword search volume on financial markets [49]. The research results
showed that the greater the number of negative words searched for by the public, the lower
their confidence in the financial market.

Chinese scholars mainly used the Baidu index to carry out their research. The key-
words used on Baidu reflect the search demands of the public (netizens). The Baidu
Corporation computes the search change rate of keywords using a sorting algorithm,
thereby forming the Baidu index. Currently, the studies on risk perception using Baidu
indexes in China concentrate on two fields. The first is the relation between the Baidu
indexes and economic and financial risks; for example, Zhang et al. (2014) [50] used the
Baidu indexes to measure the attention of users on stocks, and then measured the atten-
tion of common investors, and finally analyzed the influencing mechanism of common
investors’ attention on stock liquidity and stock yield. The authors found that the Baidu
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indexes reflected the common investors’ perception of stock risks. The second is the public
opinion related to risk perception of an event. Chen and Lin (2013) [51] used the Baidu
indexes to research the spatial–temporal evolution of online public opinion and analyze the
changing characteristics of the Baidu indexes during the online events of “Xiao Yueyue”,
“Guo Meimei”, and “Yao Jiaxin” in the spatial–temporal dimension of attention. The results
showed that the Baidu index reflected the changing situations of online public opinion
about emergency events at a comparatively effective level, namely, the Baidu index could
reflect the evolution of online opinion on a risk event.

The main hypothesis of the current study is that the more the public search for or
pay attention to certain content, the stronger the perceived uncertainty of the event, and
the higher the risk perception. Certain scholars adopted the questionnaire approach to
verify the hypothesis, i.e., by issuing 400 questionnaires in a region where a certain policy
was executed. The results showed that the regression coefficient between the public risk
perception and the information search behavior of the public was 0.8 (p < 0.001), so the
higher the respondents’ perception level of the possible risk aroused by a policy, the larger
the hazard of risk, and the more active the information search behavior [52].

2.3. Prediction of Risk Perception

There are currently few studies that focus on the prediction of risk perception. When
summarizing the existing research on the topic, the findings revealed that scholars reached
consensus in two main areas. (1) The prediction model can be established using risk
perception’s influence factors (for example, van der Linden (2015) [53]) on the basis of
climate change risks, thus establishing the climate change risk perception model (CCRPM)
by adopting cognitive factors (related scientific knowledge), related experience (emotional
assessment and personal experience), sociocultural influence (culture, view of value, world
view, and social common cognition) and sociodemographic characteristics (sex, political
ideology, educational level, age, income) as the main predictive factors to measure the
public’s risk perception. There are many factors influencing public risk perception, and
these factors not only affect risk perception independently, but also affect risk perception
under cross action. Hence, how to establish an effective predictive model is the problem
to be solved in this paper. (2) An effective potential method in predictive analysis is the
back propagation (BP) neural network method; for example, Zhang et al. (2021) [54], on the
basis of droughts, predicted the risk perception of farmers using the BP neural network
method by adopting the disastrous situation/environment, farmers’ economic income, and
the planting structure of crops as the main predictive factors. In this paper, we explored the
use of such a method to predict risk perception.

3. Data and Research Methods

A back propagation (BP) neural network is a type of machine learning. It is based on
a gradient descent strategy to regulate the weight and the threshold value of a network
connection using counter propagation, until the error between the predicted value and the
actual value reduces to an acceptable range or to the preset number of learning iterations.
In this paper, we selected the three-layer BP neural network of a single implication level to
predict public risk perception, including input level, implication level, and output level.
The studies in this paper were carried out by determining the input node and output node,
and using BP neural network learning; see Figure 1 for the research procedures.
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3.1. Acquisition of Input Node

Through the review of the literature concerning the influence factors of risk perception,
we found that internal characteristics such as demographic characteristics, risk experience,
and economic characteristics, and external characteristics such as crisis information and
risk characteristics may have an influence on risk perception. Therefore, in this paper,
we acquired the input node data from two aspects, namely, internal characteristics and
external characteristics. Our research data originated from China’s Internet. From 2018
to the present, the topical issues with a significant influence on Chinese people were the
“Sino–US trade friction” and “COVID-19 pandemic”. The “Sino–US Trade Friction” event
is a representative case of economic environment risk, whereas the “COVID-19 pandemic”
is a representative case of public health risk.

Firstly, the time series data were acquired. The Sino–US trade friction has attracted the
attention of the public in China since March 2018 and has continued since. Attention on
this event gradually declined from the end of October 2019, when Chinese and American
leaders both announced that the negotiations had achieved substantive results. On the
21 January 2020, the first news briefing for the COVID-19 pandemic in China was held
by the Guangdong Information Office and Nanshan Zhong, a famous scientist in China,
announced that the virus can spread from person to person, the event of the COVID-19
pandemic has attracted the attention of the public in China. By the end of August 2021,
China had entered a state whereby the epidemic prevention policy had matured, and while
the epidemic erupted occasionally in various places, the overall situation was mainly stable.
As shown in Figure 1, we first obtained the time series data by data mining and encoding,
where the sample time for the Sino–US trade friction event was from 1 March 2018 to 31
October 2019, and the sample time of the COVID-19 pandemic event was from 21 January
2020 to 31 August 2020.

Secondly, the provincial panel data were acquired. We organized the provincial panel
data from the Chinese mainland taken from the National Statistics Bureau of China, and
finally combined the time series data and the provincial panel data.

Lastly, the time series data and provincial panel data were combined. Except for
the missing data, we finally obtained 16,005 effective data related to the “Sino–US trade
friction” event and 18,259 effective data related to the “COVID-19 pandemic” event for
conducting our analysis. Table 1 shows the seven influence factors and 20 measurable
variables of risk perception. All measurable variables were used as the input nodes. In the
paper, the input node number of the BP neural network, as constructed herein, was 20.



Int. J. Environ. Res. Public Health 2022, 19, 9545 8 of 20

Table 1. Input vector of BP neural network.

Predictor Variable Measurable Variable/Input
Node Source Input Value of Index

Internal characteristics

Demographic characteristics X1 Total population National Bureau of Statistics of China Value

X2 Sex ratio (male/female) National Bureau of Statistics of China Value

Risk experience
X3 Finance risk experience More financial crisis experience,

less natural disaster experience 0.1

X4 Compound risk experience More financial crisis and natural
disaster experience 0.1

X5 Natural disaster risk
experience

More natural disaster experience,
less financial crisis experience 0.1

Economic characteristics

X6 GDP National Bureau of Statistics of China Value

X7 Per capital GDP National Bureau of Statistics of China Value

X8 Foreign trade National Bureau of Statistics of China Value

X9 Domestic trade National Bureau of Statistics of China Value

External environment

Media intervention
X10 Popularization of Internet

Statistical Reports on Internet
Development in China,
http://www.cnnic.net.cn/ (accessed
on 1 June 2022)

Value

X11 Media report
Baidu Media index;
http://index.baidu.com (accessed on
1 June 2022)

Value

Government intervention

X12 Posts information on
official website or not Manual encoding 0.1

X13 Provides information
about leader or not Manual encoding 0.1

X14 Uses information
weakening strategy or not Manual encoding 0.1

X15 Uses the benefit frame or
not Manual encoding 0.1

X16 Uses the emotion frame
or not Manual encoding 0.1

X17 Uses the responsibility
frame or not Manual encoding 0.1

X18 Uses the threat frame or
not Manual encoding 0.1

Risk characteristics
X19 Is in the conflict phase or
not Manual encoding 0.1

X20 Is in the cooling-off phase
or not Manual encoding 0.1

3.1.1. Internal Characteristic Index

According to the review of the literature, three factors, namely, demographic charac-
teristics, risk experience, and experience characteristics, were selected as the predictive
variables of public risk perception. The demographic characteristics were measured by the
total population (X1) and the sex ratio (X2) of a certain province.

The risk experience was measured according to the regional distribution of risks in
China. According to the research results, the financial crisis risks in the eastern region

http://www.cnnic.net.cn/
http://index.baidu.com
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and the middle region of China were higher than those in the western region [55], but the
natural disaster risks in the western and middle regions of China were higher than those in
the eastern region [56]. Thus, in this paper, we set the provinces in the eastern region as “1”
under “Financial risk experience (X3)”, the provinces in the middle region as “1” under
“Compound risk experience (X4)”, and the provinces in the western region as “1” under
“Natural disaster risk experience (X5)”.

The economic characteristics were taken from the cultural and economic characteristics
provided in the literature review. The cultural characteristics are rather abstract and are
hard to use as quantitative indexes; most scholars have verified that there is a significant
relation between culture and economy [57–59], and therefore in this paper we selected
economic characteristics as the predictive factor of risk perception, and used four variables:
GDP (X6), per capita GDP (X7), foreign trade amount (total export–import volume of local
area in which it runs, X8) and domestic trade amount (total retail sales of consumer goods,
X9) to make our measurement.

3.1.2. External Environment Indexes

According to the literature review, three factors, namely, media intervention, govern-
ment intervention, and risk characteristics, were selected as the predictive variables of
public risk perception. The data in this paper are excerpted from Internet big data, so media
intervention is affected by a province’s Internet popularity rate and the media’s reporting of
the Sino–US trade friction or COVID-19 pandemic. Thus, we selected Internet popularity
(X10) and the Baidu media index (X11) as the measurement variables of media intervention,
whereby the Baidu media index is the publicity of an issue reported by the media (computed
by the Baidu Corporation, http://index.baidu.com (accessed on 1 June 2022)).

Studies on government intervention behaviors are based on the “Meaning Making
Theory of Crisis Government” [50]. According to the theory, the government constructs the
public’s perception of a crisis using three strategies: rituals, masking, and framing. Rituals
refers to the meaning-making of a government, which can be represented by the actions
of officials or officers, such as standing in silent tribute or mourning, consoling victims,
or official investigations into an event [60], in which official channels and leaders play
important role [61]. Therefore, ritual coding refers to two variables: whether information is
posted on an official website (X12) and whether information about the leader is available
(X13). Masking is the practice adopted by governments to weaken the influence of crises
that involve deep-rooted conflict and social vulnerability [15]. For the masking strategy, we
set the information-weakening indicator (X14). Framing refers to refining certain aspects
of a crisis and showing them to audiences through artificial screening [62]; in accordance
with the research of Eldridge (2008) [63], governments may use four frames, namely,
benefit (X15), emotion (X16), responsibility (X17), and threat (X18), in risk events, so we
set the indicators X15 and X18 in this paper. The combined time series and provincial
panel data pertaining to government intervention behavior were obtained in two ways.
X12/13/15/16/17/18 were obtained using the big data mining of government information
released on the Internet, finding the information released by the government on a certain
day and carrying out data cleaning and manual encoding (if there was no government
information obtained on a certain day, all of the data from that day were treated as missing).
X14 was calculated using the normalization result of the government information release
data and subtracting the normalization result of the Baidu media index. If the result was
less than 0, this signified that the government was weakened relative to media exposure, so
the variable code was 1, and the others were 0.

For the risk characteristics, we selected the risk time characteristics as set variables.
Within the period under study, the Sino–US trade friction went through the following six
stages: experience friction (S1: 1 March 2018–2 May 2018), negotiation (S2: 3 May 2018–14
June 2018), friction (S3, 15 June 2018–1 December 2018), negotiation (S4: 2 December 2018–2
May 2019), friction (S5: 3 May 2018–20 September 2019), and negotiation (S6: 21 August
2019–31 October 2019). At times during stages S1, S3, and S5, the X19 code is 1, and the
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others are 0; at times during stages S2, S4, and S6, the X20 code is 1, and the others are 0.
Within the period under investigation, the COVID-19 pandemic in China went through the
following four stages according to a white paper titled “China’s actions to fight the COVID-
19 pandemic” published by Xinhua News: outbreak period (20 January 2020–20 February
2020), spread control period (21 February 2020–17 March 2020), phased victory period
(18 March 2020–28 April 2020), and regular epidemic period (29 April 2020–31 August
2021).During the outbreak period and spread control period, the COVID-19 pandemic
aroused some panic among members of the public and was responded to differently, so
at these times, the X19 code is 1, and the others are 0. During the phased victory period
and regular epidemic period, in which the COVID-19 pandemic returned to normal and all
parties reduced their concerns about it, the X20 code is 1, and the others are 0.

3.2. Acquisition of Output Node

The output node of the BP neural network constructed in this paper is 1. It is the data
of public risk perception. By selecting the studied time period from 1 March 2018 to 31
October 2019, obtaining the provincial Baidu indexes (http://index.baidu.com (accessed on
1 June 2022)) of the keywords “Sino–US trade war”, “Sino–US trade friction”, totaling them
up to reflect the public perception in local regions for the risks caused by the Sino–US trade
friction, and then combining the time series data and provincial panel data, we obtained
the output data. Risk perception is a continuous variable, so in order to reflect the high or
low level of risk perception, we converted it into a classified variable, and then used the
visible discretization function of the SPSS software, and selected the mean and standard
deviation based on the specimens to set the cut-off line (see Figure 2). The SPSS software
classifies risk perception data into four categories. We then set them as 1–4, from low to
high, meaning that the larger the value, the higher the risk perception. Using the same
method to analyze, summarize, and categorize the Baidu index of the vocabularies used by
the public for “COVID-19” during the period from 21 January 2020 to 31 August 2020, we
were able to classify the public risk perception in China for the COVID-19 pandemic (see
Figure 3).
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3.3. Learning of BP Neural Network

Figure 2 shows the BP neural network structure, where the input level sample is Xi,
the output of the implication level is Zj, and the output of the output level is Yk. The
weight between the input level and implication level is ωij, and the weight between the
implication level and output level is ωjk. The threshold values of the implication level and
the output level are respectively αj and βk. The standard learning procedures of the BP
neural network are described in the following subsections [64].

http://index.baidu.com
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3.3.1. Calculation of Node Number of Implication Level

As shown in Figure 1, the quantity of the input node and output node was respectively
determined in Step 1 and Step 2, so when proceeding to Step 3, we first needed to determine
the quantity of the implication level node. If the node is too large, it may result in the
network becoming complicated, or may even cause overfitting. If the node is too small, it
may result in misconvergence. Presently, there is no ideal analytic formula to determine
the optimal node number for the implication level. Most scholars adopted Formula (1)
to obtain the implication level node value. In this paper, we also adopted the formula to
compute the node number. Here, m is the node number of the input level, which is 20 in
this paper; n is the node number of the output level, which is 1 in this paper; γ is the
constant number from 1 to 10; and N is the node number of the implication level.

N =
√

m + n + γ (1)

The most common method used to calculate the value of γ is to do the tests one by one
for γ according to Formula (1), compare the different node numbers of N of the implication
level and the different mean square errors of the network training, and then judge and select
the optimal implication level node [65]. The specific procedures are: (1) randomly initialize
the weight ωij between the input level and implication level, the weight ωjk between
the implication level and output level, and the threshold value, namely, αj and βk, of the
implication level and output level into a value from −1 to +1; (2) compute the output Zj
of the implication level according to Formula (2), and the output Yk of the output level
according to Formula (3), where the f in Formula (2) is the tangential Sigmoid function:
f (x) = ex−e−x

ex+e−x . The f in Formula (3) is the logarithmic Sigmoid function: f (x) = 1
1+e−x ;

(3) compute the mean square error (E) according to the error function of Formula (4), where
Y is the actual value and Y∗ is the predicted value (in order to correspond to the actual
value, the value is rounded off). In this paper, the actual value is the public risk perception
data. Through training, the neural network’s predicted value approached the actual value as
closely as possible, namely, the error E tended to be low, signifying better model performance.
In the paper, the target error was set to 0.005, and the initial threshold value was 0. (4) Test
γ = [1, 10], respectively, and test every γ value ten times to obtain E, and then calculate the
mean value by removing the maximum value and the second largest value, comparing the
mean value of E in different γ values, and finally putting the γ value (when the value is
lowest) into Formula (1) to calculate the node number of the implication level.

Zj = f
(
∑m

i=1 ωijXi + αj

)
, j = 1, 2, . . . , N (2)

Yk = f
(
∑N

i=1 ωjkZi + βk

)
, k = 1 (3)

E =
1
2
(Y∗ −Y)2 (4)

3.3.2. Performance Test of BP Neural Network

Currently, R2 is generally used to judge the effectiveness of a BP neural network. The
specific procedures are: (1) after determining the node number of the implication level,
update the weight ωij from the input level to the implication level, and the weight ωjk
from the implication level to the output level according to Formulas (5) and (6), where
θ is the learning rate. For the learning rate, the larger the learning rate is, the quicker
the training speed is. However, if it is too large, it will affect the stability of the network.
Thus, the learning rate is usually valued between 0.01 and 0.8 [65]; in this paper, it was
0.01. (2) Update the threshold values αj and βk of the implication level and output level
according to Formulas (7) and (8). (3) By training on the Internet, make the actual output
approach the expected output as much as possible, until the maximum training frequency
is reached or the error precision requirement is met. Finally use Formula (9) to compute
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the determination coefficient R2, where Y∗i (i = 1, 2, . . . , M) is the predicted value of the
i specimen; Yi(i = 1, 2, . . . , M) is the actual value of the i specimen; M is the number of
specimens under testing; and l is the number of specimens under training. The closer the
R2 approaches 1, the better the prediction result of network.

ωij = ωij + θZj
(
1− Zj

)
Xi ∑3

k=1 ωjkEk (5)

ωjk = ωjk + θEk (6)

αj = αj + θZj
(
1− Zj

)
∑3

k=1 ωjkEk (7)

βk = βk + θEk (8)

R2 =

(
l ∑l

i=1 Y∗i Yi −∑l
i=1 Y∗i ∑l

i=1 Yi

)2(
l ∑l

i=1 Y∗i
2 −

(
∑l

i=1 Y∗i
)2

)(
l ∑l

i=1 Yi
2 −

(
∑l

i=1 Yi

)2
) (9)

3.3.3. Computation of Every Input Node Weight

In order to explore the prediction of every influence factor on public risk perception in
the BP neural network, we also computed the influence weight of every input index for
public risk perception in this paper. Use the normalization result ωi of the total sum of the
absolute values from input index Xi to all implication level nodes as the influence weight,
and then use Formula (10) to compute.

ωi =
∑N

j=1

∣∣∣ωij

∣∣∣
∑m

i=1 ∑N
j=1

∣∣ωij
∣∣ i = 1, 2, . . . , m; j = 1, 2, . . . , N (10)

4. Research Results
4.1. Calculation Results of Implication Level Nodes

In the case of Sino–US trade friction, we used 15,978 data from 1 March 2018 to
30 October 2019 as the training specimen, and 27 data (test data from four provinces,
namely, Gansu, Ningxia, Qinghai, and Xinjiang were missing on this day, since there
was no government intervention information in those provinces on that specific day)
from 31 October 2019 as the test specimen. Firstly, we set the initial node number of the
implication level to 6(γ = 1), and then we trained 10 times. After removing the largest and
second largest errors, we calculated the mean value of the last eight errors. Finally, we set
the node number of the implication level as a value from 6 to 15. Table 2 shows the mean
square error at different implication level nodes. Thus, we obtained the mean error of the
network training at different implication level node numbers (see Figure 4). According to
Figure 4, we can see that as the γ value increases, the error of mean square of BP neural
network tends to decline, but certain values bounce up in the process; when γ is 2 and 7,
the error is at its maximum value; when γ is 10, the error is at its minimum value, so the
implication level node of network in this case was selected as 15.
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Table 2. MSE at different implication level node numbers (N) for “Sino–US trade friction”.

N 6 7 8 9 10 11 12 13 14 15

1 0.03843 0.041288 0.04026 0.037899 0.036723 0.03695 0.041334 0.041546 0.035998 0.035452
2 0.038797 0.040899 0.040164 0.040001 0.036203 0.034511 0.038502 0.039368 0.033054 0.031881
3 0.037166 0.042028 0.041301 0.037746 0.036064 0.036079 0.03839 0.03994 0.033773 0.032317
4 0.040197 0.043781 0.038962 0.038004 0.038816 0.03644 0.038882 0.035211 0.035942 0.033913
5 0.038399 0.042905 0.039712 0.037565 0.03704 0.036506 0.037156 0.037334 0.03319 0.0336
6 0.039094 0.041749 0.042155 0.043736 0.037535 0.03787 0.035949 0.036542 0.032057 0.033272
7 0.040387 0.041865 0.039723 0.040224 0.034747 0.038156 0.039725 0.037975 0.035863 0.033655
8 0.042235 0.043282 0.041622 0.042796 0.037872 0.036668 0.037521 0.038288 0.034709 0.032697
9 0.041834 0.042483 0.041492 0.041177 0.036453 0.036274 0.037597 0.037562 0.033135 0.032562

10 0.041744 0.042366 0.041045 0.03982 0.037584 0.037393 0.039514 0.03805 0.034882 0.033769
S 0.041834 0.043282 0.041622 0.042796 0.037872 0.03787 0.039725 0.03994 0.035942 0.033913
M 0.042235 0.043781 0.042155 0.043736 0.038816 0.038156 0.041334 0.041546 0.035998 0.035452
A 0.039277 0.041948 0.040332 0.039055 0.036544 0.036353 0.037939 0.037541 0.033833 0.032969

S = second largest value; M = maximum value; A = average without second largest and maximum value.
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Figure 4. Mean value of MSE at different values of γ for “Sino–US trade friction”.

In the case of the COVID-19 pandemic, we used 18,228 data from 21 January 2020
to 30 August 2020 as the training specimen, and 31 data from 31 October 2019 as the test
specimen. We used the same method to test the values of γ from 1 to 10 (see Table 3 and
Figure 5 for results), so the implication level node of the network in this case was selected
as 14.

Table 3. MSE at different implication level node numbers (N) for “COVID-19 pandemic”.

N 6 7 8 9 10 11 12 13 14 15

1 0.024931 0.023911 0.022735 0.023191 0.02281 0.022264 0.021038 0.021993 0.022286 0.02226
2 0.024628 0.023652 0.024554 0.021627 0.021808 0.022545 0.021293 0.023511 0.021676 0.021454
3 0.024593 0.024658 0.022684 0.022838 0.021443 0.024211 0.022768 0.021613 0.020995 0.022321
4 0.024709 0.023674 0.021766 0.021945 0.021509 0.022157 0.022252 0.021199 0.021362 0.020565
5 0.023643 0.022454 0.021477 0.023813 0.023024 0.022271 0.021368 0.022018 0.021549 0.021106
6 0.022591 0.023708 0.022449 0.024008 0.022284 0.022097 0.022242 0.022135 0.021545 0.021935
7 0.026123 0.022861 0.022823 0.022809 0.022792 0.022608 0.020362 0.020633 0.021154 0.02112
8 0.023222 0.024408 0.022363 0.024112 0.021709 0.022643 0.02243 0.023532 0.019564 0.022017
9 0.024576 0.022226 0.02271 0.023301 0.023679 0.02156 0.020604 0.022579 0.020798 0.019582

10 0.023498 0.025131 0.024482 0.022234 0.020913 0.021021 0.021403 0.022615 0.020855 0.020869
S 0.024931 0.024658 0.024482 0.024008 0.023024 0.022643 0.02243 0.023511 0.021676 0.02226
M 0.026123 0.025131 0.024554 0.024112 0.023679 0.024211 0.022768 0.023532 0.022286 0.022321
A 0.023933 0.023362 0.022376 0.02272 0.021909 0.022065 0.02132 0.021848 0.020978 0.021081

S = second largest value; M = maximum value; A = average without second largest and maximum value.
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4.2. Performance Test Results of BP Model

Figure 6 shows the least mean square error of the BP neural network model for “Sino–
US trade friction”, as constructed in this paper, which was 0.036073 (at the epoch 192).
Figure 6 also shows the R2 of the model, which was 0.88651. Figure 7 shows the least mean
square error of the BP neural network model for “COVID-19 pandemic”, which was 0.020629
(at epoch 50). Figure 7 also shows the R2 of the model, which was 0.87125. The results
showed that the BP neural network model exhibited good performance in both cases.
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Tables 4 and 5. Among the risk perception predictions for “Sino–US trade friction” in
27 areas from the Chinese mainland on 31 October 2019, 24 of which were the prediction
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preparations where the prediction in three areas, namely, Shandong, Tibet, and Shaanxi,
errors occurred: the error was less than Level 1, and all predictions of risk perception were
high class 1. Among the risk perception predictions for the COVID-19 pandemic in 31 areas
of the Chinese mainland on 31 October 2019, 30 of which were the prediction preparations,
errors only occurred in the prediction for Qinghai.

Table 4. Comparison of actual values and predicted values for “Sino–US trade friction”.

Time Location Actual
Value

Predicted
Value Time Location Actual

Value
Predicted

Value

31 October 2019 Beijing 3 3 31 October 2019 Jiangxi 3 3
31 October 2019 Tianjin 3 3 31 October 2019 Shandong 1 2
31 October 2019 Hebei 3 3 31 October 2019 Henan 3 3
31 October 2019 Shanxi 3 3 31 October 2019 Hubei 2 2
31 October 2019 Inner Mongolia 1 1 31 October 2019 Hunan 1 1
31 October 2019 Liaoning 1 1 31 October 2019 Guangdong 1 1
31 October 2019 Jilin 3 3 31 October 2019 Guangxi 3 3
31 October 2019 Heilongjiang 3 3 31 October 2019 Hainan 3 3
31 October 2019 Shanghai 1 1 31 October 2019 Chongqing 4 4
31 October 2019 Jiangsu 1 1 31 October 2019 Sichuan 3 3
31 October 2019 Zhejiang 2 2 31 October 2019 Guizhou 3 3
31 October 2019 Anhui 3 3 31 October 2019 Yunnan 2 2
31 October 2019 Fujian 1 1 31 October 2019 Tibet 2 3
31 October 2019 Shaanxi 2 3

Table 5. Comparison of actual values and predicted values for “COVID-19 pandemic”.

Time Location Actual
Value

Predicted
Value Time Location Actual

Value
Predicted

Value

31 August 2021 Anhui 2 2 31 August 2021 Liaoning 2 2
31 August 2021 Beijing 2 2 31 August 2021 Inner Mongolia 2 2
31 August 2021 Fujian 2 2 31 August 2021 Ningxia 2 2
31 August 2021 Gansu 2 2 31 August 2021 Qinghai 1 2
31 August 2021 Guangdong 3 3 31 August 2021 Shandong 3 3
31 August 2021 Guangxi 2 2 31 August 2021 Shanxi 2 2
31 August 2021 Guizhou 2 2 31 August 2021 Shaanxi 2 2
31 August 2021 Hainan 2 2 31 August 2021 Shanghai 3 3
31 August 2021 Hebei 2 2 31 August 2021 Sichuan 2 2
31 August 2021 Henan 3 3 31 August 2021 Tianjin 2 2
31 August 2021 Heilongjiang 2 2 31 August 2021 Tibet 1 1
31 August 2021 Hubei 2 2 31 August 2021 Xinjiang 2 2
31 August 2021 Hunan 2 2 31 August 2021 Yunnan 2 2
31 August 2021 Jilin 2 2 31 August 2021 Zhejiang 3 3
31 August 2021 Jiangsu 3 3 31 August 2021 Chongqing 2 2
31 August 2021 Jiangxi 2 2

4.3. Determining the Weight of Every Prediction Index
4.3.1. Index Weight in the Sino–US Trade Friction

In the case of the “Sino–US trade friction”, a weight of 20 indices was computed
according to Formula (10): W = (0.0446, 0.0351, 0.0669, 0.0576, 0.0640, 0.0840, 0.0495, 0.0971,
0.0802, 0.0444, 0.0801, 0.0260, 0.0163, 0.0088, 0.0221, 0.0450, 0.0274, 0.0495, 0.0556, 0.0456);
the histogram is shown in Figure 8.



Int. J. Environ. Res. Public Health 2022, 19, 9545 16 of 20Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 8. Weight of every prediction index in “Sino–US trade friction”. 

As shown in Figure 8, in the case of the Sino–US trade friction, among internal char-
acteristic indexes, the weight of economic characteristics (the mean value of X6–X9 was 
0.0777) for risk perception prediction was the highest, and among these, the weight of the 
prediction for the foreign trade variable (X8) was the highest, which was related to the 
foreign trade events related to the Sino–US trade friction. The weight of risk experience 
(the mean value of X3, X4, and X5 was 0.062833) was second highest, and the weight of 
the prediction for financial risk experience (X3) was the highest of these, which meets the 
characteristics of financial risk. However, the weight of the demographic characteristics 
(the mean value of X1 and X2 was 0.03985) was the lowest. 

Among the external environmental indexes, the weight of media intervention (the 
mean value of X10 and X11 was 0.06225) was the highest. Compared with the popularity 
of the Internet (X10), the weight of the prediction for media reporting (X11) was higher. 
The mean weight of risk characteristics (X19 and X20) was 0.0506, where the prediction 
variable at the phase of conflict (X19) was higher, which meets the research result; i.e., the 
risk perception at the period of high risk was higher, as described in the literature review. 
The weight of government intervention (X12–X18) was lowest with a mean value of 
0.027871, and the weights for the prediction for emotion framework (X16) and threat 
framework (X18) were higher. 

4.3.2. Index Weight in the COVID-19 Pandemic 
In the case of the COVID-19 pandemic, the weights of 20 indices were computed ac-

cording to Formula (10): 𝑊= (0.0487, 0.0569, 0.0464,0.0580, 0.0634, 0.0434, 0.0442,0.0650, 
0.0504, 0.0575, 0.0446, 0.0608, 0.0487, 0.0393, 0.0409, 0.0491, 0.0449,0.0438, 0.0536, 0.0405); 
the histogram is shown in Figure 9. 

 
Figure 9. Weight of every prediction index for “COVID-19 pandemic”. 

Figure 8. Weight of every prediction index in “Sino–US trade friction”.

As shown in Figure 8, in the case of the Sino–US trade friction, among internal
characteristic indexes, the weight of economic characteristics (the mean value of X6–X9
was 0.0777) for risk perception prediction was the highest, and among these, the weight of
the prediction for the foreign trade variable (X8) was the highest, which was related to the
foreign trade events related to the Sino–US trade friction. The weight of risk experience
(the mean value of X3, X4, and X5 was 0.062833) was second highest, and the weight of
the prediction for financial risk experience (X3) was the highest of these, which meets the
characteristics of financial risk. However, the weight of the demographic characteristics
(the mean value of X1 and X2 was 0.03985) was the lowest.

Among the external environmental indexes, the weight of media intervention (the
mean value of X10 and X11 was 0.06225) was the highest. Compared with the popularity of
the Internet (X10), the weight of the prediction for media reporting (X11) was higher. The
mean weight of risk characteristics (X19 and X20) was 0.0506, where the prediction variable
at the phase of conflict (X19) was higher, which meets the research result; i.e., the risk
perception at the period of high risk was higher, as described in the literature review. The
weight of government intervention (X12–X18) was lowest with a mean value of 0.027871,
and the weights for the prediction for emotion framework (X16) and threat framework
(X18) were higher.

4.3.2. Index Weight in the COVID-19 Pandemic

In the case of the COVID-19 pandemic, the weights of 20 indices were computed
according to Formula (10): W= (0.0487, 0.0569, 0.0464,0.0580, 0.0634, 0.0434, 0.0442,0.0650,
0.0504, 0.0575, 0.0446, 0.0608, 0.0487, 0.0393, 0.0409, 0.0491, 0.0449,0.0438, 0.0536, 0.0405);
the histogram is shown in Figure 9.
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As shown in Figure 9, the weight of risk experience (the mean value of X3, X4, and
X5 was 0.05593) in the case of the COVID-19 pandemic, different from the highest weight
of economic characteristics for the Sino–US trade friction, was the highest among the
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internal characteristics indicators, among which the predictive weight (X5) of natural
disaster risk experience was the highest. Following this was the weight of the demographic
characteristics (the mean value of X1 and X2 was 0.0528); the predictive weight of the
economic characteristics (the mean value of X6–X9 was 0.05075) was the lowest. Compared
with the case of the Sino–US trade friction, there was no huge difference in the weights of
the various indicators of the internal characteristics in the case of the COVID-19 pandemic.

Among the environmental indicators, the weight of media intervention (the mean
value of X10 and X11) was the highest; compared with media reporting (X11), the predictive
weight of Internet popularity (X10) was higher, but the weight of media reporting in the
case of the Sino–US trade friction was higher. The second-highest weight ranking was risk
characteristics (X19 and X20) with an average weight of 0.04705, among which the predictor
variable at the phase of conflict (X19) was higher, similar to the result in the case of the
Sino–US trade friction. The weight of government intervention (X12–X18) was the lowest,
averaging 0.04037, among which the predictive weights of information source on official
websites (X12) and emotional framework (X16) were higher, especially for the information
source on official websites, for which the predictive weight was as high as 0.0608. This
result was significantly different from the case of Sino–US trade friction, signifying that
the authority of the information source for the COVID-19 pandemic influenced public
perception to a high degree.

5. Conclusions
5.1. Major Findings and Contributions
5.1.1. Influence Factors can Effectively Predict Public Risk Perception of Topical Issues

Through a literature review, we found that the internal characteristics of groups, such
as demographic characteristics, economic characteristics, and risk experience, can affect
public risk perception, whereas external environment factors such as crisis information and
risk characteristics can also have an effect; however, there is currently a dearth of literature
on the prediction of public risk perception. In this paper, the empirical analysis of two
cases, namely, the “Sino–US trade friction” and the “COVID-19 pandemic”, was conducted
using the BP neural network method (machine learning). The main finding is that influ-
ence factors, such as internal characteristics and external environment characteristics, can
effectively predict public risk perception (the R2 of predictive models in the two cases were
respectively 0.88651 and 0.87125, with the predictive result being better).

This paper makes two theoretical contributions, as follows. 1. The empirical study of
two topical issues, namely, the “Sino–US trade friction” and the “COVID-19 pandemic”,
was added to the research on public risk perception. 2. The research field of the prediction
of public risk perception of topical issues was further enriched. This paper is significant in
that it can serve to inform government practice in terms of the control of public opinion
and the evaluation of social risk. All of the predictive variables in this paper were easily
acquired, and were significant in establishing a predictive model of public risk perception
of topical issues based on big data analysis, machine learning methods, etc., and can be
incorporated into the practices of governmental and third-party departments.

5.1.2. External Environment Can Effectively Lead Public Risk Perception of Topical Issues

As there are so few existing studies on the prediction of public risk perception, there is
less of a focus on the rise and fall of public risk perception associated with adjustments to
the predictor variables. However, with topical social issues, effective guidance regarding
public risk perception is crucial. I addition, in the two cases in this paper, we computed
the influence weight of every predictor variable for public risk perception. Through these
weights, we can identify ways of guiding public risk perception. Since internal character-
istics are usually inherent, media intervention and government intervention in external
environment factors can be adjusted by risk managers; thus, another finding in this paper is
that public risk perception can be effectively led by adjusting the external environment.
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This finding has three theoretical contributions. 1. The weight of media intervention
may be higher than that of government intervention; such a conclusion was well verified in
the two cases studied in this paper, so the conclusion is that it is necessary to adjust risk
perception via the media when there is a topical issue. 2. The predictive weight of topical
issues at the conflict phase was higher than at the cooling-off phase; such a conclusion
was also well verified in this study. This enlightens our practice, namely, special attention
should be paid to the guidance of public risk perception at the point in time when high
risk occurs. 3. In the case of “Sino–US trade friction”, the weight of media reporting in
media intervention was higher than that of Internet popularity, contrary to the case of the
”COVID-19 pandemic”; in “Sino–US Trade Friction”, the predictive weight of the emotion
frame used for government intervention was the highest, but the predictive weight of
information source on the official website in the case of the “COVID-19 pandemic” was
highest. The possible reason for this may be that the Sino–US trade friction is a risk to
the economic environment, and the people who pay more attention to this topic might
belong to highly educated groups with high exposure to media reporting, so they are more
easily affected by governmental emotion; however, the COVID-19 pandemic is a public
health risk that affects all people, so public risk perception may firstly be influenced by
their exposure to Internet, and secondly by the authority of the information source to which
they have access. Hence, the implication for practice is to set guidance variables against
different types of risk events.

5.2. Limitations and Suggestions for Future Research

The limitations of the research in this paper are that only two cases were used to
verify the predictive model in China’s practice. The two cases, namely, the “Sino–US
trade friction” and the “COVID-19 pandemic”, are significantly representative and have
received extensive attention in the fields of economic environment risk and public health
risk, and are two risk events that have produced far-reaching influences on China. Thus,
they are highly representative and appropriate for research on the prediction of public risk
perception in China. Considerations for future research include the addition of cases other
than China, as well as other types of risk events, to further verify the model and enable
comparative study.

Author Contributions: Conceptualization, Q.X. and Y.X.; methodology, Q.X.; software, Q.X.; valida-
tion, Q.X.; formal analysis, Q.X.; investigation, Y.X.; resources, Y.X.; data curation, Q.X.; writing—
original draft preparation, Q.X.; writing—review and editing, Q.X. and Y.X.; visualization, Q.X.;
supervision, Q.X.; project administration, Q.X.; funding acquisition, Q.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Social Science Fund of China, grant number
21CGL045.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset generated and analyzed in this study is not publicly
available. The dataset is available from the corresponding author on reasonable request.

Acknowledgments: The authors acknowledged the editor and reviewers for their very insightful
comments, which resulted in substantial improvements to our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McKinsey. Available online: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-

frontier-for-innovation (accessed on 28 July 2022).
2. Reimer, A.P.; Madigan, E.A. Veracity in big data: How good is good enough. Health Inform. J. 2019, 25, 1290–1298. [CrossRef]

[PubMed]
3. Renn, O.; Rohrmann, B. Cross-Cultural Risk Perception, 1st ed.; Springer: New York, NY, USA, 2000.

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
http://doi.org/10.1177/1460458217744369
http://www.ncbi.nlm.nih.gov/pubmed/29388495


Int. J. Environ. Res. Public Health 2022, 19, 9545 19 of 20

4. Douglas, M.; Wildavsky, A. Risk and Culture: An. Essay on the Selection of Technological and Environmental Dangers, 1st ed.; University
of California Press: Berkeley, CA, USA, 1983. [CrossRef]

5. Lash, S.; Wang, W.L. The Risk Society and Risk Culture. Marx. Real. 2002, 4, 52–63. (In Chinese)
6. Sjöberg, L.; Moen, B.E.; Rundmo, T. Explaining risk perception. An evaluation of the psychometric paradigm in risk perception

research. Rotunde Publ. Rotunde 2004, 84, 55–76.
7. Slovic, P. Perception of risk. Science 1987, 236, 280–285. [CrossRef] [PubMed]
8. Cutter, S.L. The forgotten casualties: Women, children, and environmental change. Glob. Env. Chang. 1995, 5, 181–194. [CrossRef]
9. Sitkin, S.B.; Pablo, A.L. Reconceptualizing the determinants of risk behavior. Acad. Manag. Rev. 1992, 17, 9–38. [CrossRef]
10. Dake, K.; Wildavsky, A. Individual Differences in Risk Perception and Risk-Taking Preferences, 1st ed.; Springer: New York, NY, USA, 1991.
11. Vellappally, S.; Naik, S.; Alsadon, O.; Al-Kheraif, A.A.; Alayadi, H.; Alsiwat, A.J.; Kumar, A.; Hashem, M.; Varghese, N.; Thomas,

N.G.; et al. Perception of COVID-19 Booster Dose Vaccine among Healthcare Workers in India and Saudi Arabia. Int. J. Environ.
Res. Public Health 2022, 19, 8942. [CrossRef] [PubMed]

12. Liu, H.; Li, J.; Li, H.; Li, H.; Mao, P.; Yuan, J. Risk Perception and Coping Behavior of Construction Workers on Occupational
Health Risks—A Case Study of Nanjing, China. Int. J. Environ. Res. Public Health 2021, 18, 7040. [CrossRef]

13. Wiedemann, P.M.; Freudenstein, F.; Böhmert, C.; Wiart, J.; Croft, R.J. RF EMF risk perception revisited: Is the focus on concern
sufficient for risk perception studies? Int. J. Environ. Res. Public Health 2017, 14, 620. [CrossRef]

14. Zhang, S.; Hua, X.; Huang, G.; Shi, X.; Li, D. What Influences Miners’ Safety Risk Perception? Int. J. Environ. Res. Public Health
2022, 19, 3817. [CrossRef] [PubMed]

15. Durant, R.F.; Legge, J.S., Jr. Public opinion, risk perceptions, and genetically modified food regulatory policy: Reassessing the
calculus of dissent among European citizens. Eur. Union Politics 2005, 6, 181–200. [CrossRef]

16. Seeger, M.W.; Novak, J.M. Modeling the recall and warning process in the foodborne contamination event: Perspectives from
disaster warnings and crisis communication. Int. J. Mass Emergencies Disasters 2010, 28, 115–144.

17. Cutter, S.L.; Tiefenbacher, J.; Solecki, W.D. En-gendered fears: Femininity and technological risk perception. Ind. Crisis Q. 1992, 6,
5–22. [CrossRef]

18. Lindell, M.K.; Hwang, S.N. Households’ perceived personal risk and responses in a mul-tihazard environment. Risk Anal. 2008,
28, 539–556. [CrossRef] [PubMed]

19. Hakes, J.K.; Viscusi, W.K. Dead reckoning: Demographic determinants of the accuracy of mortality risk perceptions. Risk Anal.
2004, 24, 651–664. [CrossRef] [PubMed]

20. Sjöberg, L. Distal factors in risk perception. J. Risk Res. 2003, 6, 187–211. [CrossRef]
21. Siegrist, M.; Árvai, J. Risk perception: Reflections on 40 years of research. Risk Anal. 2020, 40, 2191–2206. [CrossRef]
22. Siebeneck, L.K.; Cova, T.J. Spatial and temporal variation in evacuee risk perception throughout the evacuation and return-entry

process. Risk Anal. 2012, 32, 1468–1480. [CrossRef] [PubMed]
23. Weinstein, N.D. Effects of personal experience on self-protective behavior. Psychol. Bull. 1989, 105, 31. [CrossRef] [PubMed]
24. Mutz, D.C. Mass media and the depoliticization of personal experience. Am. J. Political Sci. 1992, 36, 483–508. [CrossRef]
25. Slovic, P.; Fischhoff, B.; Lichtenstein, S. Rating the Risks. Environ. Sci. Policy Sustain. Dev. 1981, 21, 14–39. [CrossRef]
26. Rowe, G.; Wright, G. Differences in expert and lay judgments of risk: Myth or reality? Risk Anal. 2001, 21, 341–356. [CrossRef]

[PubMed]
27. Johnson, B.B.; Covello, V.T. The Social and Cultural Construction of Risk: Essays on Risk Selection and Perception, 1st ed.; Kluwer

Academic Publishers: Hague, The Netherlands, 1987.
28. Knight, A.J.; Warland, R. Determinants of food safety risks: A multi-disciplinary approach. Rural Sociol. 2005, 70, 253–275.

[CrossRef]
29. Yang, J. The influence of culture on Koreans’ risk perception. J. Risk Res. 2015, 18, 69–92. [CrossRef]
30. van Manen, S.M. Hazard and risk perception at Turrialba volcano (Costa Rica); implications for disaster risk management. Appl.

Geogr. 2014, 50, 63–73. [CrossRef]
31. Gaillard, J.C. Alternative paradigms of volcanic risk perception: The case of Mt. Pinatubo in the Philippines. J. Volcanol. Geotherm.

Res. 2008, 172, 315–328. [CrossRef]
32. Zhang, J.; Zheng, Z.; Zhang, L.; Qin, Y.; Duan, J.; Zhang, A. Influencing factors of environmental risk perception during the

COVID-19 epidemic in China. Int. J. Environ. Res. Public Health 2021, 18, 9375. [CrossRef] [PubMed]
33. Mileti, D.S.; Peek, L. The social psychology of public response to warnings of a nuclear power plant accident. J. Hazard. Mater.

2000, 75, 181–194. [CrossRef]
34. Wang, Z.Y.; Liang, J.; Liu, X.D. A review of risk perception of the public in emergencies. J. Intell. 2018, 37, 161–166. (In Chinese)

[CrossRef]
35. Weinberg, A.M. Is nuclear energy acceptable? Bull Sci. 1977, 33, 54–60. [CrossRef]
36. Xie, X.F.; Wang, M.; Zhang, R.G.; Li, J.; Yu, Q.Y. The role of emotions in risk co-mmunication. Risk Anal. 2011, 31, 450–465.

[CrossRef] [PubMed]
37. Wang, X. The role of personal experience and media exposure on personal and impersonal risk perceptions and policy support:

The case of global warming. Int. J. Glob. Warm. 2018, 16, 320–336. [CrossRef]
38. He, D. Study on Influence of Using Social Media Based on Amplification Framework of Risk Society on Public Risk Perception. J.

Mass Commun. 2016, 18, 45–52. (In Chinese)

http://doi.org/10.1525/9780520907393
http://doi.org/10.1126/science.3563507
http://www.ncbi.nlm.nih.gov/pubmed/3563507
http://doi.org/10.1016/0959-3780(95)00046-Q
http://doi.org/10.5465/amr.1992.4279564
http://doi.org/10.3390/ijerph19158942
http://www.ncbi.nlm.nih.gov/pubmed/35897309
http://doi.org/10.3390/ijerph18137040
http://doi.org/10.3390/ijerph14060620
http://doi.org/10.3390/ijerph19073817
http://www.ncbi.nlm.nih.gov/pubmed/35409500
http://doi.org/10.1177/1465116505051982
http://doi.org/10.1177/108602669200600102
http://doi.org/10.1111/j.1539-6924.2008.01032.x
http://www.ncbi.nlm.nih.gov/pubmed/18419668
http://doi.org/10.1111/j.0272-4332.2004.00465.x
http://www.ncbi.nlm.nih.gov/pubmed/15209936
http://doi.org/10.1080/1366987032000088847
http://doi.org/10.1111/risa.13599
http://doi.org/10.1111/j.1539-6924.2011.01781.x
http://www.ncbi.nlm.nih.gov/pubmed/22384987
http://doi.org/10.1037/0033-2909.105.1.31
http://www.ncbi.nlm.nih.gov/pubmed/2648439
http://doi.org/10.2307/2111487
http://doi.org/10.1080/00139157.1979.9933091
http://doi.org/10.1111/0272-4332.212116
http://www.ncbi.nlm.nih.gov/pubmed/11414542
http://doi.org/10.1526/0036011054776389
http://doi.org/10.1080/13669877.2013.879490
http://doi.org/10.1016/j.apgeog.2014.02.004
http://doi.org/10.1016/j.jvolgeores.2007.12.036
http://doi.org/10.3390/ijerph18179375
http://www.ncbi.nlm.nih.gov/pubmed/34501965
http://doi.org/10.1016/S0304-3894(00)00179-5
http://doi.org/10.3969/j.issn.1002-1965.2018.10.023
http://doi.org/10.1080/00963402.1977.11458363
http://doi.org/10.1111/j.1539-6924.2010.01530.x
http://www.ncbi.nlm.nih.gov/pubmed/21105881
http://doi.org/10.1504/IJGW.2018.095387


Int. J. Environ. Res. Public Health 2022, 19, 9545 20 of 20

39. Einwiller, S.A.; Carroll, C.E.; Korn, K. Under what conditions do the news media influence corporate reputation? The roles of
media dependency and need for orientation. Corp. Reput. Rev. 2010, 12, 299–315. [CrossRef]

40. Giddens, A. The Consequences of Modernity, 1st ed.; Stanford University Press: Stanford, MT, USA, 1990.
41. Vandermoere, F. Hazard perception, risk perception, and the need for decontamination by residents exposed to soil pollution:

The role of sustainability and the limits of expert knowledge. Risk Anal. 2008, 28, 387–398. [CrossRef]
42. Moser, C.; Stauffacher, M.; Krütli, P.; Scholz, R.W. The influence of linear and cyclical temporal representations on risk perception

of nuclear waste: An experimental study. J. Risk Res. 2012, 15, 459–476. [CrossRef]
43. Wei, J.; Wang, F.; Zhao, D. A risk perception model: Simulating public response to news reports in China. Inf. Res. 2012, 17, 17-2.
44. Grothmann, T.; Reusswig, F. People at risk of flooding: Why some residents take precauti-onary action while others do not. Nat.

Hazards 2006, 38, 101–120. [CrossRef]
45. Xue, T.; Liu, H. The prediction of petition based on big data. Inf. Discov. Deliv. 2019, 47, 135–142. [CrossRef]
46. Hogarth, R.M.; Portell, M.; Cuxart, A.; Kolev, G.I. Emotion and reason in everyday risk perception. J. Behav. Decis. Mak. 2011, 24,

202–222. [CrossRef]
47. Bengio, Y.; Lee, H. Editorial introduction to the neural networks special issue on deep learning of representations. Neural Netw.

2015, 64, 1–3. [CrossRef] [PubMed]
48. Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [CrossRef]
49. Mao, H.; Counts, S.; Bollen, J. Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data. arXiv

2011, arXiv:1112.1051. [CrossRef]
50. Zhang, J.D.; Liao, W.; Zhang, R.W. The effect of ordinary investors’ attention on volume and price of stock market: Empirical

evidence based on Baidu index. Account. Res. 2014, 8, 52–59. (In Chinese)
51. Chen, T.; Lin, J. Comparative analysis of temporal-spatial evolution of online public opinion based on search engine attention—

Cases of Google Trends and Baidu Index. J. Intell. 2013, 3, 7–16. (In Chinese)
52. Hu, X.N.; Guo, X.S.; Lian, C.H.; Zhao, H.Z. Study on the Risk Information Seeking and Processing of Public Policy: A Case Study

of Disaster Resettlement Policy in Southern Shaanxi. J. Intell. 2019, 38, 172–180. (In Chinese) [CrossRef]
53. Van der Linden, S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. J.

Env. Psychol. 2015, 41, 112–124. [CrossRef]
54. Zhang, Y.R.; Tian, M.; Shen, Y.H.; Qiu, Y.; Li, K.Y. Study on drought risk perception of farmers in mountainous areas of Yunnan

Plateau—A case study of Yuanmou County. Areal Res. Dev. 2021, 40, 156–160. (In Chinese) [CrossRef]
55. Li, L. Research on Measurement of China’s Economic Uncertainty and Regional Economic Risk. Master’s Thesis, Jilin University,

Changchun, China, 2021. (In Chinese).
56. Zhang, Z.G. Regional Natural Disaster Risk Assessment Based on the Universal Risk Model. Master’s Thesis, Henan Polytechnic

University, Jiaozuo, China, 2020. (In Chinese).
57. Hofstede, G.; Bond, M.H. The Confucius connection: From cultural roots to economic growth. Organ. Dyn. 1988, 16, 5–21.

[CrossRef]
58. Guiso, L.; Sapienza, P.; Zingales, L. Does culture affect economic outcomes? J. Econ. Perspect 2006, 20, 23–48. [CrossRef]
59. Johnson, J.P.; Lenartowicz, T. Culture, freedom and economic growth: Do cultural values explain economic growth? J. World Bus.

1998, 33, 332–356. [CrossRef]
60. Boin, A.; Hart, P.; Stern, E.; Sundelius, B. The Politics of Crisis Management: Public Leadership under Pressure, 1st ed.; Cambridge

University Press: Cambridge, UK, 2005; pp. 69–87.
61. Dacin, M.T.; Munir, K.; Tracey, P. Formal dining at Cambridge colleges: Linking ritual performance and institutional maintenance.

Acad. Manag. J. 2010, 53, 1393–1418. [CrossRef]
62. Luther, C.A.; Zhou, X. Within the boundaries of politics: News framing of SARS in China and the United States. J. Mass Commun.

Q. 2005, 82, 857–872. [CrossRef]
63. Eldridge, R.D.; Midford, P. Japanese Public Opinion and the War on Terrorism, 1st ed.; Palgrave Macmillan: New York, NY, USA,

2008; p. 8.
64. CSDN Blog. Available online: http://blog.csdn.net/google19890102/article/details/32723459 (accessed on 30 June 2022). (In

Chinese).
65. Zhang, Y.; Qi, J.; Fang, B.; Li, Y. The indicator system based on BP neural network model for net-mediated public opinion on

unexpected emergency. China Commun. 2011, 8, 42–51.

http://doi.org/10.1057/crr.2009.28
http://doi.org/10.1111/j.1539-6924.2008.01025.x
http://doi.org/10.1080/13669877.2011.636836
http://doi.org/10.1007/s11069-005-8604-6
http://doi.org/10.1108/IDD-08-2018-0031
http://doi.org/10.1002/bdm.689
http://doi.org/10.1016/j.neunet.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25595998
http://doi.org/10.1111/j.1540-6261.2011.01679.x
http://doi.org/10.48550/arXiv.1112.1051
http://doi.org/10.3969/j.issn.1002-1965.2019.02.025
http://doi.org/10.1016/j.jenvp.2014.11.012
http://doi.org/10.3969/j.issn.1003-2363.2021.01.028
http://doi.org/10.1016/0090-2616(88)90009-5
http://doi.org/10.1257/jep.20.2.23
http://doi.org/10.1016/S1090-9516(99)80079-0
http://doi.org/10.5465/amj.2010.57318388
http://doi.org/10.1177/107769900508200407
http://blog.csdn.net/google19890102/article/details/32723459

	Introduction 
	Literature Review 
	Factors Influencing Risk Perception 
	Internal Characteristics 
	External Environment 

	Big Data Measurement Method of Risk Perception 
	Prediction of Risk Perception 

	Data and Research Methods 
	Acquisition of Input Node 
	Internal Characteristic Index 
	External Environment Indexes 

	Acquisition of Output Node 
	Learning of BP Neural Network 
	Calculation of Node Number of Implication Level 
	Performance Test of BP Neural Network 
	Computation of Every Input Node Weight 


	Research Results 
	Calculation Results of Implication Level Nodes 
	Performance Test Results of BP Model 
	Determining the Weight of Every Prediction Index 
	Index Weight in the Sino–US Trade Friction 
	Index Weight in the COVID-19 Pandemic 


	Conclusions 
	Major Findings and Contributions 
	Influence Factors can Effectively Predict Public Risk Perception of Topical Issues 
	External Environment Can Effectively Lead Public Risk Perception of Topical Issues 

	Limitations and Suggestions for Future Research 

	References

