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Abstract: In this study, a cost-effective adsorbent based on sodium alginate (SA) with waste foundry
dust (WFD) was fabricated for the removal of methyl red (MR) from aqueous media. However,
the utilization of WFD/SA beads to remove anionic dyes (such as MR) from effluents has limita-
tions associated with their functional groups. To improve the adsorption performance, WFD/SA-
polyethyleneimine (PEI) beads were formed via PEI crosslinking onto WFD/SA beads, which could
be attributed to the formation of amide bonds from the carboxyl and amino groups due to the change
of N-H bonds in the reaction. The Fourier transform infrared (FTIR) and X-ray photoelectron spec-
troscopy (XPS) results indicated that PEI was crosslinked on the WFD/SA via a chemical reaction. In
the FTIR spectra of WFD/SA-PEI, peaks of the –COO (asymmetric) stretching vibration shifted to 1598
and 1395 cm−1, which could be attributed to the hydrogen-bonding effect of the N–H groups in PEI.
In the N1s spectrum, three deconvoluted peaks were assigned to N in –N= (398.2 eV), –NH/–NH2

(399.6 eV), and NO2 (405.2 eV). WFD/SA-PEI beads were assessed and optimized for aqueous MR
adsorption. The WFD/SA-PEI beads showed a high removal efficiency for MR (89.1%) at an initial
concentration of 1000 mg/L, and presented a maximum MR adsorption capacity of 672.7 mg/g MR.
The adsorption process showed a good fit with the pseudo-second-order kinetic model and the
Langmuir adsorption isotherm model. The amino and hydroxyl groups in the WFD/SA-PEI beads
facilitate strong hydrogen bonding and electrostatic interactions. Moreover, these WFD/SA-PEI
beads were easily recovered after the adsorption process.

Keywords: waste foundry dust; sodium alginate; polyethylenimine; methyl red removal; adsorption

1. Introduction

Metal casting is one of the basic processes in the manufacturing industry. It is an
important means of providing blanks for mechanical parts and is an integral part of
many industrial processes [1]. The foundry industry is recognized as a potential source
of environmental pollution [2]. Presently, substantial amounts of slag and other waste are
generated from steel manufacturing processes. Most of the produced by-products, such
as foundry sand, are initially stockpiled in the foundries and recycled several times in
various foundry operations and treated for application in cement mixtures and recyclable
materials [3]. The main compounds in waste foundry sand (WFS), including quartz and
aluminum oxides, can form complex aluminate silicates at high temperatures [4]. Therefore,
it is generally believed that foundry sand has good mechanical properties, and its utilization
in construction materials has been reported [5,6].

The foundry sand is produced by ferrous foundries (ductile iron, grey iron, and steel),
and foundry dust is the fine dust produced during the production of castings from blast
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furnaces [6]. Foundry dust is considered as the ultimate waste, and the solid materials
collected from the gas treatment units before the gases are released into the atmosphere
account for the second largest proportion of total waste during the casting process. The
common constituent in waste foundry dust (WFD) produced by foundries is iron-containing
minerals, primarily consisting of Fe and O in the form of magnetite (Fe3O4), owing to the
processes depending on reduction/oxidation conditions and rapid cooling after combustion
processes [7]. In addition, in the process of capturing gases, CaO is used to neutralize the
acid gas generated under elevated temperatures during the production of casting [8,9].
Despite its potential utility as a material, WFD is disposed of in industrial landfills, and
relatively little research has been conducted on the resource utilization of foundry dust.

Previous studies have reported the use of WFD for heavy metal removal. For example,
Rha and Jo (2021) used WFD as an adsorbent to adsorb As3+ and Cr6+ from aqueous
solutions [10]. It was also found that WFD can be used as a reactive material, which
causes adsorption, precipitation, and redox reactions by the oxidation of Fe(II). Iron oxide
materials, such as magnetite, have been used as supports because of their physicochemical
stability, magnetic properties, and ease of modification with organic groups. WFD-based
geopolymers have been successfully applied as adsorbents for the removal of Pb2+ and
Ni2+ from aqueous solutions [11].

Dyes are released into water mainly from the textile, leather, and synthetic color
production industries [12]. The presence of synthetic dyes in effluents has been implicated
in water pollution. This may lead to the incomplete adhesion of the dyes to the substrates
during coloring. Owing to this toxic potential, the presence of dyes as pollutants in
wastewater can cause significant health issues if they are not adequately treated, leading
to severe diseases and disorders. Although several methods of dye removal have been
reported, adsorption has been found to be the most effective method, with promising results,
including low operational costs, a high treatment speed, and operational stability [13,14].

Recently, researchers have enhanced the dye removal capacity of adsorbents using
waste materials of agricultural origin because of their environmental friendliness and low
cost [15]. In previous studies, the use of agricultural waste materials through physical and
chemically modified plant-based adsorbents has received considerable attention [16]. They
used composite materials, such as metal oxides/hydroxides, magnetic materials, LDHs, and
polymers [17,18]. In this regard, magnetic materials are widely used as supports for the syn-
thesis of functionalized adsorbents owing to their low toxicity and ease of synthesis [19–21].
However, magnetic materials are susceptible to acidic conditions, including sensitivity to
oxidation, which might decrease their dispersion ability and reactivity [22,23]. Notably, the
most effective method of utilizing magnetic materials is to encapsulate magnetic materials
in a suitable matrix. Therefore, encapsulation is an effective approach for the protection
of magnetic materials. In this regard, several biopolymer materials have been reported,
such as chitosan, pectin, and cellulose, which have a larger specific surface area, functional
groups, and adjustable surface chemistry. Among these materials, sodium alginate (SA)
consists of M block (D-mannuronic acid) and G block (L-guluronic acid) units, and has
been used extensively for inorganic material encapsulation owing to its abundant hydroxyl
and carboxyl groups [24,25].

Over the past few decades, many studies have shown that various adsorptive mate-
rials, including SA, possess a good adsorption potential for dye removal from aqueous
environments. Unfortunately, synthetic dyes contain diverse chemicals according to their
dissociation behavior in aqueous solutions. For instance, their dye characteristics in-
clude acid when negatively charged, basic when positively charged, and reactive when
anionic [26]. Therefore, a surface-modification technique was used to overcome these limi-
tations. The addition of functional groups has been reported to enhance the characteristics
of low-cost adsorbents, such as waste materials. Polyethylenimine (PEI) is a non-toxic
polymer that efficiently removes anionic dyes and plays a favorable role in modifying the
substrate surface [27,28]. PEI also has a cationic polyamine containing a large number of
amine groups on macromolecules and is protonated under acidic conditions [29]. It has
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a high content of amino and hydroxyl functional groups, which are immobilized with
other materials to be applied in the adsorption of dyes [30–32]. Effective as they are, the
aforementioned modified adsorbents still bear drawbacks, such as the difficulty in the
separation problem in the solution.

Therefore, to improve the disadvantage of difficulty in separation and improve the
adsorption capacity, we fabricated a magnetic adsorbent for the removal of methyl red (MR)
from an aqueous solution, in which SA was used as the basic material. In general, it has been
previously reported that Ca2+ has been used as an effective crosslinker in the preparation
of SA hydrogel [33]. However, this method has a single-network structure, which indicates
that the prepared calcium alginate composite beads have poor selectivity and stability.
Accordingly, a method of chemically modifying SA with PEI comprising abundant amino
groups was employed in this study. Reactive dyes are azo-based chromophores combined
with different types of reactive groups; compounds found in colored wastewater show low
biodegradability and are stable in the presence of oxidizing agents. The MR was selected
based on the characteristic properties of reactive dyes, given their dissociation behavior in
aqueous solutions. The powdered WFD has limitations as an adsorbent. Therefore, there
is scope for improving the WFD. In this study, a magnetic adsorbent was developed by
encapsulating WFD as a recycling material acting as Fe3O4 magnetic in calcium–alginate
beads. The WFD/SA beads were then modified with PEI to introduce active amino sites
onto the surface. The obtained composite beads were characterized in detail to analyze their
components, and the MR removal efficiency from an aqueous solution was investigated.

2. Materials and Methods
2.1. Chemicals and Reagents

WFD was obtained from a foundry plant in Incheon, South Korea, and was used
as the magnetic material in this study. Sodium alginate (SA, 90%) and calcium chlo-
ride (CaCl2, ≥98%) were purchased from Duksan Pure Chemicals (Ansan-si, Korea), MR
(EP grade, C15H15N3O2) from Samchun Chemicals (Seoul, Korea), Branched polyethylen-
imine (PEI, 50% w/w) from Sigma-Aldrich Inc. (St. Louis, MO, USA) and glutaraldehyde
(GA, EP grade, 25% solution in water). The properties of MR (including color, dissociation
constant, molecular weight, maximum adsorption wavelength, and structural formula) are
presented in Table 1.

Table 1. Properties of MR used in this study.

Dye Color pKa Change Range
of pH

Molecular
Weight (g/mol)

Maximum Adsorption
Wavelength (nm) Chemical Structure

Methyl red Red 5.1 4.4 < pH < 6.0 269.3 520
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2.2. Preparation of WFD/SA-PEI

Prior to the preparation of PEI-functionalized SA, magnetic SA was prepared by
modifying the approach by Fan et al. (2019) [34]. Our objective was to obtain magnetic
adsorbents with WFD to achieve better separation after use. Briefly, WFD (2% w/v) was
dispersed in deionized water and stirred for 30 min for even mixing. A 2% (w/v) SA
solution was prepared by mixing 2 g of SA in 100 mL of deionized water with stirring
for 3 h. The WFD solution was then slowly added to the mixture to ensure that the SA
was fully mixed. When the mixture became homogeneous, it was dropped into a stirred
solution containing 4% (w/v) CaCl2 using a peristaltic pump at a speed of 0.2 mL/min.
This leads to the formation of a calcium alginate shell via ionic crosslinking. Subsequently,
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the WFD/SA beads were mixed in 100 mL of 1.5% PEI solution and stirred for 24 h to
allow them to react with PEI. The wet beads were transferred into 100 mL of 2% (w/v)
glutaraldehyde solution for the crosslinking reaction. The related preparation process is
illustrated in Figure 1.
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2.3. Batch Experiments

Batch experiments were conducted for MR removal using WFD/SA-PEI beads. Ad-
sorption experiments were performed with a 50 mL polypropylene conical tube containing
30 mL solution of the WFD/SA-PEI beads (adsorbent dose = 1–10 g/L) and MR (1000 mg/L)
at pH 4.0, unless stated otherwise. The samples were shaken in a shaking incubator at
120 rpm for 24 h. Duplicate tests were run to ensure data quality, and the mean values were
calculated with standard deviations of less than 5%.

Kinetic experiments (adsorbent dose = 1, 5, and 10 g/L; initial MR concentration = 1000 mg/L)
were performed at reaction times ranging from 10 min to 24 h. Equilibrium isotherm
experiments (adsorbent dose = 1, 5, and 10 g/L) were conducted at initial MR concentrations
ranging from 100 to 1000 mg/L. After adsorption was complete, the remaining MR in the
solution was determined by measuring its absorbance at 520 nm. The effects of the initial
solution pH on the MR removal were evaluated at pH values ranging from 1 to 9. The
solution pH was adjusted using 0.1 M NaOH and 0.1 M HCl solutions, and pH was
measured using a pH probe (9107BN, Thermo Fisher Scientific, Waltham, MA, USA). The
effect of co-existing anions, including chloride, nitrate, and sulfate, on MR removal was
investigated using various initial co-existing ion concentrations.

The MR removal capacity (qe, mg/g) can be calculated with the following equation:

qe =
Ci − C f

Ca
(1)

where Ci is the MR concentration in the aqueous phase before the reaction (mg/L), and Cf
is the MR concentration in the aqueous phase after the reaction (mg/L), and Ca is the dose
of the WDS (g/L).

Kinetic adsorption data were analyzed using the following nonlinear forms of the
pseudo-first-order model (Equation (2)) and pseudo-second order (Equation (3)) models:

qt = qe[1− exp(−k1t] (2)
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qt =
k2q2

e t
1 + k2qet

(3)

where qt is the amount of adsorbed MR per unit mass of absorbent at time t (mg/g) and qe
is the amount of adsorbed MR per unit mass of absorbent at equilibrium (mg/g). k1 is the
pseudo-first-order rate constant (1/min) and k2 is the pseudo-second-order rate constant
(g/mg/min).

The equilibrium sorption data were analyzed using the following nonlinear forms of
Langmuir (Equation (4)) and Freundlich (Equation (5)) isotherm models:

qe =
QmKLCe

1 + KLCe
(4)

qe = KFC1/n
e (5)

where Qm is the maximum mass of adsorbed MR per unit mass of adsorbent (adsorption
capacity, mg/g) and Ce is the concentration of MR in the aqueous solution at equilib-
rium (mg/L). KL is the Langmuir constant related to the binding energy (L/g), KF is the
Freundlich distribution coefficient (L/mg), and 1/n is the Freundlich constant.

2.4. Data Analysis

The following equations for the determination of coefficient (R2), chi-square coefficient
(χ2), and sum of the squared error (SSE) were used to analyze the adsorption data and
confirm their fit to the model:

R2 =
∑m

i=1 (yc − ye)
2
i

∑m
i=1 (yc − ye)

2
i + ∑m

i=1 (yc − ye)
2
i

(6)

χ2 =
m

∑
i=1

[
(ye − yc)

2

yc

]
i

(7)

SSE =
n

∑
i=1

(ye − yc)
2 (8)

where yc is the removal capacity calculated from the model, ye is the removal capacity
measured from the experiment and ye is the average measured removal capacity.

2.5. Analytical Methods

The WFD was analyzed via X-ray diffraction (XRD) (X’Pert Pro MRD, PANalytical,
Almelo, The Netherlands). CuKα X-rays were used at an acceleration voltage of 40 kV and a
current of 30 mA. The sample was analyzed at 2θ values of 10–70◦ to determine the mineral
phase composition. The elemental composition of the WFD was determined by X-ray fluo-
rescence (XRF) spectrometry (S4 PIONEER, Bruker AXS, Karlsruhe, Germany). The average
particle size of the WFD was determined using a particle size analyzer (Mastersizer 2000,
Malvern Panalytical Ltd., Malvern, UK).

To determine the potential release of toxic elements from the samples, the Korean
standard leaching test (KSLT) was conducted using a modified method. The modified KSLT
was performed to analyze the release characteristics of toxic elements in the samples at
various pH values. Briefly, 5 g of the sample was added to 50 mL of water at various initial
pH values (1–9) and agitated at 200 rpm for 24 h. After the modified KSLT, the effluent
was collected and filtered through a 0.45 µm membrane filter. The effluent concentration in
the filtrate was measured using ICP-OES (Perkin Elmer Optima Model 5300DV, Waltham,
MA, USA).

The magnetic properties of the WFD/SA beads were observed using a vibrating sample
magnetometer at room temperature (VSM; LakeShore 7407-S, Lake Shore Cryotronics, Inc.,
Westerville, OH, USA). The morphology and surface structure of the WFD/SA-PEI beads
were analyzed using field-emission scanning electron microscopy (FE-SEM, S4800, Hitachi,
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Tokyo, Japan) with EDS (ISIS310, Jeol, Tokyo, Japan). A Fourier-transform infrared (FTIR)
spectroscopy (Nicolet 6700, Thermo Fisher Scientific) was used to obtain the infrared spectra
before and after the sorption experiments. X-ray photoelectron spectroscopy (XPS; Sigma
Probe, Kratos Analytical, Shimadzu, Kyoto, Japan) with Al Kα radiation (hv = 1253.6 eV)
was employed to analyze the chemical bonding and elements before the sorption experi-
ments. The zeta potential of the WFD/SA-PEI beads under different pH conditions was
characterized by zeta potential measurements performed using a Zetasizer Nano Analyzer
(ZS 90, Malvern, Worcestershire, UK). N2 adsorption–desorption isotherm analysis was
performed using a surface area analyzer (BELSORP-max, BEL Japan Inc., Tokyo, Japan).

UV/visible spectroscopic measurements (Aquamate Plus, Thermo Fisher Scientific)
were conducted to determine the MR concentration. A calibration curve was obtained with
a series of standard MR concentrations ranging from 10 to 1000 mg/L using the absorbance
of MR at 520 nm (Figure 2). The coexisting anion concentration in the filtrate was measured
using IC (883 Basic IC Plus, Metrohm, AG, Switzerland).
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3. Results and Discussion
3.1. Characterization of WFD

The WFD was used for XRD and XRF analyses for mineralogical and chemical determi-
nation, respectively. The mineral composition of the WFD was determined via XRD, which
revealed that the sample consisted of magnetite, zirconium oxide, and quartz (Figure 3).
The Fe, Si, and Zr contents were as high as 27.9%, 11.9%, and 7.47%, respectively. The major
element compositions and mineralogical characteristics of the samples are listed in Table 2.
The average particle size of IFA was determined using a particle-size analyzer. The median
particle size (D50) of IFA was 24.9 µm.

Table 2. Chemical composition of the WFD.

Compound Fe2O3 SiO2 ZrO2 Al2O3 SO3

Conc. (%) 40.03 25.45 10.09 7.28 4.03

Compound CuO ZnO PdO K2O CaO

Conc. (%) 2.45 1.99 1.87 1.48 1.44
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Figure 3. X-ray diffraction patterns of WFD.

The modified KSLT was conducted as a function of the initial solution pH to examine
the leaching of toxic elements from the WFD (Table 3). Generally, the leachate pH signifi-
cantly influences the leaching behavior of toxic elements such as heavy metals to a greater
extent under lower pH values. The heavy metal with the highest concentration in the WFD
was Ca, followed by Cu and Fe at pH < 3, with toxic elements such as As, Cd, and Cr
having detection limits (<0.1 mg/L) for all pH values used in this study. For the WFD, the
leaching concentrations of Cu and Fe decreased as a function of the initial solution pH,
which increased from 1 to 9 owing to the dissolution of Ca in the leachate. These results
indicate that WFD has a low possibility of secondary contamination owing to the lower
dissolution rates of WFD minerals. Consequently, WFD can be used as a magnetic material
for the characterization of alginate.

Table 3. Leaching results of heavy metals elements from the WFD at various pH values by the
modified KSLT (unit: mg/L, N.D: Not detected).

Sample Final pH Al As Ba Ca Cd Co Cr Cu

pH1 1.53 143.36 0.58 0.13 503.10 N.D N.D 0.08 205.94
pH3 5.24 11.52 N.D N.D 258.98 N.D N.D N.D 1.90
pH5 5.58 6.55 N.D N.D 202.73 N.D N.D N.D 1.14
pH7 5.67 6.23 N.D N.D 199.75 N.D N.D N.D 0.88
pH9 5.68 6.50 N.D N.D 217.35 N.D N.D N.D 1.05

Sample Fe K Mg Mn Mo Na Ni Pb V

pH1 156.51 74.58 38.41 95.00 0.34 94.13 N.D 15.77 0.97
pH3 N.D 38.13 27.58 32.48 0.06 80.48 N.D N.D N.D
pH5 N.D 23.66 15.78 17.70 N.D 47.93 N.D N.D N.D
pH7 N.D 23.45 14.81 17.21 N.D 45.79 N.D N.D N.D
pH9 N.D 28.07 20.32 23.01 N.D 59.79 N.D N.D N.D

3.2. Characterization of WFD/SA Bead and WFD/SA-PEI Bead

WFD/SA beads with different WFD mass ratios were tested. A comparison of different
amounts of WFD showed that the magnetic saturation effect of the microspheres increased
with increasing WFD content (Figure 4). The magnetic saturation of different amounts of
WFD/SA bead was at 4.24 to 11.1 emu/g, which is lower than the magnetization saturation
of WFD (23.3 emu/g), which was possibly due to the shielding of WFD by alginate. As
expected, the recovery rate of the WFD/SA bead depended on the intensity of magnetism.
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Based on the comparison of the magnetic saturation, WFD/SA (2 wt%) was selected as the
optimal adsorbent (Figure 5).
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The FE-SEM images and EDS analyses are shown in Figure 6. The morphologies of
Ca-alginate, WFD/SA, and WFD/SA-PEI beads showed similar microstructures, indicating
that the encapsulation of WFD particles in the Ca-alginate beads did not change the original
structure. This may have resulted from encapsulation due to the interactions between WFD
and SA, resulting in denser beads. Additionally, it was revealed that the pores were not
observed clearly on the surface, and a relatively fragmentary structure caused shrinkages
and dents on their surfaces after drying. EDS was then performed to analyze the elemental
distribution on the surface of the beads. WFD/SA beads showed that Ca, O, and Fe were
detected, which is primarily attributed to the SA crosslinking as the immobilization for Ca,
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due to the ionic gelation of alginate, in which the Na+ in the alginate structure is replaced
by Ca2+ [35].
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bead, and (e,f) WFD/SA-PEI bead at two different magnifications.

Additionally, from the N2 adsorption–desorption analysis, the BET specific sur-
face area and total pore volume of WFD/SA-PEI were determined to be 1.06 m2/g and
0.002 cm3/g, respectively.
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The FTIR spectra are shown in Figure 7. In the spectra of WFD (Figure 7(a)), the peaks
at 992, 776, and 693 cm−1 were attributed to Si-O stretching vibration bands, whereas
the peaks at 598 cm−1 corresponded to F-O bond stretching. Typically, the broad band
present between 3400 and 3200 cm−1 in the spectra represents the stretching vibration
of the O-H bonds of SA (Figure 7 (b). The peaks at 1591 and 1411 cm−1 correspond
to the asymmetric and symmetric stretching vibrations of the C-O bond of the COO–
group, respectively [36–38]. This indicates the involvement of the COO− group in the
Ca2+-mediated processes of alginate reticulation and egg-box structure formation [34].
Moreover, the band at 1019 cm−1 is attributed to the C-O stretching [39]. Similar absorption
bands have been reported previously [40,41]. After PEI was grafted onto the WFD/SA
surfaces (Figure 7 (c), the characteristic broad band at 3200–3600 cm−1 was attributed to
the stretching vibrations of O-H and N-H groups. A notable peak observed at 2929 cm−1

was considered to be due to C-H stretching vibration in –CH. The peak of the –COO-
(asymmetric) stretching vibration shifted to 1598 and 1395 cm−1, which could be attributed
to the hydrogen-bonding effect of the N-H groups in PEI [42–44]. This could be attributed
to the –NH2 and OOC- bonds formed by electrostatic attraction between the oppositely
charged PEI and alginate [45].
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Figure 7. Fourier transform infrared spectroscopy measurements of WFD, WFD/SA bead and
WFD/SA-PEI bead.

The XPS spectrum of the WFD/SA-PEI beads is presented in Figure 8, where the main
elements (C and N) were recorded in the ranges of 280–290 and 394–406 eV, respectively.
The photoelectron peak at binding energies of 284.9 was attributed to C1s orbitals and
the peaks at 399.0 and 531.3 eV were assigned to N1s, and O1s orbitals, respectively [46].
In a high-resolution scan of the C 1s section, the peaks at 283.4, 285.0 and 287.0 eV were
attributed to C-C, C-N, and C-O bonds, respectively [47]. The oxygen (O1s) spectrum
was deconvoluted into peaks at 530.0 and 531.6 eV, respectively, which are consistent
with the characteristic binding energies of the C=O/C-O groups. In the N1s spectrum,
three deconvoluted peaks were assigned to N in –N= (398.2 eV), –NH/–NH2 (399.6 eV)
and NO2 (405.2 eV) [48,49]. This confirms the successful modification of the WFD/SA
matrix using PEI.
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3.3. MR Removal under Batch Conditions
3.3.1. Effect of Initial pH on the Adsorption

The pH of the solution is generally considered an important parameter in the ad-
sorption processes and removal capacity. The effect of solution pH on dye removal was
examined in the pH range of 1–9. The MR removal capacity was highest at pH 5 with a
removal capacity in the range of 1.0–10 g/L of 672.7 mg/g (59.7%), 185.4 mg/g (87.3%)
and 94.2 mg/g (89.1%), respectively. As the dose of the WFD/SA-PEI beads in solution
increased, the number of sorption sites available for MR increased, which then provided
more functional groups, resulting in increased MR removal. However, the MR adsorption
capacity decreased with increasing doses of WFD/SA-PEI beads (Figure 9a).

As the solution pH decreased toward highly acidic conditions, the MR removal capac-
ity decreased. For instance, the MR removal capacity was 218.1 mg/g at pH 3. As the pH
decreased to 1, the removal capacity sharply increased to 36.6 mg/g. This can be attributed
to the different behaviors of MR in aqueous solutions. This trend is explained by the fact
that HMR+ and MR− represent the protonated (acid) and deprotonated (basic) forms of
MR (Equation (9)).

HMR+(acid) H+

⇔ MR H+

⇔ MR−(basic) (9)
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The color of the MR solution varies significantly with the variation in the initial
pH. The characteristic peaks of the initial solution pH of the MR are shown in Figure 9b.
The spectra revealed differences in their patterns. It can be seen that the absorption
maximum wavelength in the visible range is λ = 420 and 520 nm in basic and acidic
solutions, respectively. This is because the color of the MR changes upon protonation or
deprotonation [50,51]. During MR adsorption, the adsorption of charged MR groups is
influenced by the surface charge of the adsorbent. The zeta potential results showed that
the WFD/SA-PEI beads had an isoelectric point around pH 6.3, which was mainly due to
the introduction of a large number of amino groups on the surface (Figure 9c). The above
results indicated that when pH < 6.3, the WFD/SA-PEI bead surface charge was positive,
and when pH > 6.3, the surface charge was negative. When pH < 6.3, the amine groups on
PEI were well protonated into ammonium groups (Equation (10)).

−NH2 + H+ ↔ −NH+
3 (10)

Therefore, under highly acidic pH conditions, electrostatic repulsion between the
positively charged adsorbent surfaces and positively charged MR ions can occur. In
contrast, the amine groups on PEI can be partially converted to deprotonated amine groups
with increasing pH (Equation (11)).

−NH2 + OH− ↔ −NH2OH− (11)
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With a further increase in pH (>6.3), the adsorption capacity decreased, but the
WFD/SA-PEI beads still had a high adsorption capacity. All the final pH values of the
solution increased from the initial pH values, with the exception of the initial pH of 9
(Figure 9d). This indicates that the pH remained almost constant, and the slight increase
in pH was possibly due to the MR− exchange with OH−. Meanwhile, the initial pH of 9
for the adsorption process decreased to pH 7.19–7.80. This is because as the pH increases,
the overall zeta potential decreases and the negatively charged MR increases, whereas the
positive charge on the surface decreases as the amine groups become deprotonated.

3.3.2. Kinetic and Equilibrium Model Analyses

MR removal by WFD/SA-PEI beads was evaluated at initial concentrations (C0 = 1000 mg/L)
over a 24 h period with different amounts of WFD/SA-PEI beads. The MR removal capacity
of the WFD/SA-PEI beads reached equilibrium in 3 h. To investigate the mechanism of
MR removal by the WFD/SA-PEI beads and determine the rate-controlling factors, batch
study data were analyzed using kinetic sorption models, such as pseudo-first-order and
pseudo-second-order models. The kinetic adsorption data and model analysis are shown
in Figure 10a. Equations (2)–(7) were applied to the experimental data for the adsorption
of the anionic dye MR onto the WFD/SA-PEI beads. The kinetic model parameters are
listed in Table 4. The pseudo-second-order model best fitted the kinetic data. The MR
sorption data as a function of the initial MR concentration in the WFD/SA-PEI beads were
analyzed using equilibrium isotherm models, including the Langmuir and Freundlich
models. The effect of the initial MR concentration on adsorption is presented in Figure 10b.
The equilibrium model parameters are listed in Table 5. The R2, χ2, and SSE values indicate
that the Langmuir model is the most suitable for describing the equilibrium data. The MR
removal capacities of various low-cost adsorbents reported in the literature are presented
in Table 6.
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contact time: 3 h).
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Table 4. Kinetic model parameters obtained from model fitting to experimental data.

Adsorbent Dose
(g/L)

Pseudo-First-Order Model

qe
(mg/g)

k1
(1/h) R2 χ2 SSE

1 698.41 2.15 0.97 2.64 × 101 1.23 × 104

5 180.97 4.14 0.97 4.32 × 100 6.46 × 102

10 93.14 11.77 0.99 5.93 × 10−1 5.51 × 101

Adsorbent Dose
(g/L)

Pseudo-Second-Order Model

qe
(mg/g)

k2
(g/mg/h) R2 χ2 SSE

1 737.79 0.004 0.97 1.90 × 101 1.14 × 104

5 190.11 0.03 0.99 9.38 × 10−1 1.47 × 102

10 95.05 1.09 0.98 1.56 × 100 1.42 × 102

Table 5. Equilibrium isotherm model parameters obtained from model fitting to experimental data.

Adsorbent Dose
(g/L)

Freundlich Model

KF
(L/g) 1/n R2 χ2 SSE

1 11.83 0.67 0.96 8.78 × 101 1.351 × 104

5 1.94 0.87 0.96 2.04 × 101 9.924 × 102

10 1.45 0.81 0.97 1.00 × 101 2.04 × 102

Adsorbent Dose
(g/L)

Langmuir Model

Qm
(mg/g)

KL
(L/mg) R2 χ2 SSE

1 1203.91 0.003 0.99 4.00 × 101 3.93 × 103

5 704.10 0.001 0.97 1.74 × 101 7.66 × 102

10 262.15 0.003 0.98 7.14 × 100 1.13 × 102

Table 6. MR removal capacities of various low-cost adsorbents reported in the literature.

Adsorbent Removal Capacity (mg/g) Reference

BPEI-modified magnetic activated carbon 526 [52]
Lemongrass leaf-based activated carbon 72.3 [53]

Fe3O4@MIL-100(Fe) 686.3 [54]
Thiosemicarbazide-modified chitosan (TSFCS) 17.3 [55]

Natural and Purified Organic Matter
Rich Clays 397 [56]

N, N-Dimethyldodecylamine
N-oxide(DDAO)–coffee residues(CR) 76.7 [57]

Sewage sludge blended with waste coal 312.7 [58]
Fe3O4@SiO2@NH2, amorphous silica from

rice husk 81.3 [59]

WFD/SA-PEI 672.7 This study

3.3.3. Effect of Coexisting Ions for the Removal of MR

In textile wastewater, there are often various inorganic anions and organic matter that
affect the adsorption capacity. Therefore, the effects of coexisting ions, i.e., Cl−, NO3

−,
and SO4

2−, on the adsorption of MR by WFD/SA-PEI beads were investigated. The
concentration of MR was maintained at 1000 mg/L, while the co-existing ion concentration
increased from 200 to 1000 mg/L with a contact time of 180 min. Our results showed that
the adsorption of MR in the presence of coexisting ions was affected (Figure 11). The MR
removal capacities of the WFD/SA-PEI beads decreased with increasing concentrations of
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Cl−, NO3
−, and SO4

2−. The relative removal rate decreased from 88.0% to 77.4% as the Cl−

concentration increased from 200 mg/L to 1000 mg/L. Within the same range, the relative
removal rate of SO4

2− decreased from 39.7% to 18.2%. The influence of coexisting anions
on MR removal followed the order Cl− > NO3

− > SO4
2−. This result could be attributed to

the fact that the ionic radius of multivalent anions is larger than that of monovalent anions,
which could be ascribed to the competition between the MR molecules and coexisting
anions for sorption sites [35]. In other words, Cl− and NO3

− are monovalent anions,
which slightly compete with MR molecules for the positively charged active sites on the
WFD/SA-PEI beads. However, SO4

2− is a multivalent anion that can compete with the MR
for active sites, resulting in a weakened adsorption capacity. This result indicated that the
WFD/SA-PEI beads exhibited selectivity for MR adsorption from wastewater containing
coexisting ions.
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3.4. MR Removal Mechanisms of WFD/SA-PEI Bead

The protonation status of MR is pH-dependent, which results in a change in color
and aqueous solubility. MR has been reported to have a dissociation constant (pKa) of 5.1,
and contains –COOH and N–H groups [15]. In other words, MR molecules are positively
charged at pH < pKa and negatively charged at pH > pKa. This result could be attributed
to the MR being easily the self-auto-ionization of water, which released H+ [34]. This
phenomenon can be explained by the shift in the absorption maximum wavelength from
420 to 520 nm.

A simple method of forming a positively charged WFD/SA-PEI bead was developed
using PEI on the WFD/SA surface, involving the linking of PEI amino groups to the SA
surface carboxyl groups. Batch experiments revealed that the adsorption process occurs
mainly via electrostatic forces. The surface charge of the WFD/SA-PEI beads was positive
when the solution pH was <pHPZC. However, the surface charge was negative when the
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pH of the solution was greater than that of pHPZC. This indicates that the WFD/SA-PEI
beads are related to the pH of the solution and have a proton-buffering capacity by amino
groups present in PEI [60]. Our results indicate that MR adsorption at low pH was far lower
than that under neutral and weakly basic solution conditions. This could be attributed
to the restriction of MR removal to the sorption sites by the large number of hydrogen
ions present in the aqueous phase at a highly acidic pH. In other words, an increase in
the H+ ions leads to competition with positively charged MR. However, the MR removal
capacity was at its highest at pH 5. The enhanced removal efficiency may be due to the
presence of PEI, which offers more binding sites (–NH2 and OH groups) for the uptake of
MR molecules. In addition, the MR molecules have free –COOH and N–H groups, which
can form hydrogen bonds with the –NH2 and OH groups present in the WFD/SA-PEI
beads. However, the positive charge on the surface decreases with increasing pH, which is
partially caused by the deprotonated -NH2 groups.

4. Conclusions

Easily synthesized and recyclable materials were prepared for MR removal from aque-
ous solution. The WFD was used as a cost-effective material for magnetic Fe3O4, providing
a possible path for recycling. A magnetic adsorbent was developed by encapsulating WFD
in calcium-alginate beads. The WFD/SA beads were then functionalized using PEI. FTIR
and XPS analyses proved that PEI was successfully crosslinked with WFD/SA beads. It
was found that the presence of the functional groups in SA and PEI on the surface aided in
the adsorption of MR. The adsorption of MR by these WFD/SA-PEI beads was studied and
the effects of different parameters, such as solution pH, initial concentration, contact time,
and coexisting ions on the adsorption of MR, were investigated. The variation in pH brings
about structural changes through the protonation or deprotonation of the MR molecules
based on the pKa value, and the MR adsorption by WFD/SA-PEI beads also depends on the
functional groups present on the adsorbent as the pH is varied. The removal mechanism
of MR on the WFD/SA-PEI beads was mainly achieved via electrostatic adsorption and
hydrogen bonding. Accordingly, the WFD/SA-PEI beads proved to be an economical and
efficient adsorbent for the removal of anionic dyes from wastewater.
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