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Abstract: As a transition zone between the terrestrial ecosystem and the marine ecosystem, coastal
intertidal wetland provides an important place for material circulation and energy exchange, and
it is nature’s most precious resource. The ecological health of intertidal wetlands is an important
prerequisite for sustainable green development. The material exchange function objectively and
accurately reflects the material balance and ecological health of intertidal wetlands in the coastal
zone. This paper uses remote sensing, geographic information technology, and model methods to
objectively and accurately assess the temporal and spatial changes in the material exchange function
of intertidal wetlands, providing a feasible method for studying the material exchange function
of coastal wetlands. The material exchange capacity of wetlands in intertidal zones is affected by
many factors, such as vegetation, topography, and base soil. After the invasion of the alien species
Spartina alterniflora Lois., the elevation of the Suaeda salsa beach increased by 0.3 m. The elevation
of the Phragmites australis beach rose by 0.14 m. The average elevation of S. alterniflora increased by
1.24 m. The material exchange capacity of the intertidal zone decreased by 25%. The functioning of
the material exchange between sea and land changed significantly, and the area with a high level of
material exchange function capacity was reduced by 71%.

Keywords: material exchange function; intertidal wetland; S. alterniflora; temporal and spatial
changes; Yancheng

1. Introduction

Coastal intertidal wetland is the most active ecosystem and is located in the transition
zone between ocean and continent [1]. It is an important channel and a place for material
circulation and energy exchange between the ocean and the surrounding environment [2,3].
The material exchange function of intertidal wetland maintains the ecosystem structure,
process, and functional foundations and has a profound impact on the succession and
degradation of the intertidal ecosystem. For this reason, understanding and scientifically as-
sessing the temporal and spatial changes in the material exchange function of the intertidal
zone ecosystem has important practical significance. At present, studies on the material
exchange function of intertidal wetland ecosystems in coastal areas are in the relatively
early stage. In 1974, Odum pioneered an experiment concerning the importance of the
nutrient inputs of tidal water in the intertidal zone for maintaining the high productivity
of S. alterniflora [4]. On this basis, it was proposed that the intertidal wetland was based
on dissolved organic matter. The conclusion that carbon, and particulate organic carbon
especially, exports organic carbon to nearshore waters has become the basic theory used
in a great deal of future research and management decisions [5–7]. In recent years, with
the urgent need for coastal ecological protection and management, European and Amer-
ican researchers have successively carried out research on wetland evaluation methods,

Int. J. Environ. Res. Public Health 2022, 19, 9419. https://doi.org/10.3390/ijerph19159419 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19159419
https://doi.org/10.3390/ijerph19159419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph19159419
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19159419?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 9419 2 of 19

with intertidal wetland deposition as the main function; they obtained a large number of
research results [8–11]. For example, there is research that uses coastal wetland hydrogeo-
morphological indicators to establish the material deposition model of intertidal wetland
and uses the evaluation model of the nutrient and organic carbon exchange function to
evaluate the material exchange function of the intertidal zone. Research on the material ex-
change function of intertidal wetlands started relatively late, and a series of qualitative and
quantitative studies have been carried out on the mechanism of the nutrient and organic
matter migration of wetlands, on the calculation of exchange flux, and on seasonal dynamic
changes [12–15]; however, research rarely involves the evaluation of the material exchange
function of the intertidal zone. Although some scholars assessed the material exchange
capacity of wetlands by constructing a typical intertidal material exchange function index
in the Bohai Bay [16], they lacked a spatial perspective to reveal changes in the material
exchange function of the intertidal zone.

The definition of the material exchange function of intertidal wetlands refers to the
exchange capacity between tidal flats and ocean tidal waters. Its ecological significance
reveals the function of nutrients in tides in maintaining ecological health and the material
balance between land and sea [17,18]. When seawater immerses the surface of the wetland
in the intertidal zone, a process of material exchange and energy exchange occurs [19,20].
However, due to the differences in the spatial locations of different intertidal wetland
ecosystems, there are spatial differences in the material exchange function of the intertidal
zone. These spatial differences are the material basis for determining the spatial differentia-
tion of the types of intertidal wetland ecosystems. Some of these differences are decisive
factors that affect the spatial heterogeneity of the material exchange function of intertidal
wetlands, such as the hydrological conditions of wetlands, including tidal flooding time,
inundation frequency, and the relationship between wetland and tidal water [7,9], as well as
soil properties, elevation and slope, and vegetation coverage on the wetland surface [10,21].
Wetland plant biomass was found to be driven by soil water content [22,23]. Miller used
the Manning coefficient to characterize the impact of intertidal wetlands on the material
exchange capacity, revealing that a large area of S. alterniflora can reduce wave height by
80% and weaken wave energy by 95% [24,25], seriously affecting the material exchange
function of the intertidal zone. How to scientifically assess the spatial differences in the
material exchange function and the temporal and spatial evolution of the intertidal wetland
ecosystem in coastal areas is a question of scientific interest. The main objectives include:
(1) achieving a scientific understanding of the factors that affect the spatial differences in the
material exchange function of intertidal wetlands; (2) constructing a scientific evaluation
method for the material exchange function of intertidal wetlands; and (3) elucidating the
material exchange function of intertidal wetlands, including the characteristics and laws of
the temporal and spatial evolution of the exchange function.

In this study, a typical intertidal wetland in Yancheng, Jiangsu Province, China was
selected as a case study. Based on the evolution characteristics and laws of a silty intertidal
wetland ecosystem and the impact of the invasion of S. alterniflora on the intertidal wetland
ecosystem, an analysis was carried out by constructing a material exchange function index
method for the intertidal wetland and comprehensively using remote sensing and GIS
technology. This research work investigated the temporal and spatial changes in the
material exchange function of intertidal wetlands, scientifically assessed the impact of S.
alterniflora invasion on the material exchange function of intertidal wetlands, and provided
a scientific basis for the protection and restoration of intertidal wetlands.

2. Study Area

The study area is located in the coastal zone of Yancheng, Jiangsu, east of the Yellow
Sea, in the area ranging from 119◦27′ E to 120◦54′ E and from 32◦34′ N to 34◦28′ N (Figure 1).
The topography of the region is plain. The north and south regions were formed by the
sedimentation of sediment carried by the Yangtze River and the Yellow River and through
the action of ocean tides and wind waves. These regions are silty intertidal wetlands.
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The study area is located in a transition zone from subtropical to warm temperate. The
annual sunshine time is 1956.5 h, the annual average temperature is 15.8 Celsius, and the
annual precipitation is 697.3 mm. The type of wetland ecosystem found in the area is
well preserved, and the impact of S. alterniflora invasion is prominent. Yancheng Nature
Reserve, which is a Ramsar wetland of international importance, joined the Convention
Concerning the Protection of the World Cultural and Natural Heritage in 2019. The unique
tidal wetland ecosystem in the reserve is the habitat for rare birds, an important resting
place for migratory birds from northeast Asia and Australia, and an important wintering
place for waterfowl. This area is also rich in wetland biodiversity, and it occupies a very
important position in international biodiversity conservation.
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3. Methods

The Yancheng coastal wetland is a typical silty intertidal wetland. Affected by ocean
tides and material deposition, the topography of the intertidal zone decreases from land
to sea, and the ecosystem types present a zonal distribution pattern. From land to sea,
Phragmites australis (Cav.) Trin. ex Steud., Suaeda salsa (Linn.) Pall., and S. alterniflora are
distributed on the mudflat. Among them, S. salsa is the pioneer species of intertidal
wetlands in the region. S. alterniflora was introduced to China in 1979 and was planted in
Yancheng, Jiangsu in 1982. It is now listed as an invasive species. After 2000, S. alterniflora
was distributed in belts, and its connectivity was enhanced, which had a serious impact on
the adjacent S. salsa ecosystem. In order to scientifically reflect the temporal and spatial
changes in the material exchange function of intertidal wetlands in the region, our study
used topographic roughness, bare soil roughness, and vegetation roughness as factors
affecting the exchange capacity between land and sea [24,25]. S. alterniflora, a globally
distributed invasive species, exists to varying degrees in the coastal areas of China. In the
1980s, S. alterniflora was introduced into China due to it being considered suitable for wave
breakers and dikes. Due to its strong reproductive ability, it spread rapidly. S. alterniflora
has spread viciously in some places, affecting the local marine ecology. After S. alterniflora
invaded coastal wetland ecosystems with its strong competitiveness, adaptability to the
environment, and strong reproductive ability, it changed the structure of the vegetation
community and reduced its richness and diversity; thus, it disrupted the balance of the
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original ecosystem [26]. The invasion of S. alterniflora into the community makes the total
nitrogen content, nitrogen storage, and nitrogen flow stall rate in soil significantly higher
than the values observed for P. australis and S. salsa [27,28]. Initially, after the invasion
of S. alterniflora, the richness and diversity of soil bacteria and fungi in S. salsa and P.
australis communities increased significantly, but with the passage of years, these levels
showed a trend of first rising and then declining [29–31]. After the invasion of S. alterniflora,
in addition to replacing the original plant through competition, it also hybridized with
the original plant to invade the gene of the original species, causing the gene of the
original plant to change [32]. By establishing the Manning roughness coefficient for the
system of intertidal wetlands (Figure 2), we simulated the temporal and spatial evolution
characteristics and laws of the land–sea material exchange function of coastal wetlands.
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3.1. Acquisition and Processing of Relevant Data
3.1.1. Wetland Ecosystem Types and Coverage Data

Landsat images from 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2017 were
selected as the data source for our study (See Table 1). The selection criteria for remote
sensing images included: (a) images were taken between August and November, when S.
alterniflora grows; (b) images were taken under appropriate conditions, such as cloud cover
of less than 20%; and (c) images were taken at low tide, so that S. alterniflora could be seen
growing in the intertidal zone. After the original images were preprocessed by geometric
correction, atmospheric correction, image stitching, image striping repair, band synthesis,
etc., the remote sensing map of the regional wetland was obtained. On this basis, the
visual interpretation of these images was carried out. All raw data were obtained from the
Geospatial Data Cloud of the International Scientific Data Service Center (www.gscloud.cn,
accessed on 5 June 2021).

www.gscloud.cn
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Table 1. Remote sensing image data source information.

Year Sensor Date Spatial Resolution/m Cloudiness/% Data Identification

1980 MSS 28 October 1980 78 0 LM31280371980302AAA03
1985 TM 24 September 1985 30 3 LT51190371985267HAJ00
1990 TM 8 October 1990 30 8 LT51190371990281HAJ00
1995 TM 9 December 1995 30 1 LT51190371995343CLT00
2000 ETM+ 9 September 2000 30 53 * LE71190372000253EDC01
2005 ETM+ 26 November 2005 30 6 LE71190372005330EDC00
2010 ETM+ 10 December 2010 30 1 LE71190372010344EDC00
2015 OLI 13 October 2015 30 0.04 LC81190372015286LGN01
2017 OLI 5 December 2017 30 0.58 LC81190372017339LGN00

* The cloud cover above the study area was 0, which meets the interpretation requirements.

In addition, using the above remote sensing images to calculate the vegetation index,
i.e., the NDVI value, to estimate the vegetation coverage, the calculation formula is:

NDVI =
NIR− R
NIR + R

VFC =
NDVI − NDVImin

NDVImax − NDVImin

where NDVI is the vegetation index, NIR is the reflection value in the near-infrared band,
R is the reflection value of the red-light band, VFC is the vegetation coverage, NDVImax is
the largest NDVI value in the area, and NDVImin is the smallest NDVI value in the area.

3.1.2. Terrain Data

Adopting the field-surveyed elevation data of the 2002 research team and the Lidar
elevation data from 2017, we used the BP neural network method to invert the topographic
distribution of the region from 1980 to 2017. The core of the BP neural network model is
to use an iterative gradient algorithm to correct the weight of the network output and the
target by adjusting the error so as to minimize the total error of the network. The BP neural
network model includes three parts: network construction, training, and prediction. In this
study, 200 collection points were randomly generated from the terrain data, and several
types of information, such as vegetation changes, distance from the sea, and vegetation
types, were collected. The specific method can be outlined as follows. (1) The principal
component score data were used for the input layer of the model, which was randomly
divided into 3 subsets, namely the training data set, the verification data set, and the test
data set; the proportions were, respectively, 70%, 15%, and 15%. The predicted terrain
elevation was the output layer of the model, and the number of neurons in the hidden
layer was set and adjusted according to empirical formulas. (2) The forward transmission
of information and the backward propagation of errors in the output layer were carried
out through the input of a known sample set; the weights and thresholds of the neurons
in each layer were continuously adjusted, and they converged along the direction of the
most rapid decline in the error function until the error was less than the target. We set the
value and then saved the connection weight and threshold information between the layers
to establish a prediction model. (3) We used the established prediction model to predict the
output of the test sample set (Figure 3). R2 (coefficient of determination) was selected to
evaluate the simulation accuracy.
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3.2. Construction of the Material Exchange Function Index
3.2.1. Manning Roughness Coefficient

The roughness of the wetland surface is the main factor affecting material exchange
in the intertidal zone. The study used the Manning roughness coefficient to evaluate
the surface roughness of the intertidal wetland [33]. The Manning roughness coefficient
formula is:

n = nbase + ntopo + nvege

where n is the Manning roughness, nbase is the soil roughness of the wetland surface, ntopo
is the topographic roughness of the wetland surface, and nvege is the vegetation roughness
of the wetland surface.

According to the distribution characteristics of unused soil, landform, and vegetation,
the roughness values of the soil, landform, and vegetation were selected (Table 2). The
Yancheng intertidal wetland is a typical muddy tidal wetland, and the wetland surface is
covered by sand gravel and broken shells in less than 25% of its area, so the value selected
was 0.025.

Table 2. Manning roughness coefficient index value.

Roughness Value Feature Description

nbase 0.025 Wetland bare soil background value
0.030 Covered by gravel and broken shells in more than 25% of area

ntopo 0.001
A typical flat area without micro-landforms (such as hills) or large-scale

landforms (such as narrow channels, tidal channels, mountains,
depressions, and ponds)

nvege Vegetation coverage
<50% 50~75% ≥75%

0.025 0.030 0.035 Short-stemmed soft-leaf area (S. salsa)
0.050 0.060 0.070 High-stemmed and soft-leaf area (P. australis, S. alterniflora)

3.2.2. Material Exchange Function Index

The factors influencing the material exchange function between the land and the sea
in the intertidal zone are complicated. A material exchange function evaluation index was
constructed to scientifically, objectively, efficiently, and uniformly evaluate the characteris-
tics and the temporal and spatial differences in the material exchange function between the
land and sea in the coastal intertidal zone of Yancheng. Since the area was not affected by
the invasion of S. alterniflora and human activities in 1980, it presents the characteristics of
material exchange in the intertidal zone under ideal conditions. For this reason, this study
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used the 1980 data as the reference wetland, and the material exchange function evaluation
index for other years is as follows:

Hi = ln
(

EXi
EX0

)
where Hi is the evaluation index of the material exchange function of the intertidal zone in
the year i; EXi is the material exchange capacity, i = 1, 2, 3, · · · , 8, representing 1985, 1990,
1995, · · · , 2017; and EX0 is the sea–land material exchange capacity of the Yancheng coastal
wetland in 1980.

3.3. Methods for Evaluating the Material Exchange Function of the Intertidal Zone

In order to spatially reflect the heterogeneity of the regional material exchange function, the
study area was divided into 100 m× 100 m grid units, with a total of 210 rows × 214 columns.
We determined the material exchange capacity of the land and sea in the initial state as 1. The
calculation formula for the land–sea exchange capacity of the remaining features is as follows:

Ex = Max(Exi × (1− µ× n))

where Ex is the sea–land exchange capability of the pixel; Max() is the maximum value func-
tion; and Exi is the sea–land exchange capability of the surrounding pixels, i = 1, 2, 3, 4, 5
(the positional relationship of pixels is shown in Figure 4). µ is the adjustment coefficient,
for which a value of 0.4 was selected in this paper; n is the Manning roughness coefficient
of the pixel.
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S. alterniflora was distributed in the intertidal zone, and its coverage spanned the largest 

Figure 4. Image calculation process of land–sea exchange capacity. (A) Topological relationship
and numbering of the surrounding pixels. (B) Raster map of Manning’s roughness coefficient.
(C) Schematic diagram of the calculation process of sea–land exchange capacity.

Using the ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculation
module on the ArcGIS platform, the spatial distribution map of the material exchange
function index of the typical wetland in Yancheng from 1985 to 2017 was obtained.

4. Results
4.1. Spatial Differentiation of Wetland Vegetation Types and Coverage

The vegetation coverage in the study area presented spatial heterogeneity (Figure 5).
Before 2000, the vegetation coverage increased with the distance from the sea. After 2000,
S. alterniflora was distributed in the intertidal zone, and its coverage spanned the largest
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area. The coverage levels of different types of vegetation were not the same. The vegetation
coverage of S. alterniflora was the highest, with a value of 85.96%, followed by the vegetation
coverage of P. australis, which had an average coverage of 78.46%; the vegetation coverage
of S. salsa was the lowest at 60.73%. The vegetation coverage of S. alterniflora increased from
70.99% in 1980 to 93.37% in 2017(Figure 6). The vegetation coverage of P. australis stabilized
at about 78%, although its vegetation coverage in 2005 and 2010 was low at around 60% for
both years. The vegetation coverage of S. salsa saw a large degree of change. In 1990, its
vegetation coverage was 29.81%.
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4.2. The Spatial Differentiation Characteristics of the Topography of the Intertidal Zone

The regional elevation distribution from 1980 to 2017 is shown in Figure 7. After
testing, the simulation accuracy was 0.912. It can be seen from the figure that the regional
intertidal wetland faces the Yellow Sea in the east, with an average elevation between
−0.84 m and 3.04 m, high in the west and low in the east. In terms of spatial changes, the
topographic elevation of the S. alterniflora distribution area changed greatly from 1980 to
2017. The elevation of the S. salsa distribution area increased from 1.42 m in 1980 to 1.72 m
in 2017. The P. australis beach rose from 1.71 m to 1.85 m, and the terrain height increased
by 0.14 m in 37 years. In the distribution area of S. alterniflora, the average elevation of
the tidal flat in 1980 was less than 1 m, and it was 1.97 m in 2017; in addition, the average
elevation increased by 1.24 m. Between 2000 and 2005, the topography of the S. alterniflora
distribution area rose the fastest, with an increase of 0.34 m in 5 years (Table 3).
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Table 3. Topographic elevation distribution of vegetation (unit: m).

Year S. salsa P. australis S. alterniflora

Min Max Mean Min Max Mean Min Max Mean

1980 0.33 2.72 1.42 −0.97 4.36 1.71 −0.07 1.59 0.73
1985 0.42 2.23 1.34 −1.00 4.40 1.73 0.19 1.84 0.91
1990 −0.84 2.96 1.52 −0.96 4.43 1.78 0.40 1.87 1.06
1995 0.57 3.04 1.60 −0.61 4.47 1.82 0.53 2.16 1.08
2000 0.71 2.57 1.57 0.20 4.43 1.77 −0.64 2.20 1.16
2005 0.95 2.61 1.54 0.20 4.46 1.78 0.91 2.32 1.40
2010 1.13 2.16 1.63 −0.23 4.50 1.82 −0.43 2.28 1.65
2015 1.19 2.11 1.66 0.88 4.54 1.85 0.30 2.53 1.88
2017 1.26 2.26 1.72 0.51 4.47 1.85 0.71 2.63 1.97

Mean 0.63 2.52 1.56 −0.22 4.45 1.79 0.21 2.16 1.32

4.3. Spatial Differentiation of the Surface Roughness of Wetland in the Intertidal Zone

The spatial differences in the surface roughness of the intertidal wetland were mainly
affected by the terrain and vegetation. The topographic distribution map and the vegetation
type and coverage distribution map were superimposed and analyzed to form a wetland
roughness distribution map of the intertidal zone (Figure 8). From a spatial perspective,
before 2010, the surface roughness of the wetlands gradually increased from sea to land.
After the invasion of S. alterniflora, the surface roughness of the distribution area of S.
alterniflora gradually increased, which seriously affected the surface roughness distribution
of adjacent wetlands. Judging from the changes in the Manning roughness rate of different
types of vegetation in coastal wetlands (Figure 9), the average Manning roughness rate of
S. salsa vegetation was 0.049, and the internal variance was stable. The average Manning
roughness rate of P. australis was 0.084. From 1980 to 1995, the P. australis Manning
roughness increased from 0.006 to 0.015, and from 1995 to 2017, the Manning roughness
decreased from 0.015 to 0.009. The average Manning roughness rate of S. alterniflora was
0.091. From 1985 to 2017, the Manning roughness of S. alterniflora decreased year by year,
from 0.021 to 0.003.

4.4. The Spatial Characteristics and Changes in the Material Exchange Function in the Intertidal Zone

The material exchange function index and the surface Manning coefficient were closely
related, and the material exchange function map from 1980 to 2017 was obtained using
the model (Figure 10). The material exchange function between land and sea changed
significantly in 37 years. From a spatial point of view, the distribution is high in the east
and low in the west, that is, the closer it is to the sea, the stronger the material exchange
function between the sea and the land. In terms of the time series, the material exchange
capacity in 1980 was 0.85, and in 2017 it was 0.65, which was a decrease of 25%. With
time going by, the material exchange capacity changed dynamically, showing an overall
downward trend. Specifically, the size of the area with a high material exchange capacity
(greater than 0.7) decreased. In 1980, the area with a high material exchange capacity was
39.67 km2. In 2017, it was less than 11.34 km2; in contrast, the area with a low material
exchange capacity (less than 0.4) increased. In 1980, the area with a low material exchange
capacity was 17.54 km2. By 2017, it was 71.62 km2 (Table 4).
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Table 4. Different vegetation areas with different levels of material exchange function from 1980 to
2017. (Unit: ha).

Years
Material Exchange Function

0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1

1980 S. alterniflora 0.66 1.41 1.84 1.56
S. salsa 2.68 6.69 7.78 9.38 10.76 9.08

P. australis 0.06 6.88 10.23 8.94 8.39 6 2.76 1.31 0.94

1985 S. alterniflora 1.06 1.88 2.05 3.46
S. salsa 0.38 4.04 8.92 9.23 8.15 7.45

P. australis 0.76 9.85 10.13 12.03 9.36 3.92 2.4 1.83 0.81

1990 S. alterniflora 0.22 1.07 1.6 3.58
S. salsa 0.08 3.08 8.95 12.94 11.04 10.45

P. australis 0.04 6.05 9.74 10.45 11.61 6.9 2.73 1.29 0.73

1995 S. alterniflora 0.5 1.19 1.7 5.93
S. salsa 1.16 7.28 8.9 10.07 9.62 11.39

P. australis 1.22 7.91 13.77 10.58 5.79 4.06 2.37 1.37 0.42
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Table 4. Cont.

Years
Material Exchange Function

0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1

2000 S. alterniflora 0.47 1.69 2.12 3.61 6.37 7.79
S. salsa 0.73 6.4 12.85 14.3 10.56 8.53

P. australis 3.09 8.14 10.17 8.03 2.41 0.64

2005 S. alterniflora 0.62 2.01 4.04 5.55 8.02 7.66 5.93
S. salsa 1.3 3.69 12.21 9.88 4.72 1.77 1.19 0.15

P. australis 10.45 17.78 10.84 4.72 3.01 1.79 0.76 0.15

2010 S. alterniflora 0.01 1.65 4.85 6.06 7.04 9.19 8.12 5.66
S. salsa 0.35 7.36 10.55 6.22 2.45 0.77 0.21

P. australis 0.02 18.85 22.06 8.09 4.02 2.63 0.91 0.08 0.11

2015 S. alterniflora 1.01 3.08 6.13 6.85 9.47 7.94 5.27
S. salsa 1.47 5.76 4.19 1.77 1.98 0.42 0.25 0.01

P. australis 15.18 27.72 20.27 13.04 4.76 2.19 0.69 0.05

2017 S. alterniflora 0.63 3.19 5.75 6.94 9.17 8.07 5.22
S. salsa 0.11 2.51 3.6 2.33 1.2 0.28

P. australis 9.6 26 22.23 16.92 7.61 3.91 1.08 0.21 0.01

5. Discussion
5.1. Influence of S. alterniflora on Hydrological Processes

The Yancheng intertidal wetland is a typical silty wetland, affected by ocean tides and
material deposition [34]. The material exchange function presented a spatial differentiation.
It manifested as topographic gradient changes and had the same basic characteristics as the
belt-like distribution pattern of vegetation types [35]. The coastal geomorphology process
changes the habitat of plants, leading to vegetation succession. The evolution of the coastal
landscape pattern is the product of the mutual adaptation of plants and habitats [36,37].
Therefore, changes in plant cover types are the external manifestations of changes in the
material exchange function of coastal wetlands [38].

As time goes by, vegetation types succeed to the sea. However, after the invasion of S.
alterniflora, especially after 2000, when areas of S. alterniflora joined together to form a “biological
embankment”, the material exchange function of the intertidal zone changed (Figure 11). This
change became more prominent with the expansion of the area of S. alterniflora.
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The Manning roughness coefficient is determined by vegetation type, vegetation cover-
age, micro-topography, soil matrix properties, and surface coverage [39,40]. There are three
main types of vegetation in coastal wetlands: S. salsa, P. australis, and S. alterniflora. Those
contributing to the Manning coefficient were fixed. The variance in the Manning roughness of
S. alterniflora increased year by year, indicating that the variation in factors such as topography
also increased year by year. This was consistent with previous research results.

In this study, based on the material exchange function in 1980, spatial distribution maps
of the material exchange function in other years were superimposed and subtracted from
1980 to obtain the spatial change map of the material exchange function in the intertidal
zone (Figure 12). Before 2000, there was little change in the material exchange function of
the wetland in the intertidal zone of the region. The vegetation types found in the wetland
naturally succeeded towards the sea, and the vegetation boundary moved towards the sea.
After 2000, the material exchange function of the intertidal zone underwent tremendous
changes. The material exchange function evaluation index plummeted from −0.075 in
2000 to −0.2560 in 2005, and then to −0.357 in 2017. From the perspective of wetland
vegetation types, the exchange index of the S. salsa vegetation zone in 1985 was −0.014,
and by 2017, the index was −0.740, representing a significant decrease (Figure 13). This
shows that the S. salsa ecosystem basically lost its ability to exchange materials with the
ocean. The material exchange index of the P. australis vegetation zone in 1985 was −0.093,
and it was −0.666 in 2017. The change is obvious in this result, too, showing that the P.
australis ecosystem is basically no longer affected by the exchange of materials between the
sea and the land. The change in the material exchange index of the S. alterniflora vegetation
zone is not obvious. Although the material exchange indices of the three vegetation zones
all showed a weakening trend, the degree of weakening of different vegetation zones was
different, as follows: S. salsa > P. australis > S. alterniflora.
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5.2. Effects of S. alterniflora on the Yancheng Coastal Wetland Ecosystem

The Yancheng coastal wetland’s unique natural factors, such as climate, hydrodynam-
ics, and geomorphic processes, enabled S. alterniflora to expand rapidly [41,42]. S. alterniflora
is in a favorable position in interspecific competition because of its wide ecological range
and sexual and asexual reproduction methods; it can grow in most areas of the coastal
intertidal zone [43]. With its super expansion ability, S. alterniflora expanded, in 2000, into
a strip landscape with a north–south connection and a width of several kilometers from
east to west. S. alterniflora was introduced successfully, and the pioneer community on
the ground gradually changed from S. salsa to S. alterniflora; the succession sequence of
light beach→ S. alterniflora appeared, which led to the disappearance of the succession
sequence of light beach→ S. salsa marsh, forming the succession sequence of S. salsa marsh
→ S. alterniflora marsh, which led to the disappearance of S. salsa marsh. Nowadays, S.
alterniflora marsh is basically connected with reed marsh, and S. alterniflora has become the
dominant community in the region. As a result, the plant community in the study area
tends to be of a single type, resulting in a decline in habitat biodiversity; the number of
suitable habitats continues to decline [44], and the structure of bird communities will tend
to simplify.

The invasion of S. alterniflora, with its strong siltation-promoting ability, raised the
terrain of the S. alterniflora distribution area on the coastline, forming a wide natural em-
bankment [45]. At present, the S. alterniflora zone has effectively changed the impact of
the original tide on the wetland hydrological process in the intertidal zone, resulting in a
reduction in seawater inundation frequency in S. salsa distribution area, the destruction of
the water–salt balance, and serious ecological degradation. The Yancheng coastal intertidal
wetland ecosystem has the basic characteristics of tidal hydrodynamic drive, low topo-
graphic gradient, and sheet flow. Under the comprehensive action of these factors, the tidal
flooding frequency, scope, time, and other hydrological process cycles, as well as the inter-
tidal zone, present the characteristics of zonal differentiation with respect to the supratidal
zone, intertidal zone, and subtidal zone. The input of tidal water brings nutrients necessary
for the health of the intertidal wetland system; also in addition, sediment deposition makes
the terrain rise, vegetation types continue to evolve to the sea, and various ecosystems
develop healthily, orderly, and dynamically. However, since the 1980s, the invasion of S.
alterniflora has become increasingly prominent. Because S. alterniflora plants are tall and
dense, they expand rapidly on the light beach that is submerged by the diurnal tide in
the intertidal zone, forming a vegetation zone with a width of 1~3 km; this has seriously
affected the original tidal process, resulting in disordered changes in the landform and
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vegetation succession of the intertidal zone and seriously interfering with the healthy and
dynamic succession law of the original intertidal zone.

S. salsa is a pioneer species in intertidal tidal flat wetlands, and it continues to evolve
naturally to the sea under the influence of tidal flooding frequency and sediment deposition.
Relevant studies have shown that under the influence of periodic tides, the water, salt,
and nutrients of the S. salsa ecosystem in the intertidal zone are constantly renewed and
exchanged, which not only weakens the water/salt restrictions on plant growth but also
provides suitable environmental conditions for benthos; as a result, the ecosystem develops
healthily. However, after the invasion of S. alterniflora, the frequency and process of tidal
flooding into the S. salsa distribution area changed. Generally, before the invasion of S.
alterniflora, S. salsa plants were short, and their ability to block the tide was not strong. The
tidal flow was mainly sheet flow, flooding the entire S. salsa ecosystem; after the invasion
of S. alterniflora, its dense clumps of tall plants and broad-banded distribution pattern
effectively blocked the tidal water flow, weakening the exchange process between the S.
salsa ecosystem and tidal substances. This changed the water, salt, and nutrition pattern,
resulting in the loss of the due elasticity of the S. salsa ecosystem, reduced productivity, and
obvious ecological degradation [46]. In the reclamation area of the intertidal zone, land use,
ditches, roads, and S. alterniflora basically blocked the periodic nourishment of tidal water,
resulting in the loss of 90% of S. salsa wetlands.

5.3. Implications of the Land–Sea Material Exchange Function Model

Many coastal native wetlands have been developed and utilized. Human interference
and the invasion of alien species have sharply increased the environmental pressure faced
by wetland habitats, and coastal wetland ecosystems have undergone significant degrada-
tion [47]. Wetland ecological restoration is a costly and complex feat of system engineering
that, nevertheless, needs to take the restoration of wetland structure and function in the
whole region as its basic goal, with an understanding of the regularity of regional wetland
ecological changes and their driving factors. The construction of the sea–land material
exchange model can scientifically aid the understanding of the influencing factors that
affect the spatial differences in the material exchange function of intertidal wetlands; it can
also reveal the spatio-temporal evolution characteristics and laws of the material exchange
function of intertidal wetlands.

The introduction of S. alterniflora changed the natural succession characteristics and
vegetation pattern of the wetland; it also reduced the water volume and material exchange
capacity of the wetland. The S. alterniflora distribution zone effectively changed the impact
of the original tide on the hydrological process of the wetland in the intertidal zone,
resulting in a reduction in seawater inundation frequency in the S. salsa distribution area,
the destruction of the water and salt balance, and serious ecological degradation. In wetland
ecological restoration, priority should be given to wetland hydrological restoration.

In our research, we used remote sensing and GIS technology to carry out research on
the temporal and spatial changes in the material exchange function of intertidal wetlands,
and we scientifically evaluated the impact of S. alterniflora invasion on the material exchange
function of intertidal wetlands. This method has some limitations.

1. Data source: remote sensing data acquisition is affected by weather factors, and
obtaining appropriate images is the key. We easily obtained global elevation data
with a spatial resolution of 90 m, but more accuracy requires lidar data to provide
high-precision elevation information.

2. Data accuracy: the spatial resolution of Landsat data was 30 m. In order to improve
the accuracy of the results, it is necessary to acquire high-resolution satellite images.

6. Conclusions

The Jiangsu coastal intertidal wetland is a very sensitive ecosystem affected by ocean
tides [48]. The change in the exchange capacity of sea and land directly affects the temporal
and spatial succession characteristics and degradation degree of the wetland ecosystem [49].
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From the perspective of the material exchange function of the land and sea, this study was
conducted by constructing a material exchange function evaluation index and using remote
sensing and GIS technology to realize the study of the temporal and spatial changes in the
regional material exchange function. The conclusions are as follows:

1. The material exchange function of the wetland ecosystem in the intertidal zone
showed a gradual decline from land to sea, and its influencing factors were mainly
terrain and vegetation spatial distribution.

2. The invasion of S. alterniflora was the main factor in the change in the material
exchange function of the wetland in the intertidal zone. The material exchange
function of the intertidal zone is an important material guarantee for maintaining the
health and natural succession of the wetland ecosystem. Taking the material exchange
capacity in 1980 as a reference, the material exchange capacity dropped by 25% in
2017. The size of the area with a high material exchange capacity is decreasing. By
2017, it had been reduced by 71%. In contrast, the size of the area with a low material
exchange capacity is increasing; by 2017, it has increased by three times.
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