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Abstract: Human activities and land transformation are important factors in the growth of carbon
emissions. In recent years, construction land for urban use in China has expanded rapidly. At the
same time, carbon emissions in China are among the highest in the world. However, little is known
about the relationship between the two factors. This study seeks to estimate the carbon emissions
and carbon sequestrations of various types of land based on the land cover data of 137 county-level
administrative regions in Shandong Province, China, from 2000 to 2020.The study estimated the
carbon emissions for energy consumption using energy consumption data and night-time light
images, hence, net carbon emissions. The Tapio decoupling coefficient was used to analyze the
decoupling between the net carbon emissions and construction land, and where the model for the
decoupling effort was constructed to explore the driving factors of decoupling. The results showed
that net carbon emissions in Shandong Province continued to increase, and the areas with high carbon
emissions were concentrated primarily in specific districts of the province. The relationship between
net carbon emissions and construction land evolved from an expansive negative decoupling type to a
strong negative decoupling type. Spatially, most areas in the province featured an expansive negative
decoupling, but the areas with a strong negative decoupling have gradually increased. The intensive
rate of land use and efficiencies in technological innovation have restrained carbon emissions, and
they have contributed to an ideal decoupling situation. Although the intensity of carbon emission
and the size of the population have restrained carbon emissions, efforts towards decoupling have
faded. The degree of land use has facilitated carbon emissions, and in recent years, efforts have been
made to achieve an ideal decoupling. The method of estimation of net carbon emissions devised in
this research can lend itself to studies on other regions, and the conclusions provide a reference for
China, going forward, to balance urbanization and carbon emissions.

Keywords: net carbon emissions; construction land; decoupling; driving factor; Shandong Province; China

1. Introduction

Climate warming in the 21st century is one of the major challenges facing society and
addressing climate change has become a global concern. It is unequivocal that human
activities cause climate change, and carbon dioxide emissions are the main factor in this
process [1]. According to the “Special Report on Climate Change and Land” released by the
Intergovernmental Panel on Climate Change (IPCC) in 2019, agriculture, forestry, and other
land types account for 23% of greenhouse gas emissions, and the carbon dioxide absorbed
by natural land processes is almost equivalent to 1/3 of the carbon emissions released by
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fossil fuels and industry [2]. The use of land, its structure, and the intensity of use are
closely related to socioeconomic development and this profoundly impacts the ecological
environment and the well-being of humans in a region [3,4]. Therefore, rational regulation
of land use to achieve carbon reduction goals becomes an important measure for sustainable
development in countries around the world. With rapid urbanization worldwide, the
expansion of construction land is inevitably accompanied by high carbon emissions due
to energy consumption, and there is a contradiction between the two processes. Hence,
exploring the relationship between carbon emissions and construction land is of great
significance for green and low-carbon development and efficient land use; moreover,
coordinating the relationship between the two processes is crucial for achieving sustainable
human development [5].

The total carbon emissions for China in 2020 were 9.899 billion tons, accounting for
30.70% of global carbon emissions [6]. In September 2020, President Xi Jinping highlighted
the following: “China is committed to ensuring carbon emissions peak by 2030 and achiev-
ing carbon neutrality by 2060” [7]. The “14th Five-Year Plan” of China proposes that the
country’s ecological civil construction will focus on carbon reduction, thereby promoting a
comprehensive green transformation of economic and social development [8]. At present,
in China, the task of reducing carbon emissions involves both domestic and international
pressures. With the acceleration of urbanization in China, the scale of urban construction
land has expanded, and some areas have even experienced disorderly expansion [9,10].
Construction land has crowded out a large amount of ecological land covered with vegeta-
tion, thus weakening the carbon sink capacity of the earth’s surface. The contradictions
between construction land and non-construction land have become increasingly prominent.
Therefore, does the expansion or reduction of construction land have an impact on carbon
emissions, and to what extent? What other factors affect carbon emissions? To what extent
do these factors contribute to the decoupling between carbon emissions and construction
land? China, as a big carbon emitter [11], has only 30 years from carbon peaking to carbon
neutrality. Based on the above questions and objectives, it is particularly important and
urgent to conduct in-depth research on the relationship between carbon emissions and
construction land.

Land is an important vehicle for terrestrial ecosystems, and various land use types are
interdependent and inter-constrained. The expansion or reduction of construction land will
cause changes in other land use types, and carbon emissions and carbon sequestrations
will also change accordingly [12,13]. Based on this, in terms of the acquisition of a carbon
emissions dataset, this study has estimated the net carbon emissions from the perspective
of carbon sinks and sources of land use, using the carbon emissions (sequestrations)
of each land type and the carbon emissions for energy consumption associated with
construction land. Thus, the net carbon emissions can be estimated more accurately and
have a scientific basis.

In China, a country endowed with a vast territory and natural resources, economic
development varies from one region to another, and carbon emissions also vary in space [14].
The country needs to take differentiated and refined carbon reduction measures according
to local conditions. The administrative units at a county level constitute the third-level
administrative region of China, and they are the basis for the delivery and distribution of
power at a local level. Therefore, in terms of the scale of research, the smallest rank for the
county-level administrative region was selected as the research unit. At the same time, the
decoupling relationship between net carbon emissions and construction land was analyzed
with the aid of the Tapio decoupling coefficient. Combined with the Kaya identity and the
Log-Mean Divisia Index (LMDI), a decoupling effort model was constructed to explore
further the factors influencing net carbon emissions and the driving effects of various
factors on the decoupling of net carbon emissions and construction land. The findings of
the study provide insights into the sustainable development of urbanization and carbon
emissions in the county areas of the country. Furthermore, the findings will help guide local
governments in formulating targeted carbon emission reduction measures and provide a



Int. J. Environ. Res. Public Health 2022, 19, 8910 3 of 26

scientific reference for China to achieve “carbon peaking and carbon neutrality” as soon
as possible.

2. Literature Review

Carbon emissions from land use refer to the carbon emissions and carbon absorption
due to the transformation or maintenance of the land type, which are usually measured
by the carbon emissions (sequestrations) linked to land use [15,16]. Carbon emissions
from energy consumption are those caused by the large amount of energy consumed by
human activities on construction land [17,18], and which have been estimated by input-
output and the IPCC’s emission factors [19–22]. Nevertheless, these methods fail to capture
carbon emissions at a fine scale. Therefore, many studies have tried to estimate the carbon
emissions from energy consumption using night-time light images. In 2000, Doll et al.
were the first to confirm that there was a significant correlation between night-time light
brightness and carbon emissions [23]. Then, Elvidge et al. investigated the relationship
between night-time light brightness and the energy associated with carbon emissions
in 200 countries around the world, thus providing an empirical reference for simulating
carbon emissions with night-time light data [24]. Ambreen et al. found that the carbon
dioxide concentration and night-time light brightness of cities in India were both high,
while those of villages were both low, showing that night-time light images can be used as
a basis for estimating carbon emissions [25]. In recent years, studies in China have begun
to use energy consumption data and night-time light images to estimate carbon emissions.
For example, Su et al. were the first to estimate the carbon emissions of construction land
for cities at the prefecture level in China, based on the Defense Meteorological Satellite
Program/Operational Linescan System (DMSP/OLS) night-time light images, this study
made up for the incomplete statistics on national carbon emissions [26]. Xiao et al. used
the DMSP/OLS global stable night-time light data to simulate the energy consumption at
the provincial level in China, and provided a useful reference in monitoring and assessing
provincial energy consumption [27]. Du et al. estimated the carbon emissions of 289 cities
in China using DMSP/OLS, National Polar-orbiting Operational Environmental Satellite
System Preparatory Project /Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) night-
time light images, and carbon emissions from energy consumption [28].

As a prelude to reducing carbon emissions, researchers have explored the relationship
between carbon emissions and land use. An early study showed that frequent changes in
land use were an important cause of increased carbon emissions [29]. Land use and land
cover change (LUCC) are significantly associated with deforestation, the loss of farmland,
and the expansion of built-up land [30]. The conversion of land from pasture or forest to
arable land will lead to a large increase in carbon emissions [31]. With the development
of urbanization, the further occupation of arable land for construction will also lead to a
large amount of carbon emissions [32]. Studies have confirmed that there was a significant
correlation between urban non-agricultural land and carbon emissions [33]. Controlling
the expansion of construction land and reducing the area of arable land occupied by
construction land could effectively control the increase in carbon emissions [34]. With
acceleration of urbanization of land, China’s structure, intensity, and efficiency of land
use have changed. Feng and Guo et al. studied LUCC and carbon emissions of cities and
showed that the increase in construction land and the decrease in vegetation cover led to a
significant decline in carbon storage [35,36]. Zhang et al. confirmed that there was a two-
way causal relationship between the quality of land urbanization and carbon emissions,
and the former had a negative impact on carbon emissions in various provinces [37].
Tang et al. believed that low-level industrial development and land use management
promote the increase of carbon emissions at the extensive land use stage, however, high-
quality industrial development and land use optimization lower carbon emissions at the
intensive land use stage [38]. A study has also demonstrated that intensive land use could
reduce carbon emissions more effectively than extensive land use [39]. For example, Stone,
using data from 45 major U.S. cities, found that disorderly expanding cities generated
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more air pollutants than compact cities [40]. Makido et al. used the Landscape Pattern
Index to measure the compactness of land use in 15 Japanese cities, revealing that the
carbon emissions of compact cities were lower than cities that had undergone disorderly
expansion [41].

The land is the carrier of terrestrial ecosystems. Extensive attention has been paid
to the impact of land use/cover on carbon emissions. Research has demonstrated that
there were significant differences in the carbon sink and carbon source capabilities be-
tween different land types, and the conversion from one type to another inevitably led
to changes in carbon emissions [42]. Land use has become an important factor affecting
the distribution of surface carbon dioxide concentrations [43]. The land is also the spatial
carrier of human activities. Some researchers believe that carbon emissions are affected by
factors other than changes in land use. In particular, the carbon emissions associated with
construction land are the result of multiple factors [44]. Methods such as the Stochastic
Impacts by Regression on Population, Affluence, and the STochastic Impacts by Regres-
sion on Population, Affluence, and Technology (STIRPAT) model, the multiple regression
model, and grey correlation analysis have been used to analyze the factors influencing
regional carbon emissions [45–47]. In 2004, Ang pointed out that the LMDI decomposition
approach, which does not produce residual errors, is more suitable for factor analysis of
time series than other methods [48]. Since then, this method has been used widely to
explore the factors influencing carbon emissions [49,50]. For example, Hu et al. analyzed
the carbon emission factors for 57 Belt and Road Initiative countries based on the LMDI
model [51]. Alajmi et al. used the LMDI model in their analysis of the growth factors of
carbon emission in Saudi Arabia [52]. The factors influencing carbon emissions, such as
economic development, industrial structure, carbon emission intensity, intensive rate of
land use, the rate of urbanization, energy structure, and the size of the population, have
been selected for decomposition research [53–55].

To sum up, detailed theoretical and empirical studies have been conducted on carbon
emissions and land use. It has been found that land use transformation is an important
driver for the increase of carbon emissions; especially, the expansion of construction
land has accelerated the carbon emissions associated with energy consumption. Some
researchers believe that the proportion of land used for construction has a weaker impact
on carbon emissions than the total energy consumed, the level of economic activity, and
the rate of urbanization, etc. Some researchers believe that there was an inverted U-shaped
relationship between urbanization of land and carbon emissions. These debates provide
a solid foundation for this study. However, there are still some problems that need to be
addressed at the outset. First, existing studies on carbon emissions should place more
attention on energy-related carbon emissions and ignore the carbon sequestration effect
of land cover. Second, existing studies on carbon emissions and land use are mostly
limited to the national, provincial, or the municipal scale, and little attention is paid to the
county-level emissions, which makes it difficult to accurately formulate carbon reduction
measures. Third, among the studies on decoupling, the existing studies mostly analyzed
the relationships between carbon emissions and economic growth [56–59], the decoupling
relationship between China’s net carbon emissions and construction land remains unclear.
Little is known about the impact of the expansion or reduction of construction land on
carbon emissions and the driving factors of the decoupling between the two factors. The
major contributions of this study are as follows. First, we factor in the carbon source and
carbon sink capacities of different land types and conduct empirical research using net
carbon emissions. Second, the research scale is expanded to account for the decoupling
between net carbon emissions and construction land at the fine county scale. Finally,
we combine the Tapio decoupling coefficient, the Kaya identity, and the LMDI model to
build a systematic framework, which is used to analyze the factors influencing net carbon
emissions and the driving effects of each factor on the decoupling between the two.
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3. Materials and Methods
3.1. Study Area

The research used the county-level administrative units, the smallest administrative
level in China, as the study area and selected specifically all county-level administrative
regions in Shandong Province. The province, located on the eastern coast of China and
in the lower reaches of the Yellow River, is an important transportation hub along the
“Belt and Road” [60]. The province plays a leading role in ecological protection and
high-quality development of the Yellow River Basin and has obvious advantages in its
location for this research [61]. At present, Shandong Province is in the process of rapid
urbanization including an expansion of urban construction land. Data from the sixth and
seventh national censuses show that Shandong province has the second largest population
in the country after Guangdong province for the period 2000–2020. In 2020, Shandong
Province ranked third in the country in terms of total economic output, and the growth
rate for the total value of imports and exports of goods was generally among the highest
in the country, making the region one of the most promising and dynamic regions for
economic development in the country. However, the economic structure of Shandong
Province is dominated by industry, including heavy chemical industries. According to
the “China Energy Statistical Yearbook” and the “China Emission Accounts and Datasets
(CEADs)” [62], from 2000 to 2012, Shandong Province was ranked first in China in terms
of carbon emissions from an energy consumption standpoint. From 2013 to 2020, it was
second in the country below Shanxi Province, a major coal producer. As a province with a
large economy, a large population, and large carbon emissions, the relationship between
Shandong’s development and carbon emissions is very typical in China, and the task of
realizing low-carbon development is clearly more challenging than that of other provinces.

County-level administrative units in China include municipal districts, county-level
cities, counties, etc. As of 2020, Shandong province has 137 county-level administrative
units, including 57 municipal districts, 27 county-level cities, and 53 counties. Considering
that the administrative division of Shandong Province was adjusted during the study
period to ensure the uniformity and accessibility of the study data, the study area was
defined uniformly according to the administrative division of Shandong Province in 2020,
as shown in Figure 1.
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3.2. Data Sources

The remote sensing data on land use were obtained from the Landsat TM images of
2000, 2005, 2010, 2015, and 2020 provided by the Resource and Environment Science and
Data Center, Chinese Academy of Sciences at a resolution of 30 m. The night-time light
data were sourced from the National Geophysical Data Center of the National Oceanic and
Atmospheric Administration. The energy consumption data and the standard coal coeffi-
cient were from the China Energy Statistical Yearbook (2001–2021). Other data came from
the Shandong Statistical Yearbook (2001–20201), the Shandong Urbanization Development
Report (2001–2021), and the China National Intellectual Property Administration (CNIPA).

3.3. Methodology

Carbon sinks refer to the storage and absorption of carbon, and forest land, grassland,
water bodies, and unused land are carbon sinks. Carbon sources refer to the intensity of
carbon emissions, and arable land and construction land are carbon sources [63]. Among
them, the land type in this work refers mainly to the Status and Classification of Land Use
(GB/T21010-2007), in combination with six first-level land categories, including arable land,
forest land, grassland, water bodies, construction land, and unused land, based on analysis
of the Landsat TM images. The methodology used is outlined in Figure 2.
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3.3.1. Estimation of Net Carbon Emissions

(1) Estimation of carbon emissions from land use

Carbon emissions from land use refer to carbon emissions and carbon sequestration
caused by soil and vegetation of arable land, forest land, grassland, water bodies, and un-
used land. As previously described [64,65], the carbon emission (sequestration) coefficients
for arable land, forest land, grassland, water bodies, and unused land were obtained ac-
cording to the latitude, longitude, and geographical location of Shandong Province, which
were 0.422 t/(hm2·a) for arable land, −0.644 t/(hm2·a) for forest land, −0.021 t/(hm2·a) for
grassland, 0.248 t/(hm2·a) for water bodies, and −0.005 t/(hm2·a) for unused land using
the following equation:

Ex = ∑ Li×δi (1)

where Ex represents the carbon emissions from land use, i is the land type. Li refers to the
area of each land type. δi indicates the carbon emission (sequestration) coefficient of each
land type.
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(2) Estimation of carbon emissions from energy consumption

Carbon emissions from energy consumption are the carbon emissions caused by
energy consumption from human activities undertaken on construction land [66]. Previous
studies have revealed a significant correlation between the intensity of night-time light and
energy consumption due to fossil fuel emissions, and economic activity; further, night-time
light images could effectively reflect the intensity of human activities [67,68]. Therefore, as
previously described [69,70], the carbon emissions from energy consumption at the county
level were estimated by the carbon emissions from energy consumption and night-time
light data in Shandong Province. The process was as follows, namely, the preprocessing
and fitting correction of night-time light images. First, the DMSP/OLS night-time light
images from 2000 to 2013 were reprojected, resampled, and cropped to obtain the light
data of China’s administrative boundaries. Jixi City, with a relatively stable socioeconomic
development, was selected as the invariant target area, and the satellite data of F162007
were used as a reference dataset to construct a regression model with other years. Intra-year
fusion and inter-year continuous correction were performed. Second, the annual synthesis,
reprojection, resampling, and cropping of the NPP/VIIRS night-time light images from
2012 to 2020 were carried out to make them match the spatial resolution of the DMSP/OLS
data. Outliers in the invariant area were removed, and the intra-year fusion and inter-year
continuous correction were performed. Finally, DMSP/OLS and NPP/VIIRS night-time
light data at the county scale for Shandong Province in 2012 and 2013 were counted,
respectively. The regression relationship between DMSP/OLS and NPP/VIIRS data at the
county scale for 2012 and 2013 was constructed using the county as the calibration unit,
with the DMSP/OLS data as the reference and the NPP/VIIRS data as the calibration object.
Considering the accuracy at the county scale, a linear regression without an intercept was
chosen. As can be seen from Figure 3, the regression equation was Y = 0.880X where Y is
the DMSP/OLS night-time light data for 2012 and 2013 and X is the NPP/VIIRS night-time
light data for 2012 and 2013. The R2 value was 0.886, which passes the 1% significance test,
and the fit is good. The inter-year continuous correction was performed on the DMSP/OLS
data from 2000 to 2013 and the NPP/VIIRS data from 2014 to 2020 was based on this
regression equation. Based on the above calculations, the night-time light data at the county
level scale in Shandong Province were obtained for 2000–2020.
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Measurement of carbon emissions from energy consumption. Based on the carbon
emission coefficient for energy consumption provided in the 2006 IPCC National Green-
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house Gas Inventory Guidelines [71], the carbon emissions from energy consumption in
Shandong Province from 2000 to 2020 was calculated using the following equation:

Ey =
44
12

× ∑ Ei×θi×µi (2)

where Ey represents the carbon emissions from energy consumption. Ei is the consumption
due to various energy sources. θi refers to the standard coal coefficient of various energy
sources. µi indicates the carbon emission coefficient for various energy sources. The
standard coal coefficient and carbon emission coefficient for various energy sources are
shown in Table 1. The unit of heat converted into standard coal is kg standard coal/million J.
The unit of electricity conversion is kg/kW h.

Table 1. Carbon emission coefficients for energy consumption.

Types of Energy Standard Coal
Coefficient

Carbon Emission
Coefficient Types of Energy Standard Coal

Coefficient
Carbon Emission

Coefficient

Raw coal 0.714 0.756 Natural gas 1.330 0.448
Coke 0.971 0.855 Heating power 0.034 0.670

Crude oil 1.429 0.586 Electricity 0.345 0.272
Petrol 1.471 0.554 Finished coal 0.900 0.756

Paraffin 1.471 0.571 Coke oven gas 0.614 0.355
Diesel 1.457 0.592 Liquefied petroleum gas 1.714 0.504

Fuel oil 1.429 0.619 Refinery gas 1.571 0.460

Estimation of carbon emissions and accuracy test. The total night-time light and
carbon emissions for energy consumption in Shandong Province were fitted to build linear,
logarithmic, quadratic polynomial, power exponential, and exponential fitting equations.
To ensure the reliability of the fitted carbon emission values, the Mean Relative Error (MRE)
of the carbon emissions in Shandong Province fitted by each equation and the carbon
emissions from energy consumption calculated from the statistical data were calculated,
that is, the MRE at the provincial scale. The night-time light values for the various regions
were substituted into the regression equation. Considering the accuracy at the county
scale, the regression equation without intercept was used for calculation. The weighted
summation of the fitted carbon emissions in each region was used to obtain the fitted
value of carbon emissions in Shandong Province, which was then tested for accuracy with
reference to the carbon emissions from energy consumption, that is, the MRE at the county
level scale, as shown in Table 2.

Table 2. Fitting equation for carbon emissions from energy consumption.

Model Categories Fitting Equation p R2 Provincial Scale
MRE (%)

County Scale
MRE (%)

Linear Y = 0.058X + 16846.745 0.000 0.764 20.075 26.726
Logarithm Y = 35034.163lnX − 413160.777 0.000 0.865 14.362 /

Quadratic polynomial Y = 0.152X − 6.618 × 10−8X2 − 13347.298 0.000 0.877 12.788 55.265
Power exponent Y = 0.428X0.875 0.000 0.856 15.190 76.165

Exponential Y = 20611.685eX1.287×10−6 0.000 0.691 23.190 /

Table 2 indicates that the regression coefficients of the five fitting equations were all
significant at the 1% level, where R2 was greater than 0.65, indicating a good degree of fit.
The accuracy test at the county level indicated that the MRE for carbon emissions fitted
by the quadratic polynomial and the power exponential equations and that calculated
by the statistical data were too large, while the carbon emissions for some areas fitted by
logarithmic and exponential equations already exceeded the carbon emissions calculated
by the province’s statistical data, which clearly was not possible and thus was excluded.
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The MRE for the carbon emissions fitted by the linear regression equation and the carbon
emissions calculated by the statistical data were smaller, showing better stability. Thus, it is
concluded that the nonlinear regression equation was not suitable for estimating carbon
emissions at the county level. Therefore, a linear regression equation was used to estimate
carbon emissions from energy consumption.

3.3.2. Tapio Decoupling Coefficient

In 2005, when exploring the relationship between greenhouse gas emissions and
economic growth in Europe, Tapio proposed the use of an alternative decoupling coeffi-
cient [72]. Compared with the Organization for Economic Co-operation and Development
(OECD) decoupling coefficient, the Tapio decoupling coefficient overcomes the problem
of base period selection and measures the decoupling relationship more accurately. In
recent years, it has been widely used to explore the relationship between socioeconomic
development and the environment [73,74]. Therefore, the Tapio decoupling coefficient was
used to analyze the relationship between net carbon emissions and construction land using
the following equation:

T =
CE
LC

=
(CEn − CEO)/CEO
(LCn−LCO)/LCO

(3)

where T represents the decoupling coefficient. ∆LC refers to the rate of change in construc-
tion land. ∆CE indicates the rate of change in net carbon emissions. CEn and LCn represent
the net carbon emissions and the area of construction land at the end of the study. CEO and
LCO stand for the net carbon emissions and area of construction land for the base period of
the study.

Tapio has classified decoupling relationships into eight categories according to the
decoupling coefficient, as shown in Figure 4. Strong decoupling means that CE is declining
while the LC is growing. Recessive decoupling means that both the LC and CE are declining,
and the rate of decline for LC is slower than that for CE. Weak decoupling means that both
the LC and CE are growing, and the rate of growth for LC is faster than that for CE. Strong
negative decoupling means that CE is growing while LC is declining. Expansive negative
decoupling means that both the LC and CE are growing, and the growth rate for LC is
slower than that for CE. Weak negative decoupling means that both the CE and LC are
declining, and the rate of decline of LC is faster than that for CE. Expansive coupling means
that LC and CE are growing at similar rates. Recessive coupling means that LC and CE are
falling at a similar rate.
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3.3.3. Decoupling Effort Model

In 1989, Yoichi Kaya proposed the Kaya identity at the IPCC International Symposium,
which established an identity relationship between carbon dioxide produced by human
activities and factors such as the economy and population [75]. Human activities are the
main source of carbon emissions. Based on the Kaya identity and the LMDI model [76],
a correlation between net carbon emissions and eight factors, including the intensity of
carbon emissions, economic scale, the rate of intensive land use, industrial structure, the
efficiency of technological innovation, the intensity of technological innovation, the size
of the population, and the degree of land, was used to explore the impact of each factor
on net carbon emissions. Carbon emission intensity (β1) refers to the carbon emissions
released per unit of economic output and is an important indicator of the relationship
between economic development and the environment, characterizing the impact of each
region’s level of economic development on net carbon emissions. The economic scale (β2)
was a measure of the economic output generated per unit of built-up land and measures
the impact of economic concentration and development on net carbon emissions. The rate
of intensive land use (β3) is expressed as the area of land used for construction per unit
of non-agricultural output and measures the impact of the economy and the intensive
use of the resources of construction land on net carbon emissions. Industrial structure
(β4) is the basis for the orderly operation of regional production and life. Secondary and
tertiary industries are important sources of carbon emissions. The measure of industrial
structure is based on the impact of industrial structure on net carbon emissions, and it
was calculated using the share of the value of non-agricultural industrial output. As data
on science and technology innovation at the county level scale were difficult to obtain,
this study relied on the number of patents granted to indirectly characterize the financial
investment in science and technology innovation, the investment in research personnel, and
other related inputs [77]. Among them, the technological innovation efficiency (β5) gives a
measure of the impact of the investment benefit of scientific and technological innovation
on net carbon emissions using the economic output representation of the unit of patent
authorization. The technological innovation intensity (β6) was characterized by the per
capita patent authorization amount to characterize the impact of the level of scientific and
technological innovation on net carbon emissions. The size of the population (β7) was used
to characterize the impact of population density on net carbon emissions by measuring
the number of people living on a unit of construction land and the regional differences
in the population distribution. The intensity of land use (βL) was a measure of the direct
impact on net carbon emissions of the expansion or reduction of construction land during
rapid urbanization, using the built-up area as a proxy as follows. The equation for the Kaya
identity is:

C =∑
i
(β 1×β2×β3×β4×β5×β6×β7×βL) = ∑

i

Ci
GDPi

× GDPi
Li

× Li
GDP∗

i
× GDP∗

i
GDPi

× GDPi
Ii

× Ii
Pi

× Pi
Li
×Li (4)

where C is the net carbon emissions for Shandong Province. Ci refers to the net carbon
emissions for the region i. GDPi means the gross domestic product of the region i. Li is the
area of construction land for the region i. GDPi* is the value of the non-agricultural output
for region i. Ii is the number of patents granted for the region i. Pi is the number of people
resident in the region i.

To further explore the driving effect of various factors on the decoupling relationship,
the decoupling effort model was constructed in combination with the Tapio decoupling
coefficient and the LMDI model [78], as indicated in Figure 5.
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In the above flowchart, ∆β1, ∆β2, ∆β3, ∆β4, ∆β5, ∆β6, ∆β7, and ∆βL refer to changes in
the carbon emissions due to changes in the intensity of carbon emissions, the economic scale,
the rate of intensive land use, industrial structure, the efficiency of technological innovation,
the intensity of technological innovation, the size of the population, and the degree of
land use, respectively. ∆C stands for changes in carbon emissions due to the total effects.
T and o represent the corresponding variables at the end of the study and the base period,
respectively. A is the decoupling effort index. ∆α1, ∆α2, ∆α3, ∆α4, ∆α5, ∆α6, ∆α7 and ∆αL
represent the decoupling effort index for the intensity of carbon emissions, the economic
scale, the rate of intensive land use, industrial structure, the efficiency of technological
innovation, the intensity of technological innovation, the size of the population, and degree
of land use, respectively. ∆α refers to the total decoupling effort index. If α ≤ 0, it means
no decoupling efforts; in other words, the driving factor does not promote decoupling,
but it does increase carbon emissions. If α ≥ 1, this means strong decoupling efforts are
in play, and the driving factor promotes ideal decoupling. If 0 < α < 1, this indicates weak
decoupling efforts, and the driving factors promote decoupling, but facilitation is weaker
than that of the changes in construction land.

4. Results
4.1. Spatiotemporal Evolution of Land Types

The spatial evolution pattern for the different land types in Shandong Province from
2000 to 2020 was obtained based on analysis of the Landsat TM images. As shown in
Figure 6, the area of construction land was second only to arable land, and its proportion
increased by 4.772% from 2000 to 2020. Spatially, this expansion happened mainly along
the Qingdao-Jinan Railway, the Yellow River Delta, and the coastal areas of the Shandong
Peninsula. The most remarkable expansion was observed from 2005 to 2010. From 2015 to
2020, the area of construction land was reduced in the Yellow River Delta and the coastal
areas of Binzhou, indicating that the wetland restoration project concerning aquaculture
in these areas was an immediate success. Arable land is the main land type in Shandong
Province. Its share decreased by 1.984% from 2000 to 2020, and arable land became
fragmented spatially. Forest land and grassland were distributed mostly in the mountainous
and hilly areas of central, southern, and eastern Shandong, from 2005 to 2015, and both
forest land and grassland were degraded, especially the grassland in the Yellow River Delta.
In recent years, affected by the policy of “returning farmland to forest land and grassland”,
forest land and grassland expanded slightly from 2015 to 2020. From 2000 to 2020, the
proportion of water bodies increased by 1.914%, mainly in Laizhou Bay, the Yellow River
Delta, and the coastal areas of Binzhou. The unused land was distributed mainly in the
Yellow River Delta, whose proportion decreased by 0.807% from 2000 to 2020.
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4.2. Spatiotemporal Evolution of Net Carbon Emissions

The net carbon emissions for Shandong Province were obtained by estimating the
carbon emissions from land use and energy consumption. As shown in Table 3, the net
carbon emissions increased gradually from 2000 to 2020, and where the carbon sinks
of forest land accounted for more than 70% of the total, indicating that the carbon sink
capacity was strong; the grassland, water bodies, and unused land had fewer carbon sinks;
the carbon emissions released by construction land accounted for more than 95% of the
total carbon emissions, and represented the main source of carbon emissions, whereas the
carbon emissions of arable land declined but with some fluctuation. From 2000 to 2020,
the proportion of the total carbon sources that could be offset by carbon sinks fluctuated
between 0.1% and 0.5%, and the total carbon sources far exceeded the carbon sinks.
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Table 3. Carbon emissions of different land types in Shandong Province (10,000 t).

Carbon Emissions 2000 2005 2010 2015 2020

Construction land 17,320.64 42,125.053 57,167.141 61,531.094 79,969.061
Arable land 436.832 432.556 432.635 427.608 422.824
Forest land −63.781 −63.761 −57.94 −57.944 −58.182
Grassland −2.908 −2.744 −1.78 −1.78 −1.808

Water bodies −15.175 −14.701 −18.252 −18.331 −22.518
Unused land −0.115 −0.082 −0.033 −0.033 −0.052

Total carbon sinks −81.979 −81.289 −78.005 −78.088 −82.560
Total carbon sources 17,757.472 42,557.609 57,599.776 61,958.702 80,391.885
Net carbon emissions 17,675.493 42,476.321 57,521.771 61,880.614 80,309.325

The net carbon emissions for various regions in Shandong Province were classified
manually into five levels: weak emission, low emission, medium emission, high emission,
and strong emission. As shown in Figure 7, the increase in the levels of carbon emission
from 2000 to 2020 first appeared in the municipal districts, resulting in the formation of
carbon emission hotspots centering on municipal districts. The spatial distribution tended
to cluster from points into surfaces over time, and the areas with low emission and medium
emission gradually increased, thus forming two high emission centers in Jinan and Qingdao.
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4.3. Decoupling between Net Carbon Emissions and Construction Land
4.3.1. Temporal Evolution of the Decoupling Relationship

The decoupling between net carbon emissions and construction land in Shandong
Province was calculated using Equation (3). Table 4 demonstrated that the decoupling be-
tween net carbon emissions and construction land in 2000–2005, 2005–2010, and 2010–2015
was expansive negative decoupling. In other words, both the area of construction land
and net carbon emissions increased, but the net carbon emissions increased faster than
the area of construction land. From 2015 to 2020, the decoupling evolved into a strong
negative decoupling, indicating that the construction land decreased in Shandong Province
in recent years, but carbon emissions were still increasing. In general, the decoupling
between net carbon emissions and construction land from 2000 to 2020 was expansive
negative decoupling. This showed that the relationship between net carbon emissions and
construction land was unstable, and this was not conducive to the realization of carbon
peaking and carbon neutrality goals. However, the reduction in construction land has
helped to reduce carbon emissions and the decoupling relationship has begun to change.

Table 4. Decoupling between net carbon emissions and construction land.

Study Period ∆LC ∆CE T Decoupling Relationships

2000–2005 0.088 1.403 15.856 Expansive negative decoupling
2005–2010 0.230 0.354 1.538 Expansive negative decoupling
2010–2015 0.043 0.076 1.775 Expansive negative decoupling
2015–2020 −0.021 0.298 −13.986 Strong negative decoupling
2000–2020 0.367 3.544 9.664 Expansive negative decoupling

4.3.2. Spatial Evolution of the Decoupling Relationship

To analyze the spatial evolution of the decoupling between the net carbon emissions
and construction land in Shandong Province, the decoupling in the five time periods was
characterized spatially. As shown in Figure 8, the decoupling between the net carbon
emissions and construction land in most areas of the province from 2000 to 2005 was
expansive negative decoupling. From 2005 to 2010, the areas with expansive negative
decoupling decreased, while the areas with strong decoupling and weak decoupling in-
creased significantly, and most of them were concentrated in municipal districts. As shown
in Figure 6, at this stage, the construction land in Shandong Province began to expand
substantially from the center of municipal districts to the periphery. However, the speed
of infrastructure construction and economic development brought about by the rapidly
expanding construction land did not match it, and there was a lag in carbon emissions
from energy consumption, thus enabling these regions to show an ideal decoupling. From
2010 to 2015, the areas with strong decoupling and weak decoupling decreased, and the
growth rate of net carbon emissions in most areas of the province was still faster than that
of construction land. From 2015 to 2020, the areas with expansive negative decoupling still
dominated; however, the areas with strong negative decoupling expanded significantly,
and these were concentrated mainly in the Yellow River Delta. This indicated that the
construction land in these areas had begun to shrink, but the net carbon emissions were
still increasing in recent years. In general, there was an expansive negative decoupling
between net carbon emissions and construction land from 2000 to 2020 in most parts of the
province. Net carbon emissions increased with the expansion of construction land, and the
growth rate of net carbon emissions was faster than that of construction land. In addition,
Hekou District, Zhanhua District, Wudi County, Lingcheng District, Ningjin County, Linyi
County, Dong’e County, Gaoqing County, Shouguang City, Changyi City, and Taierzhuang
District exhibited a strong negative decoupling. Licang District in Qingdao City had a weak
decoupling, meaning that the growth rate of net carbon emissions was slower than that of
construction land. Shinan District and Shibei District demonstrated a strong decoupling,
with an expansion of construction land and a reduction of net carbon emissions. It can be
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seen that net carbon emissions in these areas have not increased in line with the expansion
of construction land. As the first low-carbon pilot city in Shandong Province, Qingdao has
witnessed, in recent years, a significant decline in carbon emissions.
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4.4. Driving Factors of Decoupling between Net Carbon Emissions and Construction Land
4.4.1. Factors Influencing Net Carbon Emissions

The LMDI model was used to measure the impact of various factors on net carbon
emissions, and this was expressed by the degree of the contribution. As shown in Figure 9,
the contribution of the economic scale was the largest throughout the five periods of the
study, which promoted an increase in carbon emissions. This indicated that Shandong
Province was still in a mode of economic growth with high growth and high energy
consumption. The contribution of the intensity of technological innovation was also
high but tended to decline, suggesting that research and development of low-carbon
technologies were insufficient. This indirectly promoted an increase of carbon emissions,
but the promoting effect gradually weakened. The inhibitory effect on carbon emissions
by improvements in the efficiency in technological innovation tended to increase, which
showed that the improvement in research efficiency was conducive to carbon reduction.
The rate of intensive land use always inhibited the growth of carbon emissions, but its
role gradually diminished. The intensity of carbon emissions evolved from an inhibitory
effect to a promoting effect from 2015 to 2020, showing that the economic development of
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Shandong Province increased carbon emissions in recent years. The industrial structure
developed from a promoting effect to an inhibitory effect from 2015 to 2020, indicating
that the adjustment and upgrading of Shandong’s industrial structure inhibited carbon
emissions, but the effect was weak. The inhibitory effect of the size of the population on
carbon emissions gradually weakened and evolved into a promoting effect from 2015 to
2020. The continuous agglomeration of the population was an important reason for the
increase in carbon emissions. The degree of land use changed from a promoting effect to
an inhibitory effect from 2015 to 2020, and the reduction of construction land had an effect
on carbon reduction.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 26 
 

 

intensive land use always inhibited the growth of carbon emissions, but its role gradually 
diminished. The intensity of carbon emissions evolved from an inhibitory effect to a pro-
moting effect from 2015 to 2020, showing that the economic development of Shandong 
Province increased carbon emissions in recent years. The industrial structure developed 
from a promoting effect to an inhibitory effect from 2015 to 2020, indicating that the ad-
justment and upgrading of Shandong’s industrial structure inhibited carbon emissions, 
but the effect was weak. The inhibitory effect of the size of the population on carbon emis-
sions gradually weakened and evolved into a promoting effect from 2015 to 2020. The 
continuous agglomeration of the population was an important reason for the increase in 
carbon emissions. The degree of land use changed from a promoting effect to an inhibitory 
effect from 2015 to 2020, and the reduction of construction land had an effect on carbon 
reduction. 

From the perspective of having cumulative effects, the carbon emissions promoted 
by the economic scale were roughly offset by the carbon emissions inhibited by the effi-
ciency of technological innovation and the rate of intensive land use, such that the three 
factors reached a dynamic balance. As such, it is necessary to further reduce carbon emis-
sions by continuously improving the efficiencies of technological innovation and the rate 
of intensive land use. The carbon emissions promoted by the intensity of technological 
innovation could be offset by the carbon emissions inhibited by efficiencies in technolog-
ical innovation, and the carbon emissions were further reduced on the basis of this offset. 
This indicated that the development of scientific and technological innovation had an in-
creased inhibitory effect on carbon emissions over time. In general, the total effect of each 
factor inhibited carbon emissions from 2000 to 2005 and promoted carbon emissions from 
2005 to 2010, 2010 to 2015, and 2015 to 2020. The contributions of the inhibitory effect and 
the promoting effect from 2000 to 2020 could roughly offset each other, such that the crit-
ical point of each contribution was attained. 

 
Figure 9. Relative contributions of driving factors. 

4.4.2. Decoupling Efforts of the Driving Factors 
The decoupling effort index for each factor was obtained based on the decoupling 

effort model. As shown in Table 5, the efficiency of technological innovation and the rate 
of intensive land use made strong efforts for decoupling. The decoupling effort index for 
the efficiency of technological innovation at first decreased and then increased, reaching 
a peak from 2015 to 2020, and the efficiency of technological innovation played a crucial 
role in the ideal decoupling between net carbon emissions and construction land. The de-
coupling effort index for the rate of intensive land use decreased in volatility, and the 
efforts weakened. The intensity of carbon emission evolved from strong decoupling ef-
forts to no decoupling efforts in 2015–2020. Similarly, the size of the population also 

Figure 9. Relative contributions of driving factors.

From the perspective of having cumulative effects, the carbon emissions promoted by
the economic scale were roughly offset by the carbon emissions inhibited by the efficiency
of technological innovation and the rate of intensive land use, such that the three factors
reached a dynamic balance. As such, it is necessary to further reduce carbon emissions by
continuously improving the efficiencies of technological innovation and the rate of intensive
land use. The carbon emissions promoted by the intensity of technological innovation
could be offset by the carbon emissions inhibited by efficiencies in technological innovation,
and the carbon emissions were further reduced on the basis of this offset. This indicated
that the development of scientific and technological innovation had an increased inhibitory
effect on carbon emissions over time. In general, the total effect of each factor inhibited
carbon emissions from 2000 to 2005 and promoted carbon emissions from 2005 to 2010,
2010 to 2015, and 2015 to 2020. The contributions of the inhibitory effect and the promoting
effect from 2000 to 2020 could roughly offset each other, such that the critical point of each
contribution was attained.

4.4.2. Decoupling Efforts of the Driving Factors

The decoupling effort index for each factor was obtained based on the decoupling
effort model. As shown in Table 5, the efficiency of technological innovation and the rate
of intensive land use made strong efforts for decoupling. The decoupling effort index for
the efficiency of technological innovation at first decreased and then increased, reaching
a peak from 2015 to 2020, and the efficiency of technological innovation played a crucial
role in the ideal decoupling between net carbon emissions and construction land. The
decoupling effort index for the rate of intensive land use decreased in volatility, and the
efforts weakened. The intensity of carbon emission evolved from strong decoupling efforts
to no decoupling efforts in 2015–2020. Similarly, the size of the population also evolved
into no decoupling efforts in 2015–2020, indicating that the increase in the intensity of
carbon emission and the agglomeration of the population brought about by construction
land in recent years weakened the efforts for decoupling. Conversely, the degree of
land use evolved from no decoupling efforts to strong decoupling efforts in 2015–2020,
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confirming that the reduction of construction land can drive the evolution of the decoupling
relationship towards the ideal state. The economic scale, industrial structure, and the
intensity of technological innovation did not affect the decoupling efforts. Judging from
the total decoupling effort index, only the period 2000–2005 exhibited strong decoupling
efforts, and the other periods showed no decoupling efforts. This suggested that the various
factors did not make sufficient efforts for decoupling, and the policy for carbon reduction
in Shandong Province was not properly implemented.

Table 5. Decoupling effort index of driving factors.

Study Period ∆α1 ∆α2 ∆α3 ∆α4 ∆α5 ∆α6 ∆α7 ∆αL ∆α

2000–2005 1.377 −22.174 10.315 −1.209 12.292 −9.105 19.635 −1.330 8.046
2005–2010 2.153 −5.519 2.911 −0.285 2.083 −2.626 0.811 −2.026 −2.499
2010–2015 8.830 −29.486 9.927 −0.338 18.843 −9.589 1.055 −2.157 −2.917
2015–2020 −8.052 −39.206 4.743 −0.618 31.331 −7.125 −1.249 2.533 −17.644
2000–2020 2.022 −16.261 6.456 −0.536 9.469 −5.919 5.992 −1.735 −0.514

To analyze the spatial distribution of the decoupling efforts for each factor, the effort
index for each factor from 2000 to 2020 was studied from a spatial perspective. As shown
in Figure 10, there was significant spatial heterogeneity in the degree of the decoupling
efforts across the factors from 2000 to 2020. The rate of intensive land use made strong
efforts for decoupling throughout the whole province, indicating that the intensive use
of construction land in Shandong Province implied that outstanding efforts were made
to reduce carbon emissions. It is clearly necessary, however, to improve the intensive
use of land continuously. The areas where the size of the population made strong efforts
towards decoupling were widely distributed in space, and the population agglomeration
effect in most areas contributed to the decoupling. Jinan’s Shizhong District, Tianqiao
District, Huaiyin District, Lixia District; Yantai’s Zhifu District, Laishan District; Jimo
District in Qingdao; Lanshan District, and Luozhuang District in Linyi; Shizhong District
of Zaozhuang had weaker efforts. The six municipal districts of Qingdao, Hekou District,
Lingcheng District, Linyi County, Wudi County, and Shouguang City made no efforts.
Areas with weak decoupling efforts and no decoupling efforts remind us of the need
to reasonably control the scale of population agglomeration so that the population is
more evenly distributed in different regions. The strong decoupling efforts linked to
efficiencies in technological innovation were concentrated mainly in the municipal districts,
with the municipal districts as the core in a “cluster” distribution pattern. The efficiency
of technological innovation for most county-level cities and counties did not facilitate
decoupling, and these areas should improve their efficiencies in technological innovation
by relying on innovation initiatives in municipal districts.

From the perspective of the intensity of carbon emissions, the areas with strong de-
coupling efforts and weak decoupling efforts were scattered across the province, mostly
in municipal districts, and spatially distributed in a “dotted” manner according to the
prefecture-level cities to which they belong. These areas made efforts to reduce carbon
emissions, but such efforts did not become sufficiently focused, thus, the contradiction be-
tween economic development and carbon emissions was still apparent. For these areas, the
transformation of the economic development mode should be accelerated. In terms of in-
dustrial structure, only Donggang District, Lanshan District, Wulian County, Ju County, and
Changdao County made efforts for strong decoupling, while Muping District, Zhaoyuan
City, and Rushan City made weak efforts for decoupling, and most of the remaining areas
did not make efforts to adjust. This showed that the development of non-agricultural
industries in Shandong Province was not conducive to the realization of carbon reduction,
therefore, there is an urgency to promote the transformation and upgrading of the indus-
trial structure. From the perspective of land use, only a small number of areas have been
striving to achieve decoupling, and Shandong Province needs to regulate the expansion
of construction land to reduce the risk of increased carbon emissions. The economic scale
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and the intensity of technological innovation in the whole province have not contributed to
decoupling, and it is necessary to achieve low-carbon and high-quality development to deal
with increased carbon emissions caused by the rapid economic development in various
regions. The positive role played by the intensity of technological innovation is far from
sufficient. In the future, it is essential to increase investment in research and development
concerning energy-saving and carbon-reduction technologies.
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5. Discussion
5.1. Accuracy of the Estimation of Net Carbon Emissions

In terms of estimating carbon emissions from energy consumption, the “China Energy
Statistical Yearbook” only counts energy consumption data at the provincial level, and it is
difficult to obtain energy consumption data at the county level. Although the CEAD has
published carbon emissions from energy consumption at the county level in China, the
data are only available up to 2017, and the publication of the carbon emissions data is not
timely [79]. To ensure the timeliness and uniformity of the research data, we estimated the
carbon emissions at the county level from 2000 to 2020 based on the carbon emissions from
energy consumption and night-time light data in Shandong Province. Due to the different
fitting and correction methods of DMSP/OLS and NPP/VIIRS night-time light images in
existing studies, the types of energy chosen for the measurement of carbon emissions from
energy consumption also differ [80,81], resulting in differences in the accuracy of estimation
of carbon emissions. Even if a double fitting accuracy test was performed, the errors in
estimation were still unavoidable. Therefore, to verify the accuracy of the estimation of
carbon emissions, the data were compared with the carbon emissions in Shandong Province
from 2000 to 2017 released by the CEAD. The verification revealed that the MRE for the
two datasets was 15.450%, and the Root Mean Square Error (RMSE) was 98.332 million
tons, which shows that the estimation of carbon emissions from energy consumption was
accurate. However, Shandong is a coastal province, and the estimation of carbon emissions
from land use only factors in the carbon sequestration of land cover and does not consider
the carbon sequestration capacity of the ocean. In the future, it will be necessary to further
explore the estimation method of the ocean carbon sink, thereby making the estimation of
net carbon emissions more accurate and scientifically sound.

5.2. Mechanism of Action of Driving Factors on Decoupling

The analysis above demonstrates that for the estimation of net carbon emissions,
the total amount of carbon sources far exceeded the number of carbon sinks, and the
carbon emissions of energy consumption carried by construction land were the main
carbon sources, and this finding is consistent with previous studies [82–84]. However, by
comparison, our analysis of the decoupling between net carbon emissions and construction
land reveals that in the first three periods, the growth rate of net carbon emissions was faster
than that of construction land. The period 2015–2020 featured a strong negative decoupling
where construction land was shrinking, and net carbon emissions were increasing. Studies
have confirmed that the contribution of land use to net carbon emissions was relatively
low in each period. This indicated that the expansion or reduction of construction land
has a certain impact on net carbon emissions. From 2015 to 2020, the construction land
shrank, the net carbon emissions increased, and the degree of land use showed an inhibitory
effect on carbon emissions and contributed to decoupling. This means that the reduction
of construction land had a positive impact on reducing net carbon emissions, but such
an impact was not significant compared with other factors. Based on the results of the
analysis of the drivers, this study summarizes in a systematic way the factors influencing
net carbon emissions and the mechanism for the role of each factor in decoupling net carbon
emissions from construction land. As shown in Figure 11, the driving factors interact with
each other and constrain each other in a dynamic equilibrium situation. In the process
of urbanization, the reduction of construction land in Shandong Province has started
to pay for achieving the ideal decoupling condition. However, the level of the density
of the population supported by construction land, the level of economic development,
and the carbon emissions arising from economic development have hindered the ideal
decoupling condition and are not conducive to sustainable urban development. At the
same time, the industrial structure and the level of science and technology innovation in
Shandong province are not sufficient to facilitate the desired decoupling of construction
land from net carbon emissions; and this is also not conducive to achieving sustainable
urban development. On the contrary, the efficiency of science and technology innovation
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and the intensive use of construction land have constituted efforts to achieve the desired
decoupling and have contributed positively to the balance between urbanization and carbon
emissions. In addition to controlling the uncontrolled expansion of construction land, local
governments in Shandong Province should also make more efforts towards adjusting the
economic development model, scientific and technological innovation, transformation of
the industrial structure, the size of the population, and intensive land use when formulating
targeted and refined reduction measures for carbon emissions.
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5.3. Contributions of Research Findings

The method for estimation of improved net carbon emissions proposed in this study
provides new data to support the long-term dynamic monitoring of carbon emissions
at fine scales. A more scientific approach is clearly needed to address the difficulty of
estimating carbon emissions at fine scales due to the lack of energy statistics. The basic
data required for estimating net carbon emissions are mainly land use remote sensing
monitoring data, night-time light data, and energy consumption data. Both land-use
remote sensing monitoring data and night-time lighting data are raster data, which can
meet the needs of different research scales. Therefore, the method is not only applicable at
the county level, but can also be readily extended to the estimation of carbon emissions
at different research scales, including the net carbon emissions of other provinces and the
national scale.

The results of the study showed that in recent years, net carbon emissions and construc-
tion land in Shandong Province have been in a state of strong negative decoupling, and the
decoupling relationship was not conducive to achieving reduction targets in carbon emis-
sions. However, the reduction of construction land has started to have a positive impact on
reductions of carbon emissions, but not a great extent. The social and economic activities
carried out on construction land are the main sources of carbon emissions. Low-carbon
green development involves mutual constraints and interactions among various factors.
Additionally, studies have shown that urbanization can lead to a large but transient carbon
sink, but only a decrease in carbon emissions from fossil fuel burning will make the goal of
carbon neutrality achievable [85]. Therefore, in the process of urbanization, it is unwise
for local governments to achieve the “carbon peaking and carbon neutrality” goals by
blindly reducing the area of construction land if they want to pursue short-lived low carbon
development initiatives. The study findings not only contain valuable new information
for the local governments of Shandong Province, but also provide useful background and
enlightenment for the sustainable development of urbanization and carbon emissions in
other countries and regions.
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6. Conclusions
6.1. Conclusions

(1) From 2000 to 2020, the net carbon emissions in Shandong Province continued to
increase. The carbon emissions for energy consumption carried on construction
land were the main carbon sources, the total carbon sources far exceeded the carbon
sinks. Spatially, areas with high carbon emissions tended to from clusters centering
on municipal districts, and in the case of Jinan and Qingdao, two distinct carbon
emission cluster centers were formed.

(2) The first three periods featured an expansive negative decoupling between net carbon
emissions and construction land in Shandong Province, and this evolved into a strong
negative decoupling from 2015 to 2020. Spatially, the areas with expansive negative
decoupling dominated the province. The number of areas with strong and weak
decoupling increased from 2005 to 2010, and the number of areas with strong negative
decoupling increased from 2015 to 2020. In general, the current decoupling between
net carbon emissions and construction land in Shandong Province is not conducive to
carbon reduction.

(3) From 2000 to 2020, the promoting effect of the economic scale on net carbon emissions
was strengthened, while that for the intensity of technological innovation weakened.
The inhibitory effect on net carbon emissions due to the efficiency of technological
innovation was strengthened, whereas that for the rate of intensive land use weakened.
The role of the intensity of carbon emissions and the size of the population evolved
from an inhibitory one to a promoting one, and the industrial structure and the degree
of land use evolved from a promoting role to an inhibitory role. In general, carbon
emissions were promoted, and carbon emissions were inhibited by various factors
which can basically offset each other.

(4) From 2000 to 2020, the rate of intensive land use and the efficiency of technological
innovation made strong efforts with respect to achieving decoupling. Spatially, the
rate of intensive land use in various regions of the province strived to achieve the ideal
decoupling, and the regions where technological innovation efficiency contributed
to decoupling were distributed in clusters centering on the municipal districts. The
intensity of carbon emissions evolved from strong decoupling efforts to no decoupling
efforts; the areas that strived to achieve decoupling were mainly municipal districts
and were distributed in a “dotted” shape. The size of the population evolved from
strong decoupling efforts to no decoupling efforts, the areas with strong decoupling
efforts were mostly located in county-level cities and counties, while the areas with
weak decoupling efforts were mostly distributed in municipal districts. The degree
of land use changed from no decoupling efforts to strong decoupling efforts, and, in
recent years, the reduction of construction land contributed to ideal decoupling. In
general, more efforts are needed, through the involvement of the above factors, to
realize an ideal decoupling condition.

6.2. Implications

This paper proposes targeted carbon reduction measures to help Shandong Province
achieve the goals of “carbon peaking and carbon neutrality” based on the conclusions
presented in the last section.

There is a need to improve the efficiency of utilization of land resources and prevent
the disorderly expansion of construction land. The study has found that the intensive use
of land effectively inhibited carbon emissions, and the inhibitory effect of the degree of
land use begins to appear. The Shandong Provincial Control Standards for Intensive Use
of Construction Land implemented in 2019 has revised its policy regarding the extensive
use of industrial land and rural residential land in construction land, by providing strong
policy support for carbon reduction. Under the guidance of these policies, it is crucial to
fully realize and utilize the development potential of land resources and limit land supply
for high-carbon emission industries, thus favoring larger-scale economic construction with
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less consumption of land resources. It is also necessary to properly control the scale and
speed of the expansion of construction land, thereby avoiding the over-occupying of other
land types that serve as carbon sinks.

There is a need to transform the mode of economic development and promote the
optimization and upgrading of the industrial structure. This study has confirmed that
economic scale plays a significant role in promoting carbon emissions, while, in recent years,
industrial structure has somewhat inhibited carbon emissions. Therefore, the effective
way to reduce carbon emissions is to transform the economic development mode, reduce
excessive dependence on energy consumption, change the structure of energy consumption,
and improve the efficiency of energy utilization, thereby reducing the intensity of carbon
emissions. It is important to eliminate unproductive capacity that does not meet green and
low-carbon development criteria, issue guidelines to high-energy-consuming industries
on how to save energy and reduce carbon emissions and promote the optimization and
upgrading of industrial structure.

Attention should be paid to the role of scientific and technological innovation the
and vigorous development of green and low-carbon technologies. This study has revealed
that the intensity of technological innovation has no significant inhibitory effect on carbon
emissions, but the efficiency of technological innovation contributes to carbon reduction.
In the future, it is essential to increase financial expenditure and invest in energy-saving
and emission-reduction technologies. The present study also showed that most of the
areas where efficiencies in technological innovation contributed to strong decoupling are
mainly municipal districts. Research institutes and universities are concentrated in these
regions, and the construction of scientific and technological innovation platforms and the
transformation efficiency of scientific and technological achievements are a strong driver for
achieving reductions in carbon emissions. By comparison, county-level cities and counties
do not contribute to decoupling, indicating that the transfer of scientific and technological
innovations to municipal districts is insufficient. It is necessary to promote interactions of
scientific and technological innovation in regional development, optimize the innovation
environment, and share scientific and technological resources.

6.3. Limitations and Proposals for Future Research

In general, there are still some limitations to this study and thoughts and suggestions
are given for future research. In terms of estimating net carbon emissions, this study has
provided a scientific method for estimating carbon emissions at fine scales. However,
the night-time light brightness presents an approximately linear growth pattern, and the
growth rate of carbon emissions has increased in recent years. Therefore, reconciling
and addressing this practical problem is an important breakthrough direction, whereby
we could use night-time light data to simulate carbon emissions in the future. In terms
of the decoupling relationship, the Tapio decoupling coefficient was chosen to examine
the relationship between net carbon emissions and construction land. However, there
are differences in resource endowments, economic levels, and the intensity of energy
consumption among counties in Shandong Province. The suitability of the decoupling
classification types for the study area also needs to be further tested. In terms of the driving
factors, it is difficult to obtain long-term series data at the county level, for example, the
capital investment in scientific and technological research and development, and the energy
consumption of different production sectors, etc. Additionally, there are limitations to the
selection of indicators such as the intensity of technological innovation and the efficiency
of technological innovation, and the mechanism underlying the driving factors needs to be
better explained.

According to China’s “Code for Classification of Urban Land Use and Planning
Standards of Development Land”, construction land can be subdivided specifically into
eight types of land use. For example, residential land, industrial land, commercial and
business facilities land, etc. This study only analyzed the decoupling relationship between
construction land and net carbon emissions, without exploring further the relationships
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between the specific classifications of construction land and net carbon emissions. In the
future, more in-depth research should be conducted with the aid of high-resolution carbon
emissions data, statistics for urban construction land, and Point of Interest (POI) data.
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