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Abstract: Large-scale agricultural operations number among the ways to promote the green devel-
opment of the agricultural sector, which can not only encourage farmers to adopt green innovative
technology, reduce the input of chemical fertilizers and pesticides, and achieve environmental pro-
tection, but it also enables production with a high efficiency through an economy of scale and an
improvement in farmers’ income. Based on the agricultural panel data of 30 provincial administra-
tive regions in China from 2000 to 2019, the panel autoregressive distribution lag model was used
to explore the dynamic relationship between a business’ scale, financial support, and agricultural
green total factor productivity (AGTFP). The empirical outcomes indicate that there is a significant
cross-sectional dependence, cointegration relationship, and long-run relationship between the scale
of agricultural operations, financial support for agriculture, and AGTFP. Strengthening the intensity
of financial support for agriculture is not conducive to improving AGTFP. On the contrary, increasing
the scale of agricultural operations could promote AGTFP. In addition, the panel Granger causality
test results indicate that financial support for agriculture has a unidirectional causal relationship
with the scale of agricultural operations and AGTFP. The impulse response results demonstrate that
reducing part of the financial support for agriculture or increasing the scale of operation can promote
AGTFP. These conclusions have a long-term practical significance for agricultural departments and
decision-making regarding financial distribution.

Keywords: agricultural green total factor productivity; scale of operation; financial support; ARDL

1. Introduction

Since its reform and opening-up in 1978, China’s economy has achieved rapid growth
objectives and has become the second-largest economy and the largest developing country
since 2010. China’s agriculture has undergone a comprehensive and in-depth reform
that has enabled remarkable achievements and has made an essential contribution to the
development of world agriculture [1]. However, with the rapid growth of the agricultural
economy, China’s agricultural production has caused great environmental damage, and
a large amount of greenhouse gases have been emitted, which are detrimental to the
sustainable development of agriculture [2]. For example, from 2007 to 2017, China’s
agricultural fertilizer use increased by 14.71%, from 51.078 million tons to 58.594 million
tons. The extensive input of agricultural production factors has caused large amounts of
greenhouse gas emissions and agricultural non-point source pollution [3,4]. Under the
background of the current tight agricultural environment, only by adjusting the pattern
of agricultural development and improving agricultural green total factor productivity
(AGTFP) can we realize green sustainable development in Chinese agriculture [5]. To
achieve this goal, the Chinese central government has formulated policies to promote green
agriculture development that have been stated in the Central No.1 Document in 2022. At
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the same time, the government has achieved positive results regarding strengthening the
science and technology-based support for green agriculture, subsidizing green agriculture,
improving the utilization rate of production factors, and reducing pollution. The Chinese
government has also attracted an increasing number of scholars to explore the green and
sustainable development of agriculture.

Government subsidies to agriculture significantly reduce farmers’ use of chemical
fertilizers and promote green development. However, some scholars put forward different
views, arguing that financial subsidies do not always promote the green development
of agriculture. For example, subsidies for agricultural output can promote agricultural
overproduction and cause pollution [6,7]. In addition, although the increase in the scale
of agricultural operations has generally played a positive role in promoting the use of
green technology and improving production efficiency, showing a clear environmental
protection effect [8,9], blindly expanding the scale of operation due to farmers’ pursuit of
profits is not conducive to green agricultural production. Under such circumstances, it
is very important to clarify the causal relationship between fiscal support for agriculture,
the scale of agricultural operations, and AGTFP. For example, if the increase in the scale
of agricultural operations promotes AGTFP, the state should formulate policies to guide
traditional household-based agricultural production to develop in the direction of intensifi-
cation. If the intensity of fiscal support for agriculture has a significant negative impact
on AGTFP, relevant departments should consider how to correctly guide the flow of fiscal
and monetary funds, rather than simply increasing the proportion of agriculture-related
expenditures.

The primary purpose of this study is to use the agricultural panel data of 30 provincial
administrative regions in China from 2000 to 2019 and employ ARDL and PVAR models to
explore the relationship between AGTFP, the scale of agricultural operations, and financial
support for agriculture. Firstly, the paper uses the SBM model, including bad outputs, to
measure each province’s AGTFP. Secondly, this research uses the unit root, cointegration,
Granger causality, and other methods to test the core variables of this paper. Thirdly, the
paper studies the relationship between three variables by using the panel data model.
Compared with the previous literature on agricultural production efficiency, this paper
takes the carbon emissions from agricultural production into account when calculating
the index of agricultural production efficiency. Since carbon emissions are the main focus
of environmental protection and there are carbon emissions in all aspects of agricultural
production, calculating agricultural carbon emissions can better reflect green production
efficiency. In addition, the PVAR model proposed by Holtz-Eakinetal [10] has many
advantages over the VAR model and panel data. The three variables of interest are regarded
as endogenous variables, and the innovative shock of one endogenous variable on other
endogenous variable is analyzed by calculating the orthonormal impulse response function.
Based on the empirical results, the paper also suggests policy suggestions to promote green
agricultural production and improve production efficiency.

Compared with the existing literature, this paper has the following three contributions:
(1) this paper places AGTFP, the scale of agricultural operations, and the strength of the
supporting agriculture into the integrated framework and uses the panel model to analyze
the causal relationship between them, which further confirms the positive role of the
scale of agricultural management in agricultural green development. At the same time,
it is also observed that the overall effect of the strength of the supporting agriculture on
the green development of agriculture is negative, which provides a foundation for more
detailed research on the role of agricultural financial funds and the accurate guiding of
financial funds in the positive direction. (2) The empirical method of this paper considers
cross-sectional correlation, cointegration relationships, the lag effect, and a variety of other
methods while mutually verifying the results to ensure their robustness. (3) The research
of this paper can provide a reference for developing green agriculture and improving
agricultural total factor green productivity. In addition, it will provide reasonable policy
suggestions for agricultural scale and financial support.
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2. Literature Review

Upon reviewing the literature, it is evident that many previous works have discussed
the influencing factors of agricultural green total factor productivity (AGTFP). For example,
taking the opening of high-speed rail systems as an instrumental variable, in the form
of regression discontinuous design (RDD) and two-stage least squares (25LS) estimation,
Wang et al. [11] found that interregional investment can significantly affect AGTFP by
affecting the number of green invention patents. To analyze each province’s green total
factor productivity, Wang et al. [12] used stochastic frontier analysis (SFA) and Malmquist
index methods. They found that the green technological innovation of the province can
significantly improve its AGTFP but restrains the neighboring provinces” AGTFP. Yuan and
Zhang [13] analyzed the impact of environmental regulations on the input and output of
production factors and found that environmental regulation has an inverted “U” curve on
AGTEFP. However, the allocation rate of production factors can reverse the inhibitory effect
of strict environmental regulations on agricultural total factor productivity. Moreover, a mix
of different regulatory policies and investing in human capital more positively affect the
high-quality development of China’s agricultural economy. Using the three-stage Data En-
velopment Analysis (DEA) method combined with the Slack-Based Measure (SBM) model,
Chen et al. [14] discussed the spatial distribution and changing trend of AGTFP. The results
show that China’s overall green total factor productivity is low and decreases from east to
west. Considering the negative effects of carbon emissions, Liu et al. [1] calculated China’s
AGTFP using the Super-SBM model and found that the difference was caused by different
agricultural factor endowments and regional characteristics. In addition, the strengthening
of investment in agricultural research and sustainable development, the development
of cleaner agricultural production, and the expansion of the degree of the opening-up of
agriculture to the outside world all play a positive role in improving agricultural total factor
productivity and promoting balanced rural development. Still, factor market distortion and
inefficient production scale inhibit the improvement of AGTFP [1,15,16]. However, there
are few studies of the relationship between the intensity of financial support for agricul-
ture and AGTFP. Based on the existing literature, this paper comprehensively studies the
effects of the intensity of the financial support for agriculture and the scale of agricultural
operations on AGTFP.

In the stable growth of agricultural production, financial support and agriculture-
related public policies play an important role; for example, research and dissemination
investment in agricultural chemical fertilizer can contribute to agricultural growth [17].
Moreover, improving financial incentives can encourage financial institutions to increase
loans to agriculture, reduce the income gap between urban and rural areas, promote sus-
tainable development, and increase green total factor productivity [18]. In addition, the
government’s public financial investment in agricultural infrastructure, education, research,
and so on can promote social capital investment in agriculture. However, other input
subsidies, except for irrigation subsidies, do not achieve the goal of increasing social capital
investment and promoting agricultural growth. Therefore, the government should elim-
inate some input subsidies and shift the resources to public agriculture investment [19].
Akbar and Jamil [17] also pointed out that the government should increase general infras-
tructure investment rather than public investment in the agricultural sector due to the
crowding-out effect of the agricultural sector. In addition, increasing credit support for
agriculture and financial support for policy promotion can promote the use of green agri-
cultural technologies and the development of green agriculture [20-22]. Whether China’s
financial support for agriculture can promote AGTFP is of vital importance to the healthy
development of agriculture, the reduction of environmental pollution, and the livelihoods
of developing countries [12,17].

The sustainable development of agriculture can be simply summarized as meeting
people’s current needs for agricultural products without harming the ability of future gen-
erations to develop agriculture following the Brundtland Report (1987). However, due to
the different evaluation systems, the interpretation of agricultural sustainable development
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is vague and complex [23,24]. Agricultural green total factor productivity (AGTFP) reveals
a facet of steady growth that exceeds input factors under environmental pressure, and it is
an accurate indicator of agricultural economic performance combined with the ecological
environment [14]. Compared with agricultural total factor productivity, AGTFP takes into
account environmental constraints, reflecting economic growth and environmental protec-
tion [25]. The main way to improve AGTFP and achieve the goal of agricultural sustainable
development is to promote green technological innovations [12]. The innovation and
application of agricultural green technology are strongly related to the scale of agricultural
operations. Agricultural producers with a larger operating scale are more willing to use
new technology and spend more time and money pursuing agricultural knowledge [8,26].
Furthermore, from the regional aspect, the regional green agricultural technology-related
progress is higher in the generally larger scale of agricultural management [26]. The scale
of agricultural operations plays an essential role in adopting new technology. Many studies
show a significant positive relationship between the scale of agricultural operations and
agriculture-related green technology’s progress [26,27]. Their theoretical framework is as
follows: unlike the smaller scale of agricultural operation, farmers operating at a larger
scale can try to use innovative green technology on their portion of their land [28]. In
addition, the use of some green innovative technologies requires the support of economies
of scale [29]. The relationship between agriculture and the environment is inseparable
and the two facets circularly affect each other [30]. From the point of view of reducing
environmental pollution, the scale of agricultural operations has a significant negative
influence on the intensity of pesticide use. On average, every 1% increase in farm size
reduces the pesticide used per hectare by 0.2%. Therefore, measures to improve large-scale
agricultural management can promote the development of green agriculture [9,31].

The appropriate scale of agricultural operation is the core factor of sustainable devel-
opment. In most agricultural countries, farm-scale growth is the key to rapid economic
growth, poverty reduction, and stable rural development [32]. However, it has always
been controversial whether the larger or smaller scale of agricultural operations should
be adopted. Some studies have found that the smaller scale of agricultural operations
has a higher land yield per hectare than the larger. That is, there is an inverse correlation
between the scale of agricultural operations and agricultural productivity [33,34]. However,
some studies have pointed out that the persistence of a smaller the scale of agricultural
operations may restrict overall agricultural growth and competition. With the growth of the
economy and market, a smaller scale of agricultural operations will develop in the direction
of scale reward [35,36]. From the point of view of China and from a global perspective, Ren
et al. [9] found that the expansion in the scale of agricultural operations has a positive role
on farmers’ net profit, economy, technology, and labor efficiency. However, the relationship
between the scale of agricultural operations and AGTEP is not still clearly understood.

3. Data Source and Description
3.1. The Scale of Agricultural Operations

In previous studies, the measurement of the scale of agricultural operations has been
shown to differ between macro and micro studies. From a micro point of view, the scale
of agricultural operations is expressed by the land size of each farm [26,30,31,37]; from
a macro perspective, the scale of agricultural operation is expressed by the per capita
cultivated land area of each region or the sown area of each agricultural laborer [26,31].
Due to historical reasons for agricultural production, China has still been dominated by
small-scale peasant production for the past 20 years, but it is also transforming some
operations into forms of large-scale farm production [38,39]. Based on the above practical
reasons, it is better to explore the impact of per capita cultivated land or per capita sown
area on the agricultural green total factor productivity from a macro perspective than to
use micro-farm data. Considering that the agricultural sown area is the actual land input
of agricultural production, and the employed population of the primary industry is the
human resource input of agricultural production, the agricultural operating area of this



Int. |. Environ. Res. Public Health 2022, 19, 9043 50f 18

paper is represented by the per capita agricultural sown area. The value is the ratio of each
province’s total agricultural sown area to the number of people engaged in the primary
industry. To ensure the availability of data and the consistency of this paper’s statistical
calibre, the original data of agricultural operating areas have been sourced from the China
Rural Statistical Yearbook, including panel data of 30 provincial administrative regions
from 2000 to 2019.

3.2. The Intensity of Financial Support for Agriculture

Previous studies have generally used the absolute amount of governmental expendi-
ture related to agriculture, such as government subsidies for agricultural irrigation and
agricultural research expenditure or per capita fiscal spending in agriculture, when calcu-
lating agriculture-related fiscal expenditure [19,40]. This type of analysis does not take into
account the relative changes in agriculture-related fiscal expenditure. To study the influence
of the change in financial support for agriculture on AGTFP, this paper uses the ratio of
agriculture-related expenditure to the total financial expenditure to express the intensity of
financial support for agriculture. The original data on the financial support for agriculture
comes from China’s National Bureau of Statistics and China’s Rural Statistical Yearbook,
including panel data from 30 provincial administrative regions from 2000 to 2019.

3.2.1. Agricultural Green Total Factor Productivity (AGTFP)

Stochastic frontier analysis (SFA) and data envelopment analysis (DEA) are mainly
used in the literature on calculating green total factor productivity. Wang et al. (2021) [12]
used SFA and the Malmquist index method to estimate the green total factor productivity
of provinces in China. However, few researchers use the SFA method to study AGTFP
because the SFA method must set the probability distribution from a random error term;
additionally, the frontier production function is affected by individual regions [41,42].
Compared with SFA, as a nonparametric method, DEA does not need to set specific
production functions and inefficiency items in advance and is almost free from subjective
influence [14]. Therefore, researchers regard data processed through DEA as the main
measure of green total factor productivity [1]. Considering that the DEA model has
shown its reliability and effectiveness in the extensive research of AGTFP [1,14,15] and
the characteristics of multi-input and multi-output in agricultural production, this paper
uses the DEA model. Since agricultural production will produce a variety of pollutants
such as carbon emissions, we use an unexpected output as part of the output variable to
test agricultural production efficiency, which is called agricultural total factor productivity,
denoted herein as AGTFP. The Undesirable Output Model in the application DEA-Slover-
Pro has two variants: Bad-Output and Non-Separable models. This Bad-output model
can deal with expected and unexpected outputs. This paper uses the Bad-output model to
measure AGTFP. The Bad-output model based on the SBM model modification is a special
SBM model with an undesirable output, and based on the variable returns to the scale, the
process of using the Undesirable Output model can be expressed as follows.

P= {(x,yg,yb)|x > XA y8 < Yg,yb <Y L<eAr<UA> 0} 1)

L and U are the lower and upper bounds of the intensity vector, respectively, and the
default of L and U is 1 in Dea-solver-pro. A is the intensity vector. To allow the efficiency

of every decision-making unit (DM u (xo, ys, yb)> to obtain the best frontier under the
presence of an undesirable output variable, the input and output data must fulfill the
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requirements: xo > x,y5 < y8,y§ >y’ and (x, Y3 ,yb) € P. The Undesirable Output Model
(or SBM model with an undesirable output) formula is as follows:

_lym S
1 m =i=1 x;y

p = min
1+ 1 ZSI i_’_ZSZ i

s1+sp r=1 y§0 r=1 b (2)
st.xg=XA+s7, y‘g = Y38\ —s8, yg =Yl4+sh L<eA<U

s >0,58>0,s>01>0

where vector s, s?, and s¢ indicate the excess quantities of input, undesirable output,
and insufficient desirable output of the decision-making units, respectively. s' and s?
represent the number of elements in s’ and s¢. In the presence of a bad output, if and only
ifp=0,5" =0,s" =0,58 =0, then the production efficiency can reach the optimal frontier
domains. However, if 0 < p < 1, the efficiency of the decision-making unit is inefficient.
In terms of the input-output model, in this paper, the expected output is expressed by
the total agricultural output value after the reduction of the agricultural gross output value
index. The unexpected output is expressed by the carbon emissions generated by various
substances. The calculation process of carbon emissions from agricultural production will
be described in detail later on. Figure 1 shows the distribution of AGTFP in each province.

Mean AGTFP of each province

Figure 1. The distribution of agricultural green total factor productivity(AGTFP) in each province.

3.2.2. Calculation of Agricultural Carbon Emission

With the continuous increase of China’s agricultural input, carbon emissions are
increasing year by year, leading to a significant decline in environmental quality, which has
become the main obstacle to the development of an agricultural green transformation [14].
There are many studies on carbon emission calculation, and the results obtained by different
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research methods may be different [1]. In this paper, according to the carbon source and
carbon emission coefficient of agricultural production, the measurement formula of carbon
emissions from agricultural production is as follows:

E = ZEi = ZTi"Si 3)

where E represents the total carbon emission from agricultural production and E; is the
carbon emission of a specific carbon variable. The carbon source variables used in this
paper mainly include effective tillage area, agricultural chemical fertilizers and pesticides,
agricultural plastic film, irrigated area, agricultural diesel fuel consumption, rural electricity
consumption, and the feces from major livestock, pigs, cattle, and sheep. The source of all
the above agricultural input data is China Rural Statistical Yearbook. T; is the amount of
input variables. The carbon emission coefficient J is shown in Table 1 [43].

Table 1. Carbon emission coefficients of different elements.

Carbon Source Carbon Emission Coefficient Reference Sources
Fertilizer 0.8956 kg/kg Oak Ridge National Laboratory
Pesticide 4.9341 kg/kg Oak Ridge National Laboratory

Agricultural plastic films
Agricultural diesel oil
Agricultural cultivation
Agricultural irrigation
Pigs
Cattle

Sheep
Agricultural electricity

Institute of Resource, Ecosystem, and Environment of

518 kg/kg Agriculture, Nanjing Agricultural University
0.5927 kg/kg Intergovernmental Panel on Climate Change (IPCC)
312.6 kg /hm? College of BiologicaIlJS?iencgs, China Agricultural

niversity

25 kg/hm? [44,45]

34.0910 kg/ (each-year) Intergovernmental Panel on Climate Change (IPCC)

415.91 kg/(each-year) Intergovernmental Panel on Climate Change (IPCC)

35.1819 kg/(each-year) Intergovernmental Panel on Climate Change (IPCC)
0.7921 t MWh~! Ministry of Ecological Environment

3.3. Descriptive Statistics Analysis

Table 2 shows the summary data of various carbon sources needed to calculate the total
carbon emissions required for AGTFP. According to the calculation, the value of AGTFP,
the most critical variable in this study, is between 0.071 and 1, with an average value of
0.718 and a standard deviation of 0.166. Among the carbon sources required for calculation,
the average consumption of agricultural chemical fertilizer, pesticide, agricultural plastic
film, and agricultural diesel oil is 1,751,310 tons, 52,660 tons, 69,555 tons, and 638,270 tons,
respectively; the average values of actual cultivated land area and effective irrigated area
are 5.327 million hm2 and 2.004 million hm2, respectively; at the end of the year, the average
number of cattle, pigs, and sheep in each region was about 357, 1516, 973 ten thousand
respectively, and the final calculated total carbon emissions of each province averaged
6.3 million tons. The table also lists the data of the other two important variables studied
in this paper, namely, the scale of agricultural operations (AGRISCALE) and the financial
strength of the supporting agriculture (AGRIRATIO), with an average scale of operation of
0.602 hm2 per capita and an average fiscal expenditure ratio of about 0.092 per year. In order
to computationally follow-up the model calculation and reduce endogenous problems,
these three key variables were processed logarithmically. Next, we used the panel data of
the scale of agricultural operations, the intensity of financial support for agriculture, and
the AGTFP in 30 provincial administrative regions of China from 2000 to 2019 to analyze the
relationship among them. Compared with cross-sectional and time-series data, panel data
can provide large samples and reduce multicollinearity among variables, so it performs
better in solving the problem of missing variables, providing more details about individual
dynamic behaviors and improving the accuracy of parameter estimation [46].
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Table 2. Descriptive Statistics.

Variable Mean Std. Dev. Min Max
Fertilizer 175.131 137.603 6.2 716.1
Pesticide 5.266 4.224 0.14 17.35
Agricultural plastic films 6.955 6.33 0.06 34.35
Agricultural diesel oil 63.827 64.681 1.8 487
Agricultural cultivation 5327.101 3588.664 88.6 14783.4
Agricultural irrigation 2004.289 1515.2 109.24 6177.59
Agricultural electricity 212.195 337.304 15 1949.1
Cattle 357.893 293.474 12 1496.2
pig 1515.626 1282.969 13.2 5757
sheep 973.076 1200.783 11 6111.9
Total carbon emission 630.554 414.268 18.776 1996.382
AGRISCALE 0.602 0.287 0.209 2.618
AGRIRATIO 0.092 0.042 0.012 0.19
AGTFP 0.718 0.166 0.071 1
LnAGRISCALE —0.593 0.39 —1.566 0.963
LnAGRIRATIO —2.519 0.57 —4.439 —1.663
InAGTFP —0.37 0.317 —2.645 0

4. Methodology
4.1. Test for Cross-Sectional Dependence

Since the agricultural time-series data of different provinces may be affected by the
same impact, such as the change of the national unified agricultural policy, there is depen-
dence among these provinces. Common impacts often lead to the dependence of elements
in the panel, even though their influences may be inconsistent in the cross-sectional ele-
ments [47]. Cross-sectional correlation is the most important in panel data, and ignoring
cross-sectional correlation often leads to inconsistent estimation and misleading informa-
tion [48]. This paper uses the Breusch-Pagan LM test proposed by Breusch and Pagan
(1980) [49] to check the robustness of our empirical results. We also used Pesaran CD
proposed by Pesaran (2004) [50] and standardized La Grange Multiplier (LM) tests. The
Pesaran CD test is based on the mean pairwise correlation coefficients of the OLS residuals
derived from the standard augmented Dickey—Fuller (1979, ADF) [51] regression for each
sequence [50,52]. The calculation formulas of the three cross-section inspection methods
are as follows:

LM pesaran = N(Nl—l) Y (T —1) = N©,1) )
CDpesgran = 1\](1\12—1) Yo ZLH Typ3 — N(0,1) )
Hij = Wji = Li-1 it 7)

(=71 )? (21 6)?)

The Breusch-Pagan LM test is suitable for panel data of small sizes and time T. Its
formula is Equation (4). The cross-sectional tests proposed by Pasaran are suitable for panel
data with large N and time T. Equation (5) is suitable for large size and changeable time
T, and Equation (6) is suitable for large N and fixed T. ]41.2]. is the correlation coefficients
obtained from the residuals of the Formula (6), where ¢;; and ¢j; are standard errors [53].

4.2. Panel Unit Root Tests

Since the presence of horizontal unit roots in panel data may produce spurious regres-
sions when using ordinary least squares (OLS) estimation techniques, a variable unit root
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test must be performed [25]. Before the cointegration analysis, it is necessary to determine
that the variable is a first-order single integral. That is, the first-order difference is station-
ary [54]. According to previous studies, this paper uses four methods to test the panel
unit root, involving the Levin—Lin—-Chu test (LLC), the Im—Pesaran-Shin (IPS), Fisher’s
augmented Dickey-Fuller (ADF) test, and Fisher’s Phillip and Perron (PP) test. Breitung
(1999) [55] found that IPS suffers a dramatic loss of power when including individual
trends and that the test is sensitive to the specification of deterministic trends [56], so the
Breitung t-stat method is used in addition to the above four methods when considering
intercept and trend terms.

4.3. Panel Cointegration Test

After the unit root tests, the paper uses Kao’s method (1999) to test the dynamic
cointegration relationship between variables to determine whether the variables have a
long-term relationship with economic norms. Kao (1999) extends the Engle-Granger two-
step residual-based cointegration tests, especially in the first stage of estimation, requiring
a cross-section-specific intercept and homogeneous coefficients on regression variables [57].
Its main formulas are as follows:

Yit = ;i + P1x1; + Poxoi + PmXmi + €it 8)

Yit—1+ 0 = a; + B(xip—1 +€ir) + et )

In Equations (8) and (9), t is time series and i is a sample unit. «; represent the
individual intercept parameters, and e;; are the residuals. Equation (8) is the first stage
regression, and in the bivariate circumstance running Equation (9). The Kao (1999) approach
is performed to test whether the residual, ej;, derived from Equations (8) and (9) has a
unit root.

et = Pieit—1 + Vit (10)

With the null hypothesis of no cointegration, Kao establishes these statistics:

TVN(p — 1) +3vVN
V102

K: = V1.25t, + V1.875N (12)

to + V6N, / (200,)
/537 (263) +363/(1083,)

K, =

(11)

However, p > 0: Kgpr = (13)

4.4. Granger Causality Test

If there is a long-term relationship between variables, it means that there is a causal
relationship in at least one direction, which was proposed by Granger (2003). According
to Granger (1969) [58], measuring the correlation between variables is not enough to fully
understand the relationship between variables. The possible reason is that some correlations
may be false and useless because there may be a third unexplained variable. Moreover, the
correlation alone cannot judge the causal relationship between variables. So, knowing that
our sequence is cointegrated, we must cross-check causality [59]. The paper uses the panel
data Granger causality test extended by Dumitrescu and Hurlin (2012). The formulas are
as follows:

Yip = Qo +&1Yip—1+ o+ &ilYip—k + PriXipg—1+ -+ BriXip—k + €t (14)

Xip = Qg+ 01,iXip—1+ ot X g+ BriVig—1+ o+ BriVit—k T E€it (15)

in which y;; and x; ; measure the observed value of individual i in ¢ periods. k represents
the lag number of individuals; the coefficient of the individual is allowed to be different,
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but the hypothetical coefficient does not change with time. We used Eviews to test the
Granger causality of panel data.

4.5. Autoregressive Distributed Lag

The autoregressive distributed lag model was created and estimated by Pesaran et al. [60,61].
The main advantage of the ARDL model is that it can deal with variables with different lag
orders and analyze the well-known model similar to statistical regression [62]. In addition, the
model can use relatively small data sets [46,63]. For long-run variable associations, we developed
the following approach based on ARDL:

Lagrrp = ao+Y ., 01LaGTFPI—i+ 16)

r T
Y i1 2LAGRIRITIONi + Y ;1 O3LAGRISCALE—i + €1

In the equation mentioned above, 71, 02, and 03 represent the long-run variance of the
variables. The Akaike information criteria (AIC) were used to determine the correct lag. The
following error correction model was employed for the short-run variables” associations
based on the ARDL model.

T T
Lacrep = ®0 + Y, MLacrepi—it+ ) ;_; A2LaGRIRITION i+

r (17)
Y i AsLagriscarei—i + @ECT,_; + &

In the equation mentioned above, A1, Ay, A3 represent the short-run changes. The error
correction term (ECT) represents the short-term variance and measures the acceleration of
change caused by fluctuations [64]. The error correction factor is expected to have negative
and statistically significant coefficients, indicating that each shock is compensated at the
next stage [65].

4.6. Impulse Response Approach and Variance Decomposition

Impulse response and variance decomposition can effectively test the impact of shocks
on the research variables at present and in the future. They can be applied not only to the
variables themselves but can also be transferred to other variables through the dynamic
structure of the model. We used impulse response and variance decomposition to analyze
the impact of the shock on the variables [53]. The estimation of impulse response appears
in the stable adjoint matrix of the vector autoregressive (VAR) model [66], which can be
written in the following form:

k
Y= ijo Piyi—i+ et (18)
L, i=0 )
$i = Y pejAp i=12
h—
Vieen = Elinsn] = Yy et +h = 1) (20)
o O = Lo (1K) e1)

where the ¢; in (18) is an impulse response function, which can be estimated by moving
the regression estimate using the infinite vector converted to (19). y;;,, is the vector of the
variable after period & in the t period(s), and E[y;; ] is its predicted value after period &
in the t period(s). Equation (20) represents the contribution of variable n to the prediction
error variance of variable m in the advance & period. I is the unit element of the adjoint
matrix, iy, is the m column of I, Ajisa coefficient matrix that transforms VAR into an
infinite vector moving average, k is the optimal lag term, and ¢; is the error term.
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5. Results and Analysis
5.1. Cross-Sectional Dependence Tests Results
Table 3 shows the results obtained using three different cross-sectional correlation

tests, all of which reject the zero hypothesis that there is no cross-sectional dependence at a
1% significance level.

Table 3. The results of cross-sectional dependence tests.

Test Statistic Prob.
Breusch-Pagan LM 2655.340 0.0000
Pesaran scaled LM 75.27657 0.0000

Pesaran CD 32.25713 0.0000

5.2. Panel unit Root Tests Results

Table 4 shows the results of the five LLC, IPS, ADF, PP, and Breitung t-stat unit root
test methods, including two types (only constant term, constant term, and trend term).
Among them, the level series of the scale of agricultural operations is unstable in all tests;
under the condition of the only constant term, the level series of the intensity of financial
support for agriculture is a stationary series with a 1% significant level tested by three LLC,
IPS, ADF methods. In contrast, the result tested by the PP method is unstable. When the
level series of AGTFP includes a constant term and a trend term, it is tested by the LLC,
ADF, and the PP method that it is a stationary series with a 1% significant level, but the
result of the PP and Breitung t-stat approach is unstable. However, the first-order difference
of all the variables is tested by either method to reject the null hypothesis that it is unstable,
i.e,, that it is a stationary series. Therefore, the unit root order of all the variables is within
the first order or level series, which makes it possible to test the long-term trend between
variables with Kao (1999).

Table 4. The results of panel unit root tests.

Variables Level First-Difference
with Constant Constant and Constant Constant and
Trend Trend
LLC test
InAGRISCALE 0.5205 0.1479 0.0000 0.0000
InAGRIRATIO 0.0000 0.7712 0.0000 0.0000
InAGTFP 0.9987 0.0002 0.0000 0.0000
Im, Pesaran, and
Shin test
InAGRISCALE 1.0000 0.4135 0.0000 0.0000
InAGRIRATIO 0.0000 1.0000 0.0000 0.0000
InAGTFP 1.0000 0.1861 0.0000 0.0000
ADF-Fisher
Chi-square test
InAGRISCALE 0.9991 0.3571 0.0000 0.0000
InAGRIRATIO 0.0000 1.0000 0.0000 0.0000
InAGTFP 0.8787 0.0004 0.0000 0.0000
PP-Fisher
Chi-square test
InAGRISCALE 0.9994 0.6455 0.0000 0.0000
InAGRIRATIO 0.3108 1.0000 0.0000 0.0000
InAGTFP 0.9711 0.0033 0.0000 0.0000
Breitung t-stat test
InAGRISCALE - 0.6116 - 0.0000
InAGRIRATIO 0.6061 - 0.0000

InAGTFP - 1.0000 - 0.0000
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5.3. Cointegration Tests and Causality Tests Results

The cointegration test results of AGTFP, financial support to agriculture, and the
scale of agricultural management are shown in Table 5. At a significant level of 5%, Kao’s
(1999) test statistics reject the null hypothesis that there is no cointegration relationship and
support the alternative hypothesis that there is a cointegration relationship in the panel.
The results confirm a long-term equilibrium causal relationship between the intensity of
financial support for agriculture and the scale of agricultural operation towards AGTFP
from 2000 to 2019. This will help to explore the previous goals of this paper and further
examine the impact of financial support for agriculture and the scale of agricultural oper-
ations on AGTFP. As shown in Table 6, the intensity of financial support for agriculture
has a unidirectional causal relationship to AGTFP and the scale of agricultural operations
is significant at a level of 1%. This finding implies that the intensity of financial support
for agriculture may affect AGTFP and the scale of agricultural operation. In addition, we
cannot reject the null hypothesis between the agricultural green total factor and the scale of
agricultural operations. That is, there is no causal relationship between AGTFP and the
scale of agricultural operations. This implies no obvious time sequence between the scale
of agricultural operations and AGTFP.

Table 5. The results of Kao’s residual panel cointegration test.

Null Hypothesis t-Statistics Probability
ADF No co-integration —1.779229 0.0376

Table 6. The results of Pairwise Granger Causality Tests.

HO: LNAGRISCALE does not Granger Cause LNAGTFP
HO: LNAGTEFP does not Granger Cause LNAGRISCALE
HO: LNRIRITIO does not Granger Cause LNAGTFP
HO: LNAGTEFP does not Granger Cause LNRIRITIO
HO: LNRIRITIO does not Granger Cause LNAGRISCALE

Null Hypothesis: F-Statistic Prob.
1.12416 0.3462
1.31997 0.2323
3.68307 0.0004
0.36103 0.9401
3.22780 0.0016
1.49280 0.1601

HO: LNAGRISCALE does not Granger Cause LNRIRITIO

5.4. Autoregressive Distributed Lag results

The Akaike information criteria (AIC) have been used to determine the optimal lag
length of the model. Finally, the model, after determining the parameters, yields ARDL (1,1,1).
Table 7 shows the results of the long-term and short-term relationships between variables. The
long-term relationship between variables shows that the coefficient of the scale of agricultural
operations is 0.576, which is significant at the 1% level, and means that for every 1% increase in
the scale of agricultural operations, the agricultural total factor productivity can increase by
0.576%. This result is in agreement with wang et al. (2015) [67] on the scale and productivity of
rice farms in China. In addition, it can be explained by the fact that the increase in the scale
of agricultural operations could reduce the use of pesticides, make it easier for large-scale
agricultural producers to use green technology, enable more efficient production for large-scale
agricultural producers, etc. [8,9,26,31]. Furthermore, there is no single economically optimal
scale regarding agricultural operations, so policymakers need to rationally adjust the scale of
agricultural operations according to the development of the economy and market [36]. The
ARDL results further inmplicate that expanding the scale of agricultural operations is more
suitable for China’s current economic development from the perspective of promoting green
production. In addition, the coefficient of financial support for agriculture is —0.034, which
is significant at the 1% level, indicating that for every 1% increase in financial support for
agriculture, agricultural total factor productivity will decrease by —0.034%. Although this
result is significant and consistent with the previous Granger causality test, its coefficient is
very small. This situation is consistent with the chaotic conclusions drawn by the existing
literature on the study of financial support for agricultural green development. That is, financial
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support for agriculture does not only have a positive effect on AGTFP by reducing the use
of chemical fertilizers but also has a negative effect by subsidizing the output of agricultural
products, which causes pollution through excessive production [6,7]. Therefore, this small
negative coefficient is the total impact of fiscal agriculture-related expenditure on AGTFP after
neutralizing the positive and negative effects. In addition, the table also shows the results of
the short-term relationship between variables, and the coefficients of the scale of agricultural
operations and financial support for agriculture are not significant. Therefore, we can say that
the scale of the agricultural operation and the intensity of financial support for agriculture have
no impact on AGTFP in the short term.

Table 7. The results of ARDL.

Variable Coefficient Std. Error t-Statistic Prob.
Long Run Equation

LNAGRISCALE 0.575664 0.035050 16.42392 0.0000

LNAGRIRITIO —0.034418 0.012390 —2.777914 0.0057
Short Run Equation

COINTEQO1 —0.237633 0.069231 —3.432468 0.0007

D(LNAGRISCALE) —0.146240 0.107445 —1.361067 0.1743

D(LNAGRIRITIO) 0.017363 0.022288 0.779053 0.4364

C 0.029774 0.016726 1.780113 0.0758

5.5. Impulse Response and Variance Decomposition Results

We needed to determine the best lag order of variables before using the VAR system to
treat AGTEP, the intensity of financial support for agriculture, and the scale of agricultural
operations as endogenous variables for impulse effect and variance decomposition analysis.
The paper uses five methods involving the sequentially modified LR test statistic (LR), Final
prediction error (FPE), Akaike information criterion (AIC), Schwarz information criterion
(SIC), and Hannan—-Quinn information criterion (HQ) to comprehensively judge the lag
order of the optimal of the selected variables. As shown in Table 8, the optimal lag order
is 3, and Figure 2 was obtained according to this order. It can be seen that each root is
contained in the unit circle, which is in accordance with the condition of using the pulse
effect and variance decomposition analysis based on the VAR model.

Table 8. The results of judging the optimal lag order.

Lag LogL LR FPE AIC SC HQ
1 1069.305 NA 713 x 1078 —7.942363 —7.821444 * 7.893791 *
2 1081.106 23.07055 6.98 x 1078 —7.963340 —7.721503 —7.866196
3 1095.621 28.05235 6.70 x 1078 * —8.004654 * —7.641899 —7.858938
4 1100.766 9.827781 6.90 x 1078 —7.975779 —7.492105 —7.781490
5 1109.866 17.17724 6.90 x 1078 —7.976527 —7.371934 —7.733666
6 1120.839 20.46507 * 6.80 x 1078 —7.991300 —7.265789 —7.699867
7 1128.659 14.41151 6.86 x 1078 —7.982468 —7.136038 —7.642463
8 1137.519 16.12684 6.87 x 1078 —7.981418 —7.014070 —7.592841

* indicates lag order selected by the criteria.

As can be seen from Figure 3, the variations in variables include not only innovative
shocks of the variable itself but also the innovative shocks of other variables. In 15 forecast
periods, 95.3% of the variation in AGTFP can be explained by innovative shocks themselves,
0.54% by innovative shocks of the scale of agricultural operations, and the remaining 4.15%
by the intensity of the financial support for agriculture. This result accords with the causality
test mentioned above, and the relationship between the intensity of financial support
for agriculture and AGTFP is more significant. Furthermore, during these 15 forecast
periods, the degree of explanation of the innovative shocks of AGTFP on the variation itself
decreased, which means that the contribution of other driving forces increased. However,
innovative shocks to the scale of the agricultural operation and the financial strength of
the supporting agriculture on AGTFP have experienced a process of an initial rise and
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thena decrease. The innovative shocks of the financial support for agriculture are negative
for most of the period, which implies that reducing the proportion of agriculture-related
fiscal expenditure is conducive to improving AGTFP, and is thereby consistent with the
results of the ARDL model. This finding shows that the influence of financial support
for agriculture and the scale of agricultural operations has a lag effect on AGTFP, and the
influence weakens with time after reaching the peak. In addition, innovative shocks to
the intensity of financial support for agriculture can explain 7.2% of the variation in the
scale of agricultural operations, and the innovative shocks of AGTFP can explain 0.72% of
the variation in the scale of agricultural operations and 3.01% of the variation of financial
support for agriculture.

15

1.0 +

0.5

-0.5

-1.0

-1.5

Inverse Roots of AR Characteristic Polynomial

T
-1.5 -1.0 -0.5 0.0

T
0.5 1.0 15

Figure 2. The inverse roots of the AR characteristic polynomial.
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5.6. Discussion

Due to the different research perspectives and the choice of indicators to measure
the high-quality development of agriculture, previous studies obtained results that are
different from this paper. Although the empirical test results of this paper indicate that the
overall impact of the intensity of financial support for agriculture on AGTFP is negative,
it may have a positive effect on AGTFP when specific to a certain type of specific fiscal
expenditure. For example, Deng et al. (2021) found that public agricultural R&D investment
is the main driver of China’s AGTFP improvement [68]; in Malawi, government subsidies
for production factors for improving the efficiency of small-scale agricultural production
are conducive to agricultural green development [69]. Within the provincial administrative
regions, the impact of the scale of agricultural operations on AGTFP is negative. Hu et al.
(2019) found that the smaller the scale of agricultural operation, the higher the utilization
rate of the input factors in Jiangsu, China [70]. In addition, this paper mainly discusses the
influence of the intensity of financial support for agriculture on AGTFP from a macro point
of view, but this study still has some limitations, such as ignoring the role of the specific
methods of financial support for agriculture and further research is required to explain the
overall negative impact of the intensity of financial support for agriculture

6. Conclusions

The main purpose of this study was to investigate the impact of the scale of agricul-
tural operations and financial support for agriculture on agricultural green total factor
productivity (AGTFP). Based on the agricultural panel data of 30 provincial administrative
regions in China from 2000 to 2019, the SBM model, including the unexpected agricultural
output, named carbon emissions, was used to calculate each province’s AGTFP. Then, the
ARDL and impulse response method based on the VAR model were applied to conduct an
empirical study on the relationship between variables. The empirical results are as follows.
Firstly, the data after the first-order difference of the three variables are all stationary series,
and there is a significant cross-sectional relationship and cointegration relationship among
the three variables, demonstrating that the variables may be subject to the same impact
in different provinces and may have a long-term and short-term equilibrium relationship.
The Granger causality test showed that there is a one-way causal relationship between the
financial support to agriculture and the scale of agricultural management. Secondly, the
long-term and short-term relationship between variables using the ARDL model reveals
the fact that the long-term effect of the scale of agricultural operations has a significant
positive effect on AGTFP in China. In contrast, the long-term effect of financial support for
agriculture suppresses the improvement of AGTFP, which is consistent with the pulse effect
with the three order lag. Finally, the scale of the agricultural operation and the intensity of
financial support for agriculture show no significant impact on AGTFEP in the short term.

7. Policy Implications

Four following policy recommendations are put forward in accordance with the results
above: (1) increase the agricultural land conversion rate and promote agricultural land
agglomeration to form large-scale agricultural management units; (2) stop or limit subsidies
for agricultural supplies with high carbon and pollution emissions, as doing so could not
only effectively reduce the agricultural scale of non-clean production to pursue profits
but also promote the use of clean agricultural products and the development of green
agriculture; (3) strengthen the guidance of the flow of financial funds to support agriculture,
channel the flow of monetary funds to modern and low-carbon green agricultural produc-
tion, increase investment in agricultural production infrastructure, and promote the green
development of agriculture; and (4) improve the research and development of agricultural
green technology, establish a green agricultural technology innovation alliance, facilitate
the opening and sharing of green agricultural production resources and the construction of
a service platform base, and improve the efficiency of agricultural production. The trend
of China’s transformation to green development brooks no delay, and green agricultural
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production is an indispensable part of this development. Developing green agriculture still
requires the joint efforts of the whole society.
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