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Abstract: As one of the three major engines of economic growth in China, the Beijing–Tianjin–Hebei
(BTH) urban agglomeration has become one of the regions with the highest energy consumption
intensity. To investigate the dynamic relationships between scientific and technological innovation,
industrial structure advancement and carbon footprints, panel data in BTH from 2006 to 2019 was
selected, and a Panel Vector Auto-Regressive (PVAR) model was established to conduct an empirical
study. The conclusions show that there is a causal relationship between the industrial structure
advancement and carbon footprints, and the influence of each on the other is significant. The impact
of scientific and technological innovation on carbon footprints has a “rebound effect”. Scientific and
technological innovation can accelerate the process of industrial structure advancement. Carbon
footprints have a significant backward forcing effect on both industrial structure advancement and
scientific and technological innovation, with impact coefficients of 0.0671 and 0.2120, respectively.
Compared with scientific and technological innovation, the industrial structure advancement has a
greater impact on carbon footprints, with a variance contribution of 25.4%. The research findings are
conducive to providing policy support for the coordinated development of BTH and promoting the
realization of the Double Carbon goal.

Keywords: Beijing–Tianjin–Hebei urban agglomeration; scientific and technological innovation;
industrial structure advancement; carbon footprints; panel vector auto-regressive model

1. Introduction

Since 2020, the global climate governance system has entered a new phase with the
Paris Agreement as its core. Climate change has become a global public issue due to
the massive emission of CO2 and other greenhouse gases. The international community
has been paying more attention to carbon neutrality and other concepts. The climate
governance actions have been intensifying, but the global efforts on climate governance
have not shown obvious results [1]. According to Global Energy Review: CO2 Emissions in
2021 published by the International Energy Agency (IEA), global CO2 footprints from the
energy sector reached 36.3 billion tons in 2021, up more than 2 billion tons from 2020 and
up 6% year-over-year [2]. The record growth has offset the decline in carbon footprints
brought about by weaker economic activity since the Newcastle pneumonia epidemic. The
global economy is still highly dependent on fossil fuels, as shown by national economic
growth data. Global GDP will rise by about 5.9% year-on-year in 2021, essentially the same
as the rise in carbon footprints, which means that the global economic recovery is closely
linked to carbon footprints [3]. Therefore, on the premise of ensuring energy security,
the use of green technology innovation to accelerate the transformation of industrial and
energy structures, so as to achieve a reasonable control of global carbon footprints is now,
more than ever, necessary.
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With China’s rapid economic development and expansion of production activities,
carbon footprints are on the rise. Currently, China surpasses the United States as the
world’s top carbon emitter. According to the International Energy Agency (IEA), China’s
overall carbon footprints have nearly doubled from 2005 to 2019 [2]. Measures to reduce
carbon footprints are critical to long-term economic prosperity. In July 2008, eight coun-
tries at the G8 summit signed the United Nations Framework Convention on Climate Change,
together agreeing to a long-term goal of reducing global greenhouse gas emissions by
50 percent by 2050. In September 2020, China announced that China strives to peak its
CO2 emissions by 2030 and works to achieve its carbon neutrality goal by 2060 at the
75th session of the United Nations General Assembly [4]. Technological innovation and
industrial restructuring are important ways for China to meet its carbon reduction targets
and maintain sustainable economic development. At the same time, the emission reduction
targets are also forcing governments and enterprises to undertake technological innovation
and transform industrial structure.

With the capital at its core and a reform-led zone for collaboration, the Beijing–Tianjin–
Hebei (BTH) urban agglomeration is one of the three major engines of China’s economic
growth as a world-class city cluster. In April 2015, the Beijing–Tianjin–Hebei Synergistic
Development Planning Outline proposed that the synergistic development of BTH is a ma-
jor national strategy to vigorously promote innovation-driven development and to take
the lead in making breakthroughs in ecological environmental protection and industrial
upgrading. However, as one of the larger industrial bases in China, the concentration of
high-energy-consuming and high-polluting industries has made BTH one of the regions
with the highest energy consumption intensity and the most serious air pollution. The
single coal-based energy consumption structure poses a great threat to the development of
a low-carbon economy [5,6]. At present, carbon footprints from the BTH are huge and on
the rise, and the efficiency of carbon footprints also needs to be improved [7]. Moreover,
there are obvious spatial differences in carbon footprints’ efficiency, both at the regional
development level and coordination level [8,9]. As a demonstration area for the collabo-
rative construction of regional ecological civilization, how to enhance industrial energy
utilization efficiency and reduce pollution emissions to synergistically improve the ecologi-
cal environment has become a major issue to be solved. Therefore, we need to clarify the
relationships between scientific and technological innovation, industrial restructuring and
carbon footprints in BTH, and explore the intrinsic influence mechanism. This has great
significance for achieving the 2030 emission reduction target and promoting high-quality
economic development.

In this study, we aimed to investigate the dynamic relationships between scientific
and technological innovation, industrial structure advancement and carbon footprints in
the BTH region. Since Beijing and Tianjin are municipalities directly under the central
government, and Hebei province is a large region with prefecture-level cities of different
development levels from north to south, we selected prefecture-level cities and municipal-
ities directly under the central government in the BTH as the unit of analysis. This also
facilitates a detailed analysis of the actual situation of each city. Specifically, this study
aims to address the following questions. First, whether there are interaction relationships
between scientific and technological innovation, industrial structure advancement and
carbon footprints. Second, whether there are causal relationships between scientific and
technological innovation, industrial structure advancement and carbon footprints. Third,
what is the process of mutual influence among scientific and technological innovation,
industrial structure advancement and carbon footprints over time?

In order to answer the above questions, we first numerically calculated the indexes
of scientific and technological innovation, industrial structure advancement and carbon
footprints, and analyzed the spatial and temporal evolution of carbon emissions in the
BTH. After passing the smoothing test, we selected the optimal lag order for Generalized
Method of Moments estimation to derive the static influence relationships between the three
variables. Then, Granger causality was used to test whether there are causal relationships.
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The direction of interaction between the variables and their dynamic relationships in
different periods was explored in depth by impulse response function. Finally, based on
the research results, policy recommendations are proposed for the development status of
the BTH.

The rest of this study is organized as follows. In Section 2, we briefly review the
relevant work in the previous literature. Section 3 presents the data sources, variable
descriptions, and methodology. In Section 4, the spatial and temporal evolution is analyzed.
In Section 5, the empirical analysis of this study is presented. In Section 6, we summarize
the conclusions and discuss the limitations. In Section 7, we show the research implications
based on the results and findings.

2. Literature Review

At present, scholars have widely discussed carbon footprints and its influencing factors
from different perspectives. Among them, the literature on the relationships between
scientific and technological innovation, industrial restructuring and carbon footprints
mainly concerns in the following three aspects.

2.1. Scientific and Technological Innovation and Industrial Restructuring

There are two main views on the study of the relationship between scientific and
technological innovation and industrial structuring. One is that there is a “threshold effect”
between them. Scholars have carried out empirical analysis from different dimensions
based on different research scopes. In terms of direct impact, technological innovation can
effectively promote the rationalization of industrial structure, and there is a “U-shaped”
curve relationship with the industrial structure advancement [10,11]. In terms of specific
paths of action, technological and institutional innovation drive can promote industrial
structure upgrading by strengthening the concentration of high-tech industries, stimulating
consumption demand in markets, and promoting the level of population aging [12,13].
Other scholars have characterized industrial structure upgrading from the structural in-
dexes of different dimensions, and empirically tested the impact of green technological
innovation and the moderating effect therein, indicating that green technological innova-
tion can effectively promote industrial structure upgrading. There is a “threshold effect” on
the impact of green technological innovation on industrial structure upgrading. Moreover,
the impact of green technology innovation on industrial structure upgrading is different
under the degree of market distortion of different factors [14,15].

Second, there is an “intermediary effect” between industrial structure and scientific
and technological innovation. From the perspective of industrial structure rationalization
and industrial structure advancement, scholars have found that both industrial structure
rationalization and advanced industrial structure have a significant role in promoting the re-
lationship between green technology innovation in industrial enterprises and high-quality
economic development [16,17]. From the perspective of scientific and technological innova-
tion heterogeneity, scholars divided innovation into technological innovation and product
innovation, and found that technological innovation and product innovation promote eco-
nomic growth through industrial structure upgrading via the mediating effect model [18].
In addition, other scholars, by analyzing the experience of science and technology innova-
tion to promote industrial structure upgrading, found that government policy intervention
has limitations, which can stimulate the rapid development of supported industries in the
short term, but at the same time, it can also trigger the problem of homogeneous investment
and construction overheating, leading to technological convergence [19,20].

2.2. Scientific and Technological Innovation and Carbon Footprints

As for the relationship between scientific and technological innovation and carbon
footprints, there are two main views. One view is that scientific and technological in-
novation directly inhibits the growth of carbon footprints. Scholars have examined the
influence mechanism between them by applying the spatial econometric model, fixed effect
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model and random effect model. The results show that different types of green innova-
tion technologies have a significant inhibitory effect on carbon footprints [21,22], and the
direct impact of breakthrough low-carbon technology innovation on carbon footprints
with “spatial spillover effects”, both in the short and long term, presents a significant
inhibitory effect on carbon footprints [23]. For the relationship between carbon footprints
intensity, total carbon footprints and technological innovation, technological innovation
efficiency has a significant negative effect on both carbon footprints intensity and total
carbon footprints [24]. An in-depth analysis of technological progress and scale efficiency
revealed that technological progress in carbon footprints reduction and scale efficiency
played a positive role in carbon footprints, but the effect of technological progress in energy
efficiency was lower than that of increasing the scale efficiency of technological progress in
energy [25].

Another view is that scientific and technological innovation indirectly affects carbon
footprints. The reason is that low-carbon technological innovation indirectly suppresses
the increase in carbon footprints by changing the energy structure, which has a negative
effect on low-carbon technological innovation, and energy intensity is the main inhibitor of
carbon footprints growth in industrial economies [26]. The Khazzoom−Brookes hypoth-
esis also points out the “rebound effect” of energy. Technological innovation promotes
economic growth by increasing energy efficiency [27], but economic growth increases the
demand for energy [28]. The “rebound effect” can lead to a significant increase in output
level and energy consumption together, and thus does not determine the relationship
between technological innovation and carbon efficiency [29]. Other scholars believe that
industrial restructuring guided by technological innovation is the real reason for reducing
energy consumption and having a positive effect on carbon footprints reduction [30]. Many
scholars also point out that there is spatial heterogeneity in the impact of technological
innovation on carbon emissions. Compared with technological innovation outputs, tech-
nological innovation inputs are more effective in carbon emission reduction. In addition,
there is significant heterogeneity in the carbon emission reduction effects of technological
innovation in different regions. The technological innovation improvement in eastern
China can reduce emission. There is a Pareto improvement in the impact of technological
innovation on carbon emission reduction in the central region, while the driving effect in
the western region is not significant [31].

2.3. Industrial Restructuring and Carbon Footprints

Many scholars have explored the role of industrial restructuring and carbon footprints.
One view is that there are “intermediary effects” and “spatial spillover effects” between car-
bon footprints and industrial restructuring. Industrial structuring has both a direct carbon
footprints reduction effect and a intermediary effect of reducing carbon footprints through
technological innovation [32], and the intermediary effect of technological innovation in
reducing carbon footprints remains significant in the sub-region [33,34]. The industrial
structure advancement can reduce both the carbon footprints intensity of the region and
even the surrounding areas [35,36]. The ability of industrial structure advancement to
reduce carbon footprints intensity is the greatest compared to economic development,
technological innovation and urbanization [37]. Meanwhile, industrial resource allocation
efficiency and industrial structure advancement also have a significant mitigating effect on
carbon footprints [38].

Another view is that there is a “crowding-out effect” between carbon footprints and
industrial restructuring. Industrial structure upgrading can reduce carbon footprints in the
province, and may affect the carbon footprints intensity of neighboring provinces through
the crowding out effect on polluting industries [39]. As the level of economic development
increases, the industrial structure rationalization can generally suppress carbon footprints,
while the industrial structure advancement is characterized by an obvious “inverted U-
shaped” trend, which has two sides, with developed regions showing a suppression effect
and less developed regions showing the opposite [40]. In addition, scholars have studied the
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practices of developed countries to reduce carbon emission intensity by adjusting industrial
structure. In view of the realities of China’s industrial structure, the industrialization
process has not yet been completed and the high energy-consuming industries account for
a large proportion [41]. Thus, it is recommended to actively cultivate new energy and other
emerging industries to ensure the safety of the industrial chain and of the supply chain to
promote the optimization of the industrial space layout and to promote the formation of a
new development pattern [42,43].

To sum up, scholars have extensively analyzed the influence relationships among
scientific and technological innovation, industrial structure advancement and carbon foot-
prints. Related studies are shown in Figure 1, but there are still some shortcomings. First,
many studies have thoroughly explored the two-two relationship and influence mech-
anism among carbon footprints, scientific and technological innovation and industrial
structure, but there are fewer studies on the dynamic influence relationship among the
three under the same theoretical framework. Second, some studies use time series data
or panel regression models, ignoring the endogenous variables. Therefore, we have taken
BTH as the research scope, and analyzed the dynamic relationships between scientific
and technological innovation, industrial restructuring and carbon footprints by using the
Panel Vector Auto-regression (PVAR) Model to provide some ideas for cracking these
environmental problems.
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Figure 1. Relationships between scientific and technological innovation, industrial restructuring and
carbon footprints. Figure source: authors’ own creation.

3. Methodology and Data

In this section, we elaborate on the data sources and identify the variables so as to
construct a PVAR model to explore whether there are dynamic correlations between carbon
footprint, scientific and technological innovation and industrial structure advancement in
BTH, while also laying the foundation for the subsequent empirical analysis.

3.1. Data Sources

The research object is the panel data of carbon footprints, industrial structure advance-
ment and scientific and technological innovation of 13 cities in BTH from 2006 to 2019. All
data are obtained from the China Energy Statistical Yearbook, China City Statistical Yearbook,
Beijing Statistical Yearbook, Tianjin Statistical Yearbook, Hebei Economic Yearbook and statistical
yearbooks of prefecture-level cities, and relevant data references are taken from the IPCC
Guidelines for National Greenhouse Gas Inventories. The specific geographical distribution of
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the BTH in China is shown in Figure 2. The missing values of individual indicators are
supplemented by linear interpolation.
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3.2. Variable Descriptions

In this study, three variables are involved: carbon footprints, industrial structure
advancement and scientific and technological innovation.

Carbon footprints (CF): according to the United Nations Intergovernmental Panel on
Climate Change (IPCC) report, the combustion of fossil energy is the main cause of green-
house gas emissions [44]. In addition, urban carbon footprints include the consumption
of electrical and thermal energy. Firstly, we adopted the approach of Wu [45] and apply
the IPCC inventory factor method to calculate the carbon footprints of each city indirectly
through the consumption of fossil energy. The core work is then to determine specific
emission factors for various energy consumption processes [46]. The 2006 IPCC Guidelines
for National Greenhouse Gas Inventories published by the IPCC are the most widely used by
scholars, which provide rationalized recommended values for each carbon footprints factor
according to the world average. Therefore, the IPCC inventory factor method was used to
calculate carbon footprints from direct energy consumption in BTH. Secondly, electricity
consumption was borrowed from Glaeser [47], and each regional grid was considered as
an emission factor for calculation. The carbon footprints from each city’s electric energy
consumption were calculated based on the baseline emission factors and urban electric
energy consumption of the six regional grids published by China Power Grid. Thirdly,
for the energy consumed by urban transportation, the approach of Li et al. [48] was bor-
rowed. Assuming that the energy consumption intensity and carbon footprints intensity
of each type of transportation mode are proportional, the energy consumption per unit
of passenger volume (ton-kilometers) and freight volume (10,000 person-kilometers) was
calculated using the various types of energy consumed in the transportation sector from
the China Statistical Yearbook. The transportation energy consumption and carbon footprints
of each city were calculated based on the passenger and freight volumes. Finally, urban
heat is mainly supplied by boiler houses and thermal power plants, and its raw materials
are mainly raw coal. The China Urban Construction Statistical Yearbook provides statistics on
heat supply in each city in previous years. The minimum standard of thermal efficiency of
coal-fired industrial boilers stipulated in GB/T15317-2009 Energy Conservation Monitoring
of Coal-fired Industrial Boilers is between 65% and 78%, and a thermal efficiency value of
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70% was used for calculation. The average low level heat of raw coal is 20,908 kJ/kg. The
amount of raw coal required was calculated using the heat supply, thermal efficiency and
raw coal heat generation coefficient. Then the amount of energy consumed for central
heating was calculated using the raw coal conversion factor (0. 7143 kg of standard coal
per kg). According to IPCC 2006, the carbon footprints factor is 2.5 kg CO2/kg per kg of
raw coal; using the amount of raw coal consumed for thermal energy, the carbon footprints
genrated by centralized heating can be calculated. The carbon footprints from electricity,
gas and liquefied petroleum gas, transportation and thermal energy consumption are
added together to obtain the total carbon footprints of each city.

Industrial structure advancement (ISA): this is manifested as the gradual replacement
of factor capital-dependent low-end industries by an advanced structure dominated by
knowledge and technology-intensive industries. Traditional industries begin to trans-
form and upgrade, and this reflects the process of industrial restructuring from primary
industry-based to secondary industry to tertiary industry-based. In this study, we adopt the
approach of Fu [49], which divides GDP into three parts according to the three industrial
divisions, and constitutes a set of three-dimensional vectors X0 = (X1,0, X2,0, X3,0). Then
the angles θ1, θ2, θ3, were calculated separately between X0 and the reference vectors
X1 = (1, 0, 0), X2 = (0, 1, 0), X3 = (0, 0, 1), which are arranged from the lower to the higher
levels of industries.

θj = arccos

 ∑3
i=1
(
xi,j·xi,0

)(
∑3

i=1

(
x2

i,j

)1/2

·∑3
i=1

(
x2

i,0

)1/2
)
 (1)

j = 1, 2, 3. In Equation (1), Xi,j is the i-th component of the basic unit vector group Xi
(i = 1, 2, 3). Xi,0 is the i-th component of vector X0. The computed index was then taken
into Equation (2) to obtain the index of industrial structure advancement.

ISA = ∑3
k=1 ∑k

j=1 θj (2)

In Equation (2), k = 1, 2, 3. θj is the angle between the three-dimensional vector X0
and the reference vectors. The larger the ISA, the higher the level of industrial structure
advancement.

Scientific and technological innovation (INN): the number of granted invention patents
reflects the scientific and technological innovation capability and the level of innovation
output of a city. Therefore, we adopted the number of granted invention patents to indicate
the level of scientific and technological innovation of the city. To reduce the influence of
heteroscedasticity of different data, the values were taken as logarithms. The descriptive
statistics of all variables are shown in Table 1. The statistical characteristics of each variable
are described in Table 2.

Table 1. Descriptions of variables.

Variable Abbr. Description Unit

Carbon footprints CF The sum of carbon dioxide emissions from fossil
energy, transportation, electricity and heat in a city Million tons

Industrial structure advancement ISA
The degree of change in the proportion of the three

industries rising along the order of primary,
secondary and tertiary industries in a city

/

Scientific and
technological innovation INN

The scientific and technological innovation
capacity and level of scientific and technological

innovation output in a city
Pieces

Table source: authors’ own creation.
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Table 2. Descriptive statistics.

Variable Mean Std. Dev. Min Max Observations

CF
overall

7.1691
1.1604 5.2126 9.6032 N = 182

between 1.0683 5.9124 9.3316 n = 13
within 0.5360 6.0843 8.6912 T = 14

ISA
overall

6.5644
0.3816 6.0366 7.6516 N = 182

between 0.3598 6.2269 7.5437 n = 13
within 0.1595 6.1957 7.0848 T = 14

INN
overall

7.4983
1.6156 3.9318 11.7884 N = 182

between 1.4021 5.7689 10.7499 n = 13
within 0.8863 5.6255 9.1240 T = 14

Table source: authors’ own creation.

3.3. Panel Vector Auto-Regressive Model

In this study, we investigated the dynamic relationships between scientific and tech-
nological innovation, industrial structure advancement and carbon footprints, and chose
the panel vector auto-regressive (PVAR) model and Gaussian Mixture Model (GMM) esti-
mation to deal with the possible correlations and endogeneity of the variable series. The
PVAR model was first proposed by Holtz-Eakin et al. [50] and then gradually refined by
Mccoskey and Kao [51]. The model follows the advantages of the vector auto-regressive
(VAR) model. The PVAR model treats scientific and technological innovation, industrial
structure advancement and carbon footprints as endogenous variables, and analyzes the
effects of each variable and its lagged variables on other variables in the model. There-
fore, it combines the characteristics of large cross-section and short time series, which can
overcome the restrictive conditions of the model in terms of time series and panel to some
extent, and it can better reflect the influence of individual differences on the model. Based
on the individual difference capture feature of the PVAR model, the model is constructed
as follows.

Yit = α0 +
n

∑
j=1
αjYit−j + βi + γi + εit (3)

In Equation (3), α0 is the intercept term; j is the lag order; i represents each city in BTH;
t represents the year; αj is a column vector of order 1 × 3 containing the three endogenous

variables CF, ISA, and INN, that is Yit =

 CFit
ISAit
INNit

; βi is the individual fixed effect; βi is

the individual time-point effect; and γi is the random perturbation term.

4. Evolution Analysis
4.1. Spatial and Temporal Evolution of Carbon Footprints

The carbon footprints in BTH show certain evolutionary characteristics in time and
space. For time, we selected the carbon footprints of each city in 2006, 2010, 2015 and 2019
for analysis. The spatial distribution of carbon footprints are shown in Figure 3. Among
them, the cities with large carbon footprints in 2006 wre Beijing and Tianjin. Cities in Hebei
Province have lower carbon footprints. From 2006 to 2010, with the rapid development
of industrial society, the consumption of large amounts of energy made the cities’ carbon
emissions increase significantly. Carbon footprints in Beijing and Tianjin are still increasing
significantly. In addition to cities with relatively large initial values of carbon footprints,
Tangshan also belongs to the high growth cities. By 2015, people gradually realized that
economic development cannot occur at the expense of the environment. Therefore, most
cities had insignificant increases in their carbon footprints. In 2019, Zhangjiakou, Chengde,
Qinhuangdao, Langfang, cangzhou, Xingtai and Hengshui became cities with relatively
low carbon emissions, while Tangshan, Baoding, Shijiazhuang and Handan, on the other
hand, had a significant increase in carbon emissions.



Int. J. Environ. Res. Public Health 2022, 19, 9513 9 of 21

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 9 of 22 
 

 

4. Evolution Analysis 
4.1. Spatial and Temporal Evolution of Carbon Footprints 

The carbon footprints in BTH show certain evolutionary characteristics in time and 
space. For time, we selected the carbon footprints of each city in 2006, 2010, 2015 and 2019 
for analysis. The spatial distribution of carbon footprints are shown in Figure 3. Among 
them, the cities with large carbon footprints in 2006 wre Beijing and Tianjin. Cities in He-
bei Province have lower carbon footprints. From 2006 to 2010, with the rapid development 
of industrial society, the consumption of large amounts of energy made the cities’ carbon 
emissions increase significantly. Carbon footprints in Beijing and Tianjin are still increas-
ing significantly. In addition to cities with relatively large initial values of carbon foot-
prints, Tangshan also belongs to the high growth cities. By 2015, people gradually realized 
that economic development cannot occur at the expense of the environment. Therefore, 
most cities had insignificant increases in their carbon footprints. In 2019, Zhangjiakou, 
Chengde, Qinhuangdao, Langfang, cangzhou, Xingtai and Hengshui became cities with 
relatively low carbon emissions, while Tangshan, Baoding, Shijiazhuang and Handan, on 
the other hand, had a significant increase in carbon emissions. 

 
Figure 3. Spatial distribution of carbon footprints in BTH. (a) Spatial distribution of carbon footprints
in BTH in 2006; (b) spatial distribution of carbon footprints in BTH in 2010; (c) Spatial distribution of
carbon footprints in BTH in 2015; (d) spatial distribution of carbon footprints in BTH in 2019. Figure
source: authors’ own creation. Data from the China Energy Statistical Yearbook, China Urban Statistical
Yearbook and 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Spatially, the cities with the highest carbon emissions are concentrated in the central
region. The carbon footprints of Beijing, Tianjin and Tangshan are much higher than those
of other cities. As the political and economic center of China, the growth of the total
economic volume per capita in Beijing is one of the main reasons for the high growth of
its carbon footprints. The rapid development of Tianjin’s industrial economy has greatly
increased its energy consumption, and industry has become the mainstay of its energy
consumption, ultimately leading to an increase in carbon footprints as well. Tangshan
is an important energy and raw material base in BTH, with a high proportion of heavy
chemical industries. The high-carbon structure of the industrial system causes Tangshan’s
energy consumption structure to be dominated by coal. The single energy consumption
structure has resulted in high carbon footprints. With the deepening of urbanization, the
carbon footprints of Shijiazhuang, Baoding and Handan also have different degrees of
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growth. In addition, Qinhuangdao, Chengde, Zhangjiakou, Cangzhou, Hengshui, Xingtai
and Langfang are cities with relatively low carbon emissions. This is due to the pattern of
urban development and industrial distribution.

4.2. Temporal Evolution of Industrial Structure Advancement

The trend of industrial structure change reflects the adjustment of the production
sector and national economy structure. The industrial structure advancement of BTH from
2006 to 2019 is shown in Figure 4. It is obvious that Beijing and Tianjin have better industrial
structure high polarization than the cities in Hebei province. On the whole, the level of
industrial structure advancement of each city keeps improving, which indicates that the city
cluster keeps allocating resources effectively and the macroscopic industrial development
keeps coordinating. Among them, Langfang has the largest increase, followed by Hengshui.
In 2019, the cities with a higher level of industrial structure advancement were Beijing,
Tianjin, Langfang and Shijiazhuangin, with the industrial structure advancement index
exceeding 7.0. This indicates that these cities are actively transforming the industrial
structure from lower to higher forms and entering the industrialization stage with high
manufacturing growth. However, the advanced level of industrial structure in Chengde is
still low, located below 6.5. It indicates that Chengde’s industrial structure still needs to be
further transformed to a high level.
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Int. J. Environ. Res. Public Health 2022, 19, 9513 11 of 21

4.3. Spatial and Temporal Evolution of Scientific and Technological Innovation

In order to explore the evolutionary trend of scientific and technological innovation
in BTH, the patent grant volume of each city in 2006, 2010, 2015 and 2019 are selected for
comparative analysis. Spatial distribution of patent grants and growth rates are shown
in Figure 5. Obviously, there has been a significant increase in the patent grant volume
of each city. The patent grant volume of some cities in 2019 even exceeded the sum of
2006, 2010 and 2015. Among them, Beijing, Tianjin and Shijiazhuang are the cities with the
largest patent grant volume. In 2019, Beijing’s patent grant volume exceeded 130,000 pieces.
In terms of growth rates, Zhangjiakou, Langfang and Xingtai have seen breakthrough
growth in patent grants in recent years, using 2006 as a benchmark. This reflects that city
developers are paying more and more attention to science and technology innovation, and
the related mechanism of certifying and transforming achievements has become better.
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5. Empirical Analysis
5.1. Smoothing Test and Optimal Lag Order Determination
5.1.1. Smoothing Test

Before estimating the PVAR model, it is necessary to conduct a smoothing test for each
panel series to avoid bias in the results due to pseudo-regression. Therefore, in order to
avoid the test error caused by the single method test and ensure accuracy, we adopt four
methods: LLC test, IPS test, Fisher−ADF and Fisher−PP test to examine the unit root of
each variable at the same time. The results of the panel unit root test for each variable are
shown in Table 3. The results show that after first-order differential, the original hypothesis
of the existence of unit root in the panel data was rejected at least at the 5% significance
level. Therefore, it passed the smoothing test.
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Table 3. Smoothing test.

Variables Statistics LLC IPS Fisher−ADF Fisher−PP Result

CF
z −3.0563 *** −1.2563 44.0032 ** 50.9189 ***

/P 0.0011 0.1045 0.0151 0.0024

D_CF
z −10.5343 *** −5.1794 *** 58.7956 *** 48.1316 ***

SmoothP 0.0000 0.0000 0.0002 0.0000

ISA
z −2.2438 ** −0.1443 51.8477 *** 78.4992 ***

/P 0.0124 0.4426 0.0019 0.0000

D_ISA
z −8.1318 *** −5.6308 *** 91.9612 *** 33.1921 ***

SmoothP 0.0000 0.0000 0.0000 0.0000

INN
z −2.8042 *** −3.3297 *** 53.2828 *** 48.7433 ***

SmoothP 0.0025 0.0004 0.0012 0.0044
Note: *** p < 0.01, ** p < 0.05. D_ indicates first-order difference. Table source: authors’ own creation.

5.1.2. Co-Integration Test

After the smoothing test, we have used Kao [52] and Pedroni [53] to conduct co-
integration tests for the three variables of CF, ISA and INN, and the test results are shown
in Table 4. The original hypothesis was rejected at the 1% level for all variables, indicating
the existence of a long-run co-integration relationship between the variables. Therefore, the
PVAR model could be constructed.

Table 4. Co-integration test.

Method z p

Kao ADF 2.6031 *** 0.0046
Pedroni Panel ADF 4.0272 *** 0.0000

Note: *** p < 0.01. Table source: authors’ own creation.

5.1.3. Optimal Lag Order

To construct the PVAR model, we determined the optimal lag order of the model, i.e.,
the order where the minimum value of the statistic is located, according to the Akuchi
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan−Quinn
Information Criterion (HQIC) [54]. Optimal lag order determination results are shown in
Table 5. The lag order chosen should not be too large, otherwise it will reduce the degrees
of freedom of the model and cause unnecessary loss of model data. A too-small lag order
will reduce the accuracy of the model test results. Therefore, the selection should be based
on the principle of passing a larger number of test criteria [55]. The results show that the
smallest value of the model statistic is of lag order 1 for three criteria. Therefore, in this
PVAR model, the optimal lag order is chosen to be lag order 1.

Table 5. Optimal lag order determination.

Lag AIC BIC HQIC

1 −3.14733 * −2.20892 * −2.76619 *
2 −2.74281 −1.56181 −2.26291
3 −2.59617 −1.14034 −2.00462
4 −2.76581 −0.99519 −2.04696
5 −1.05634 1.07951 −0.191047

Note: * denotes the optimal lag order under the three criteria. Table source: authors’ own creation.

5.2. GMM Estimation Based on the PVAR Model

By building a PVAR model with a lag order 1, we applied a Generalized Moment
Model (GMM) for estimation. To eliminate endogeneity in the PVAR model, we used the
Mean Difference Method and Helmert Method to remove time point effects and fixed effects.
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h_CF, h_ISA, and h_INN were the variables after performing the helmert transformation,
and L1 denotes lag order 1. The estimation results are shown in Table 6.

Table 6. GMM estimation.

Variables Statistics h_CF Equation h_ISA Equation h_INN Equation

L1.h_CF
Coef. 0.9987 *** 0.0671 *** 0.2120 **

z 9.09 2.76 2.32

L1.h_ISA
Coef. −0.8766 ** 0.5334 *** −1.0002 **

z −2.03 5.17 −2.24

L1.h_INN
Coef. 0.0992 * 0.0282 *** 0.9089 ***

z 1.90 2.90 19.22
Note: *** p < 0.01, ** p < 0.05, * p < 0.1. D_ indicates first-order difference. Table source: authors’ own creation.

As can be seen from Table 5, when the h_CF equation is used as the dependent variable,
h_CF with one period lag has a significant positive contribution to itself at the 1% level, with
an impact coefficient of 0.9987. h_ISA with one period lag has a significant negative impact
on h_CF at the 5% level, with an impact coefficient of −0.8766. It shows that industrial
structure advancement has a more obvious inhibitory effect on carbon footprints on the
basis of the industrial structure rationalization. The coefficient of h_INN has a significant
positive effect on h_CF at the 10% level, with a lag of 0.0992, indicating that there is a
“rebound effect” on the impact of technological innovation on carbon footprints. On one
hand, lower production costs will lead to greater external demand for production, which
in turn will increase carbon footprints. On the other hand, with the narrowing of the
technology emission reduction space and the gradual acceleration of the carbon market
construction, the cost of carbon footprint reduction is bound to continue to rise. Thus, the
single measure of scientific and technological innovation will lead to an increase in carbon
footprints in the long run.

When the h_ISA equation is used as the dependent variable, h_CF with one period
lag has a significant positive effect on h_ISA at the 1% level with an impact coefficient of
0.0671, indicating that the increase in carbon footprints in the short term will force the
government and enterprises to upgrade the industrial structure. h_ISA with one period lag
has a significant self-promoting effect on itself at the 1% level, with an impact coefficient
of 0.5334. h_INN with one period lag has a significant positive impact on h_ISA at the
1% level, with an impact coefficient of 0.0282. The above results indicate that scientific
and technological innovation accelerates the transformation of industries from low-end to
high-tech, from factor-intensive to knowledge-intensive and from high pollution to green
and low-carbon. Therefore, its positive contribution to the industrial structure advancement
gradually appears.

When the h_INN equation is used as the dependent variable, h_CF in the lagged pe-
riod has a significant positive effect on h_INN at the 5% level, indicating that the long-term
growth of carbon footprints will force cities to improve the level of scientific and techno-
logical innovation, accelerate the innovation-driven transformation and apply advanced
low-carbon scientific and technological innovation results to achieve carbon footprints
reduction targets. The current h_ISA will have a significant negative inhibitory effect on
h_INN at the 5% level, with an impact coefficient of −1.0002. The reason is that there
is a negative mediating effect in the process, which inhibits the output of scientific and
technological innovation in the short term. The h_INN in the current period will have
a significant positive effect on itself at the 1% level, with an impact coefficient of 0.9089,
indicating that scientific and technological innovation has some self-reinforcing effect.

5.3. Granger Causality Test

The above GMM estimation results indicate the static relationship between CF, ISA
and INN. In order to further determine the causal relationships between three variables,
the Granger causality test was conducted to verify. The results are shown in Table 7.
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Table 7. Granger causality test.

H0: the Former is Not the
Granger Reason for the Latter Chi-Square p Result

h_ISA→h_CF 4.1319 ** 0.042 reject
h_INN→h_CF 3.6234 * 0.057 reject

all→h_CF 4.7662 * 0.092 reject
h_CF→h_ISA 7.6131 *** 0.006 reject

h_INN→h_ISA 8.3988 *** 0.004 reject
all→h_ISA 13.517 *** 0.001 reject

h_CF→h_INN 5.3908 ** 0.020 reject
h_ISA→h_INN 5.0251 ** 0.025 reject

all→h_INN 5.6524 * 0.059 reject
Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Table source: authors’ own creation.

From above, it can be seen that CF and INN are Granger causes, CF and ISA are
Granger causes, and ISA and INN are Granger causes. The dynamic relationships between
the three can be seen by combining Tables 5 and 6.

Scientific and technological innovation and carbon footprints show a two-way causal
relationship. For one, the level of scientific and technological innovation affects carbon
footprints. In the case of BTH, it leads to a “rebound effect”. While the efficiency of
energy use is improved by scientific and technological innovation, it also increases the
demand for energy in production. In addition, technological innovation will indirectly affect
carbon footprints by promoting industrial restructuring. For another, the change in carbon
footprints will also affect scientific and technological innovation in turn. The continuously
high carbon footprints also makes enterprises and technology sectors accelerate to provide
practical methods in the three aspects of low carbon, zero carbon and negative carbon
to achieve technological breakthroughs and change the current carbon footprints in the
long run.

The industrial structure advancement and carbon footprints show a two-way causal
relationship. The industrial structure advancement is the Granger cause of carbon foot-
prints, and the realization of the carbon footprints reduction target depends on the green
transformation of industry. The green industrial transformation and upgrading in the
process of industrial structure advancement promotes its transformation from factor-driven
to innovation-driven by enterprises with the support of innovation achievements, which
helps to realize the two-way goal of energy saving and carbon reduction. Carbon footprints
are the Granger cause of the industrial structure’s advancement. Carbon footprints have a
positive promotion effect on the industrial structure’s advancement. The increasing carbon
footprints makes the industry change from the production mode of high energy consump-
tion, high pollution and high emission to the green production mode. Meanwhile, the
speed of inter-industry linkage and integration is accelerated to enhance resource allocation
efficiency and industrial coupling.

Scientific and technological innovation and the industrial structure advancement also
show a two-way cause-and-effect relationship. Scientific and technological innovation is
the Granger cause of the industrial structure advancement. Green low-carbon scientific and
technological innovation achievements can effectively increase the supply of low-carbon
products and innovate green services and guide green consumption. By strengthening
basic industrial research and improving the industrial technology innovation system can
effectively increase the supply of environmental protection equipment and low-carbon
products. Low-carbon products will, in turn, promote the green and low-carbon trans-
formation of traditional industries such as transportation and construction and the rapid
development of new and high-tech industries, thus promoting the high polarization of
industrial structure and ultimately realizing green services and green consumption [56].
Industrial structure advancement is the Granger cause of the scientific and technological
innovation. In the long term, based on the industrial structure, the deep integration of the
innovation chain and industrial chain can accelerate all kinds of technology and innova-
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tion elements to consolidate green innovation achievements, promoting faster output of
scientific and technological innovation.

5.4. Impulse-Response Analysis Based on the PVAR Model

The impulse response function (IRF) can further describe the direction of interaction
between variables and their dynamic relationships at different period lags. Therefore, we
conducted impulse-response analysis for CF, ISA and INN, and give each variable a shock
of 1 standard deviation, setting the lag period to 10 periods. The impulse-response function
results are shown in Figure 6. After 200 Monte-Carlo simulations, the impulse responses
corresponding to each variable were plotted. Errors are 5% on each side generated by
Monte-Carlo with 200 reps. The impulse-response plots were drawn after 200 Monte-Carlo
simulations. The middle line is the IRF curve, and the outer lines represent the 5% and
95% quantile lines. The response trends of CF, ISA and INN converge to 0 after 10 periods,
which indicates that the PVAR model is robust.
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Based on Figure 6, the following conclusions can be drawn:
When CF is subjected to a shock of one standard deviation, the impulse responses to

itself, ISA and INN are as follows. Among them, CF shows a significant strong positive
response after being shocked by itself, which gradually weakens until convergence with
the extension of the response period, indicating the relative economic inertia of carbon
footprints in the BTH. After the shock to CF, ISA indicates a significant positive effect, which
reaches a peak in the third period and then gradually decreases until it converges to 0. The
positive effect of CF on INN gradually increases in the first period, and the response degree
starts to weaken after the third period, and then gradually converges to 0. It can be seen



Int. J. Environ. Res. Public Health 2022, 19, 9513 16 of 21

that the impact of carbon footprints in BTH has a long-term nature and has an obvious
push-back effect on the industrial structure advancement and technological innovation.

When the ISA is subjected to a shock of one standard deviation and the impulse
responses to itself, CF and INN are as follows. The response of the CF to the shock of the
ISA is negative, reaching a peak in the third period, then slowly decreasing and finally
converging to 0. The change in industrial structure leads to a phased change in carbon
footprints. The former is the cause, which depends on the inherent law of economic
development, while the latter is the result, which is attributed to the positive impact of the
ISA on INN decreases after the shock, with a smaller negative impact after period 1.

When the INN is subjected to a shock of one standard deviation, the impulse responses
to itself, and CF and ISA are as follows. Among them, when facing the shock from itself,
INN shows a strong positive response, and then gradually decreases with the extension
of the response period, showing a time-accumulation effect. The CF shows a significant
positive effect for the shock of INN and the response peaks in the fourth period after the
shock, after which the response degree starts to weaken and gradually level off. This
indicates that the “rebound effect” of scientific and technological innovation on carbon
footprints as the single measure of scientific and technological innovation adopted by the
BTH cannot reduce carbon footprints. The ISA shows a significant positive effect after the
shock to INN, which gradually weakens until converging to 0 after period 5, indicating that
scientific and technological innovation in BTH has a positive contribution to the industrial
structure advancement in the long run. The transformation of scientific and technological
innovation helps to realize the transformation of the industrial structure to the green and
low-carbon type.

In summary, carbon footprints, industrial structure advancement and scientific and
technological innovation in BTH all have certain self-reinforcing effects. The industrial struc-
ture advancement has a suppressive effect on carbon footprints, but the effect of scientific
and technological innovation on carbon reduction is not obvious. Scientific and technologi-
cal innovation helps to transform the industrial structure to the advanced level. In addition,
the long-term increase in carbon footprints will force cities to accelerate industrial structure
adjustment and the output of scientific and technological innovation achievements.

5.5. Variance Decomposition Analysis

To further explore the interaction between carbon footprints, industrial structure
advancement and scientific and technological innovation, the variance decomposition was
used to analyze the strength of the contribution of each structural shock during the change
of endogenous variables and to measure the importance of individual variables on the
shocks of the remaining endogenous variables [57]. A thirty-period variance decomposition
of the variables was performed, and the results are shown in Table 8.

Table 8. Variance decomposition.

Variables s/Period CF ISA INN

CF
10 0.709 0.243 0.048
20 0.687 0.254 0.059
30 0.687 0.254 0.059

ISA
10 0.355 0.590 0.055
20 0.345 0.589 0.066
30 0.345 0.588 0.067

INN
10 0.013 0.246 0.741
20 0.020 0.248 0.732
30 0.020 0.248 0.732

Table source: authors’ own creation.

In terms of CF, the contribution of CF to itself reaches 70.9% in period 10. The variance
contributions of ISA and INN are 24.3% and 4.8%, respectively. The contribution of CF to
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its own variance decreases to 68.7% in period 20, and the contribution of ISA increases to
25.4%. The contribution of INN to CF is stable at 5.9%. It indicates that the main variance
contribution of CF comes from itself and ISA, and the explanation of CF by ISA gradually
increases in the long run.

In terms of ISA, the contribution of CF to ISA is 35.5% in period 10 and decreases to
34.5% in period 20, and it then stabilizes. The contribution of INN to ISA increases to 6.7%
in period 30. It can be seen that the explanatory contribution of ISA in the short term is
mainly influenced more by CF in addition to itself.

For INN, the variance contribution of itself is 74.1% at period 10, the variance con-
tribution of CF is 1.3%, and the variance contribution of ISA is 24.8%. At period 20, the
variance contribution of itself is stable at 73.2%, the variance contribution of CF is stable
at 2.0%, and the variance contribution of ISA is stable at 24.8%. This indicates that INN is
mainly driven by its own reinforcement, and a small part of the variation comes from the
influence of ISA, and the variation in CF has little effect on it.

From the analysis of the above variance decomposition results, we can see that the
variance contribution of each variable basically reaches a stable state in the 20th and 30th
periods. The variance explanations of carbon footprints, industrial structure advance-
ment and scientific and technological innovation in BTH mainly come from their own
strengthening. In the long run, the influence of the industrial structure advancement on
carbon footprints is increasing. In the short term, the industrial structure advancement is
mainly influenced by carbon footprints in addition to its own reinforcement. The impact
of scientific and technological innovation is also increasing. The change in scientific and
technological innovation is mainly driven by its own reinforcement, and a small part of the
change comes from the influence of industrial structure advancement. Carbon footprints
have a smaller impact on it.

6. Conclusions

In this study, we include scientific and technological innovation, industrial structure
advancement and carbon footprints in the same research framework. Panel data of 13 cities
in the BTH from 2006 to 2019 are selected to explore the dynamic relationship among the
three variables through the PVAR model. The main findings are presented below.

First, the industrial structure advancement and carbon footprints have a two-way
causal relationship with significant influence on each other, and industrial structure ad-
vancement explains carbon footprints more strongly. The impact coefficient of industrial
structure advancement on carbon footprints with a one-period lag is −0.8766. In the short
term, as the process of the industrial structure continues to advance, its effect on carbon
footprints also increases. At the same time, the impact coefficient of industrial structure
advancement on carbon footprints with one period lag is 0.0671. This indicates that the
pressure of the long-term increase in carbon footprints will also accelerate the industrial
structure to the advanced level, which is reflected in promoting the transformation of devel-
opment mode from factor driven to innovation driven. The results of the Granger causality
test also further confirm the existence of a two-way causal relationship between the two. In
addition, compared with scientific and technological innovation, the industrial structure
advancement has a greater impact on carbon footprints, with a variance contribution of
25.4%, which reveals that policy researchers should pay special attention to the emission
reduction effect of industrial structure upgrading.

Second, practice shows that there is a “rebound effect” on the impact of scientific
and technological innovation on carbon footprints in BTH, but the continuous increase in
carbon footprints will force the level of innovation to improve. The carbon footprints tend
to increase under the impact of technological innovation, and the coefficient of scientific
and technological innovation on carbon footprints with a lag of one period is 0.0992. This
confirms the Khazzoom-Brookes hypothesis that the direct green emission reduction effect
of innovation is not sufficient to offset the increase in pollutant emissions caused by the
expansion of production scale due to the reduction in production cost of enterprises, which
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eventually results in an increase in carbon footprints. Moreover, with the narrowing
of the technology emission reduction space and the gradual speeding up of the carbon
market’s construction, the cost of carbon reduction continues to rise, so the single measure
of technology innovation cannot effectively achieve the carbon reduction target. In the long
term, to achieve effective control of carbon footprints, it is necessary to encourage research
and development of green and low-carbon technologies at the practical level. Additionally,
the impact coefficient of carbon footprints on scientific and technological innovation with a
lag of one period is 0.2120, indicating that the long-term growth of carbon emission will
force the government and enterprises to accelerate the R&D of science and technology,
especially green innovation, to promote the innovation-driven transformation.

Third, scientific and technological innovation can promote the shift of industries from
low-end industries to high-tech industries, thus accelerating the advance of industrial
structure. The impact coefficient of scientific and technological innovation on industrial
structure advancement in the one lag period is 0.0282. Industrial structure advancement
also shows a significant positive effect under the impact of scientific and technological
innovation, which gradually weakens and converges to 0 after the fifth period, indicating
that scientific and technological innovation in BTH has a positive contribution to the in-
dustrial structure in the long run. Meanwhile, the structural contribution of scientific and
technological innovation to industrial structure advancement can reach 6.7%. Therefore,
we should promote the application and upgrading of green technology to continuously
eliminate backward production capacity. While extending the industrial chain and expand-
ing the scale of industry, we can promote the transition of industry to innovation and the
deep integration of the innovation chain and industrial chain with the aim of achieving the
carbon reduction target and green and high-quality development.

Due to the limitations of the research scope and the availability of data, there are still
some limitations in this study. One concern about the findings is with the measurement of
variables, especially about the carbon footprints. The widely used methods in studies are
the emission factor method, mass balance method and actual measurement method, etc.
The results calculated by different measurement methods are slightly different. Another
limitation is about the sample size. The external validity of this paper cannot be stated
explicitly. Since the BTH is an important urban cluster including the capital of China, the
national policy support gives a certain priority to economic development and has a certain
reference role. However, this study is still a small sample test. There is heterogeneity in the
economic and environmental conditions of different regions, so the external applicability
of the study findings needs further analysis. Care should be taken when generalizing the
study findings to regions with similar economic characteristics. The impact mechanisms
of carbon footprints, such as the impact threshold of variables and regional heterogeneity,
should be studied in the future, pending separate analysis.

7. Research Implications

The potential contributions of this study are mainly in the following aspects. First,
this study uses the IPCC inventory coefficient method to calculate the carbon footprints
from direct energy consumption, and sums it with the carbon footprints from indirect
energy consumption to finally calculate the total carbon footprints of each city. The carbon
footprints of BTH and the change characteristics of scientific and technological innovation
are summarized from the temporal and spatial perspectives, which is helpful to visualize
its change trend. Second, this study uses GMM estimation for differential equation by one
lag order based on the PVAR model to obtain the differential equation. By observing the
magnitude and direction of the coefficient values, we explore the static influence relation-
ships between scientific and technological innovation, industrial structure advancement
and carbon footprints. Further, through the Granger causality test, we analyze the causal
relationships existing between the variables and reveal the bidirectional influence rela-
tionships between carbon footprints and their drivers. Finally, by applying Monte Carlo
simulation of the response relationships of variables under policy shocks and plotting
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impulse response plots, we can observe the long-run dynamic impact relationships among
variables, which can contribute to the prediction of policy implementation outcomes. In
terms of theoretical significance, this study can enrich the PVAR model’s application and
research, while confirming the effective applicability of the method in the environmental
field. At the practical level, this study takes the perspective of coordinated development
of carbon footprints, scientific and technological innovation and industrial structure, and
provides targeted ways to promote carbon emission reduction and industrial structure ad-
justment, which is conducive to providing policy support for the coordinated development
of BTH and promoting the realization of the Double Carbon goal.

Based on the above conclusions, we put forward the following policy implications.
First, attention should be paid to the inhibiting effect of upgrading the industrial structure
on carbon footprints. We should realize that the previous high pollution and rough devel-
opment mode needs to be changed urgently, and promote the continuous transformation
of industry’s structure to the advanced level. The industrial structure, industrial scale and
industrial layout should match the energy structure. Second, based on the role of scientific
and technological innovation in promoting carbon reduction and industrial structure opti-
mization, we can rely on the fruits of scientific and technological innovation to reasonably
optimize the industrial structure and promote the green and low-carbon transformation of
industries. At the same time, financial support, tax incentives, property rights protection
and other comprehensive policy instruments should be chosen to play the synergistic role
of green technology in economic development, so as to jointly achieve the goal of carbon
peaking. Third, based on the macro perspective, the mode of energy consumption should
be changed by adjusting traditional energy and clean energy demands by introducing
pricing mechanisms and expanding clean energy supply to abandon coal-based energy
consumption structure. Third, based on the macro perspective, the mechanisms of energy
consumption should be changed. Traditional energy and clean energy demands need to be
adjusted by introducing pricing mechanisms and extending clean energy’s supply in order
to abandon the single energy consumption structure dominated by coal. Meanwhile, pro-
moting the integration of renewable energy with the industrial structure and infrastructure
construction should also be particularly noted.
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