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Abstract: Frailty characterizes a state of impairments that increases the risk of adverse health out-
comes such as physical limitation, lower quality of life, and premature death. Frailty prevention,
early screening, and management of potential existing conditions are essential and impact the elderly
population positively and on society. Advanced machine learning (ML) processing methods are one
of healthcare’s fastest developing scientific and technical areas. Although research studies are being
conducted in a controlled environment, their translation into the real world (clinical setting, which is
often dynamic) is challenging. This paper presents a narrative review of the procedures for the frailty
screening applied to the innovative tools, focusing on indicators and ML approaches. It results in
six selected studies. Support vector machine was the most often used ML method. These methods
apparently can identify several risk factors to predict pre-frail or frailty. Even so, there are some
limitations (e.g., quality data), but they have enormous potential to detect frailty early.

Keywords: frailty; indicators; screening; artificial intelligence; healthcare

1. Introduction

With the growing aging population worldwide, an important subject matter is “frailty”
(or fragility) which is closely age-related [1]. Living longer can lead to a longer period of
frailty with increased demand for care [2]. The proportion of the elderly is expected to be
approximately 30% of the population by 2060, in Europe [3]. Moreover, aging expenditures
are projected to increase by 1.5 percentage points of GDP, from 26.8% in 2013 to 28.3%,
in 2060 [4]. Frailty is a broad term used to denote a complex clinical condition [5,6]
that can be defined as a medical syndrome caused by multisystem dysregulation and
contributors. In addition, it is characterized by loss of health reserves (e.g., physical
fitness), reduced physiologic function, and impaired homeostasis, which increases an
individual’s vulnerability, resulting in risk for early dependency, morbidity, and/or death
when exposed to stressors. In summary, the frailty syndrome involves the main domains:
physical, psychological, social, cognitive, and environmental [6–11]. Moreover, frailty
characterizes a state of impairments that increase the risk of negative health outcomes such
as physical limitation, falls, fractures, disability, morbidity, dependence, hospitalization,
institutionalization, lower quality of life, and premature death [4,12–15].

Barriers to implementing frailty screening in clinical settings still exist as a lack of
consensus on the assessment tool best suited to each domain and undetermined cost-
effectiveness [16]. Moreover, it is imperative to note that the frailty assessment tools can
provide different data regarding the incidence of frailty [17]. The identification of frailty
might seem an ideal way to identify the elderly who need additional healthcare support
services. In a recent review, Liotta and colleagues (2018), from a public health perspective,
stressed that it is vital to identify factors that contribute to successful health and social care
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interventions and to the health systems’ sustainability [18]. Nevertheless, there is a lack
of substantial research evidence to support this strategy and to identify the most effective
tools to detect frailty [10]. In addition, there is no consensus about the key components and
assessment of frailty [19].

In a systematic review, Sutton and colleagues (2016) identified 38 multi-component
frailty assessment tools where, surprisingly, only 5% (2/38) of the frailty assessment tools
had evidence of reliability and validity that was within statistically significant parameters
and of fair–excellent methodological quality: the Frailty Index—Comprehensive Geriatric
Assessment and the Tilburg Frailty Indicator [20]. In addition, a score or set of criteria was
used, developed, and validated to identify frailty. The most common frailty instruments
used in research and clinical practice are the Fried frailty phenotype (FP), which is based
on five items (slow walking speed, weak grip strength, low physical activity, unintended
weight loss, and exhaustion), minimum of three of five criteria for classifying as frailty [21–23].
Nevertheless, there is insufficient evidence to determine the best tool for use in research
and clinical practice [20].

According to an umbrella review, despite these broadly used conventional methods,
few frailty measures seem to be valid, reliable, diagnostically accurate, and virtuous predic-
tive abilities. Moreover, they reported that the Frailty Index (and gait speed) emerged as the
most useful in routine care and community settings [24]. The traditional measurements of
frailty have potential limitations and challenges: for example, single measures of physical
performance (such as timed-get-up-and-go) or a set of physical features (such as FP) are clin-
ically suitable and validated to predict poor outcomes in older adults. Nevertheless, they
have shown low consistency, accuracy, reliability, and inter-rater understanding. Moreover,
these measures require specialized equipment (e.g., dynamometer to grip strength), not
always clinically viable (e.g., for patients with dementia), and also require a manual evalua-
tion process (e.g., timed-get-up-and-go) that is subject to operator error due to the need for
training beyond time to administer [25]. Furthermore, the prevalence of frailty varies across
settings and adopted tests, making it difficult to scale to the population level [21,22,25,26].
In this view, an alternative is exploring approaches to screening frailty from routinely
collected data (e.g., medical claims, prescriptions, administrative data, and individual
records) [25].

The presented work is part of the Frailcare.AI project. Its primary objective is to
develop intelligent tools that aim to improve pathways for the identification of fragility in
senior citizens in the Portuguese population. This paper aims to review tools and clinical
indicators for identifying early frailty and supply evidence for developing innovative tools
and artificial intelligence (AI) technologies to support frailty care. This review provides
recent evidence for the assessment and screening of frailty. It reviews the existing tools
and clinical indicators for complex frailty, focusing on measures extracted from healthcare
datasets. We seek to improve knowledge and application opportunities for machine learn-
ing (ML). This intelligent screening tool relies on an approach that includes ML methods.

1.1. Background

ML methods can adapt conventional frailty screening methods validated in previous
studies. While AI is a subfield of computer science dedicated to providing computers
with intelligent problem-solving capabilities, including planning, reasoning, perception,
or learning (i.e., AI aims to mimic human intelligence and behavior through systems),
ML, a subfield of AI, provides algorithms that build mathematical models based on sam-
pled data. These models map input data to desired outputs. Inputs can be images and
an arbitrary sequence of numerical or categorical data. The inputs are also known as
features [27–30].

The AI resource includes advanced algorithms and methods that do not even pro-
cess quantitative data. Consequently, comparing ML to traditional statistical methods
makes it coherent. Conventional statistical models focus on discovering interactions and
confidence intervals between data points and outcomes; comparatively, ML approaches
seek to reach high prediction accuracy, placing less emphasis on whether it is possible to
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interpret the model. Prediction is critical in ML to generate otherwise unavailable data.
Moreover, ML is often better fitting for significant input variables (e.g., time series from
biosignals), and the traditional analysis with statistical models is intended for data with
tens of input columns [28].

1.1.1. Decision Trees

Decision tree (DT) classification is broadly used for different classification tasks (for
example, pattern recognition). DTs make their decisions from the root, all the way up to the
branches. The DT approach essentially partitions the space into subspaces by computing
the decision boundaries for each node, and it continues adding inputs to the tree nodes
until no further improvement can be made to the prediction results. The leaf nodes in the
decision tree are labeled according to the groups in the classification problem [31,32].

1.1.2. K-Nearest Neighbours

K-nearest neighbor (KNN) is among the generally used classification approaches. Its
algorithm does not create any model through learning strategies. Its training is based on
sorting the class labels of the training dataset together with the feature vectors for each
record. The accuracy of this model is comparable to more complicated classifiers [31,33].

1.1.3. Support Vector Machine

Support vector machine (SVM) is a supervised classification algorithm; in supervised
learning, the models are trained based on given examples, containing inputs and desired
outputs provided by an expert (e.g., physical therapist). The SVM has been applied to many
real-world classification problems because of its effectiveness, such as pattern recognition
for text classification and bioinformatics systems. SVMs are robust to overfitting and
have a prominent generalization capability, as well as being good at handling complex,
nonlinear scenarios and tending not to overfit. Moreover, SVM is robust to bias and variance
of data and results in accurate predictions for either binary or multiclass classifications.
As such, SVM has been broadly used in health research, for example, to identify imaging
biomarkers of neurological and psychiatric disease, cancer diagnosis, and early detection
of Alzheimer’s, among others [29,31–34].

1.1.4. Artificial Neural Networks

As a brain’s neurons, the artificial neural networks (ANN or NN) are a class of
nonlinear statistical algorithms modeled, able to process information. Thus, this approach
is defined by how the components of the network are linked and the weights of these
connections. This learning process constructs derived parameters as linear combinations of
the input parameters and then further models the outcome as a nonlinear constructions of
these derived parameters. Although they are excellent at handling many inputs, they are
rather computationally costly [32].

1.1.5. Random Forest

The random forest (RF) consists of many decision trees that operate as an ensemble.
Each tree provides a class prediction, and the prediction with the most votes turns into the
overall model prediction. Therefore, this method is a random forest consisting of a set of
individual decision trees; hence, individual errors of the trees are decreased. RF results in
a good performance on imbalanced datasets while handling missing values well. These
models are not substantially affected by outliers in data. Such decision trees are designed
to have a low correlation to each other to encourage range among the trees. Moreover, RFs
use the rules of bootstrapping and aggregating to build trees based on several subsets of
the training data using different subsets of features [21,35].

1.1.6. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a supervised machine learning model. This
method builds a robust model created on weaker models that are short decision trees.
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The XGBoost works on building a new weak model designed to predict the residual values
between the ground truth and the robust model. These weak models are then added to the
overall robust model. The predictions of the models are added simultaneously to make
the final prediction. The main benefits are execution speed and model performance. These
models use boosting, an ensemble method where each tree or model corrects errors made
by earlier trees. XGBoost requires minimal feature engineering, allowing steps such as
normalizations and scaling to be omitted, and outliers have little impact [21,35,36].

2. Methods
Search Strategy and Data Extraction

Studies were sought using general (Web of Science and Google Scholar) and healthcare
(PubMed and The Lancet) databases. Two independent reviewers reviewed all the titles and
abstracts in the first selection step. Three keywords were used without period restriction:
Frailty screening, as this was the focus of this review, artificial intelligence (AI), and machine
learning because ML was considered a subarea of AI. The study inclusion criteria were
(i) it described frailty screening tools; (ii) the population was presented with pre-frail or
frail conditions/concepts; (iii) studies about frailty indicators, validity studies, articles on
frailty screening (frailty assessment, detection, or prediction), and contained significant
determinants of frailty; (iv) or if they had a combination of all these criteria. The exclusion
criteria were (i) frailty studies about intervention or prevalence; (ii) frailty screening through
the inertial sensors; (iii) non-peer-reviewed and academic studies; (iv) all types of reviews
(e.g., umbrella and systematic) or case reports or non-English language. There is no existing
restriction to frailty screening assessment tools.

3. Results

The selection process produced six studies relevant to the aim of this review. Table 1
provides an overview of the selected studies in the frailty screening for ML methods.
In general, all studies classified frailty with only one tool, such as the Rockwood Clinical
Frailty Scale (CFS) [36], electronic Frailty Index (eFI) [31]; frailty phenotype (FP) [37];
electronic Frailty Score (eFS) [5]; and an exception that utilized a combination of tools [21],
which included FRS-26-ICD (frailty drawn from ICD-10 Clinical Modification), ECI (The
Elixhauser Comorbidity Index (ECI), high-risk medications (10 risk classification, Beers
Criteria, 2019), sociodemographic characteristics, healthcare, and insurance utilization.
Another exception used a set of predictors variables, including clinical and socioeconomic
aspects, and six target variables (mortality, disability, urgent hospitalization, fracture,
preventable hospitalization, and accessing the emergency department with red code) [38].

ML algorithms have been used to predict frailty-derived indicators based on health-
related data. The eFI, which is based on the deficit accumulation approach, was predicted
using several ML algorithms such as DT, KNN, and SVM [31]. They analyzed the data of
592 patients and the best performance was obtained with SVM, the accuracy was 93.5%,
sensitivity 97.8%, and specificity 89.1%. The SVM algorithm requires 70 input variables
and they remarked that SVM may prove less feasible in clinical scenarios where rule-based
models, such as DT models, may be more interpretable to clinicians but the results in terms
of accuracy are the poorest (42.4%) with DT models.

Aponte-Hao, in 2021, proposed to use ML algorithms to predict the CFS score based
on two-year electronic medical records (EMR). The CFS ranges from one to nine, with one
having the label of “very fit” and nine labeled “terminally ill” (the highest degree of frailty);
the frailty was predicted using a dichotomized indicator into frail or not frail with a cut-off
of five from the original physician-rated CFS score. After the removal of features with
low variance or high correlation, they reduced the total number of features from 5466 to
75. They used DT, LR, SVM, NB, NN, KNN, RF, and XGBoost models, and the XGBoost
was the model with the best results of the eight models which were developed; it achieved
the highest sensitivity (78.14%) and specificity (74.41%), but the F1-score was not shown
when they used the best threshold that was achieved by using the most optimal thresholds
determined using ROC curves [36].
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An ML-based tool for stratification of FP based on one-year hospital discharge data
was developed and validated (Pogam 2022). They created a clinical knowledge-driven eFS
calculated as the number of deficient organs/systems among 18 critical ones identified
from the ICD-10 diagnoses coded in the year before FP assessment. In addition, for eFS
development and internal validation, they linked individual records of the cohort database
to inpatient discharge data for an 11-year period. The best-performing model for predicting
the dichotomized FP was the LR model with four predictors: age and sex at FP assessment,
time since last discharge, and the eFS. The eFS score was associated with all adverse health
outcomes of interest (death, prolonged length of hospital stay, number of hospitalizations,
and nursing home admission within 12 months after FP assessment). They also conducted
an external validation which confirmed that the eFS was a significant predictor of the
13 adverse outcomes [5].

Six frailty conditions (mortality, urgent hospitalization, disability, fracture, and emer-
gency admission) were predicted with ML models (Tarekegn 2020). These models were
assessed with a dataset that contains 1,095,612 subjects and 64 variables (58 input and
6 output variables). They resolved the imbalanced nature of the data through a resampling
process and they performed a comparative study between the different ML algorithms:
ANN, genetic programming (GP), SVM, DT, and RF. The obtained results show that the
prediction performance of ML models significantly varies from problem to problem in
terms of different evaluation metrics. The mortality prediction outcome showed higher
performance with ANN (F1-score 0.79) and SVM (F1-score 0.78) than predicting the other
outcomes. On average, over the six problems, the DT classifier showed the lowest accuracy,
while other models (GP, LR, RF, ANN, and SVM) performed better. All models showed
lower accuracy in predicting an event of an emergency admission with a red code than
predicting fracture and disability. In predicting urgent hospitalization, only SVM achieved
better performance (F1-score 0.76) [38].

ML models were also developed for predicting 30-day unplanned readmissions for
elderly patients by integrating variables such as frailty and comorbidities (Mohanty 2022).
The models were developed with data from 68,152 patients, consisting of 18,840 readmis-
sions and 109,741 non-readmissions and containing 458 variables that were used for the
prediction of readmission. The ML models compared were RF, XGBoost, CatBoost, and
logistic regression, and a stacking classifier CatBoost outperformed the other models with
an AUROC of 79% and F1 score of 71%. They performed an in-depth study of the model
explainability by assessing the feature importance by means of the SHAP methods [21].

Moreover, a deep learning approach was followed to classify pre-frail/frail vs. non-
frail older adults using heart rate response to physical activity [37]. They compared
resting-state heart rate characteristics with heart rate monitoring without controlling for
physical activities, the objective of the study. They assessed the performance of ML and
deep learning models such as LSTM. The obtained results showed that LSTM outperformed
other approaches. These results were obtained with a reduced sample size of 88 patients.
This work shows that heart rate dynamics classification using LSTM deep learning models
without any feature engineering may provide an accurate and objective marker for frailty
screening [37].
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Table 1. Selected studies using the machine learning methods.

First Author and Year Sample Size and Age Methods Type of Data Instrument (s) Main Outcomes

Ambagtsheer 2020 [31] 592; ≥75 SVM; DT; KNN Administrative records Electronic Frailty Index

Arthritis; diabetes; hyperten-
sion; osteoporosis; vision is-
sues; PAS score; Cornell scale;
VBC; PBC; WC.

Aponte-Hao 2021 [36] 5466; ≥65 ENLR; SVM; KNN; NB; DT;
RF; XGBoost; ANN Electronic medical record Rockwood Clinical Frailty Scale Older; female; less likely to

have no known CD.

Eskandari 2022 [37] 88; ≥65 LR; MLP; XGBoost; LSTM Time-series ECG Frailty Phenotype HR dynamics.

Le Pogam 2022 [5] 469 int valid; 54,815 ext valid;
71.6 (mean) BS-LR; Lasso-LR; RF; SVM IR Lc65+ CHUV Electronic frailty score Older; female.

Mohanty 2022 [21] 76,000; ≥50 LR; RF; XGBoost; CatBoost; SC electronic record data Demo; FRS-26-ICD; ECI;
H-RM; HIU

Prior readmissions; discharge
to a rehabilitation facility;
length of stay; comorbidities;
frailty indicators (30-day read-
mission).

Tarekegn 2020 [38] 1,095,612; ≥65 ANN; GP; SVM; RF; LR; DT administrative records a set of variables (64)

Age (all problems); CI (mor-
tality); number of urgent
hospitalizations, femur and
neck fracture (fracture prob-
lem); mental disease, poly-
prescription and disease of
the circulatory system (ur-
gent hospitalization and pre-
ventable hospitalization); CI
and number of urgent hospi-
talizations (emergency admis-
sion with red code).

Abbreviations: ANN: Artificial neural network; BS-LR: Best-Subsets; CatBoost: Category boost; CD: Chronic diseases; CI: Charlson Index; Demo: Demographic; DT: Decision tree;
ECG: Electrocardiogram; ECI: The Elixhauser Comorbidity Index; EMR: Electronic medical records; ENLR: Elastic net logistic regression; Ext valid: External validation; FRS-26-ICD:
The Frailty Risk Score 26 drawn from ICD-10 Clinical Modification (ICD-10-CM); ICD-10-CM: International Statistical Classification of Diseases and Related Problems 10th revision;
GP: Genetic programming; HIU: Healthcare and insurance utilization; HR: Heart rate; HR-M: High-risk medications (Beers Criteria: 2019); German Modification; Int valid: Internal
validation; IR Lc65+ CHUV: Individual Records Lc65+ cohort database to inpatient discharge data from Lausanne University Hospital (CHUV); KNN: K-nearest neighbors; Lasso-LR:
Lasso-penalized logistic regression; LR: Logistic regression; LSTM: Long short-term memory; MLP: Multilayer perceptron; NB: Naive Bayes; PAS Score: Psychogeriatric Assessment
Scales; PBC: Physical Behavior Checklist; RF: Random forest; SC: Stacking classifier; SVM: Support vector machine; VBC: Verbal Behavior Checklist; WC: Wandering checklist; XGBoost:
Extreme gradient boosting.
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4. Discussion

This paper presents a literature review of screening tools and clinical indicators for
identifying early frailty and provides evidence for developing innovative tools through
the focus on artificial intelligence. To our knowledge, this is the first narrative review
summarizing and discussing frailty and ML for frailty screening. However, previous
related research has been published on the relevance of the role in osteoporosis of AI
models to model the risk of fragility fracture [32]. The selected studies were delivered
between 2020 and 2022.

As mentioned earlier, the condition of frailty involves many domains that are not
always easily identified, as well as the differences between them (e.g., cognitive, and physi-
cal domains). There are various instruments and identification criteria, thus hindering an
accurate evaluation. Therefore, approaches that encompass all (or most) of these domains
become relevant since they seem to have relevance in the early identification of the frail
condition. Thus, ML is a promising approach, supported by recent studies.

The main findings of this study are that older age, females, clinical conditions (such
as arthritis, hypertension, osteoporosis, and diabetes), high use of healthcare utilization,
and adverse health outcomes (such as fractures, prolonged length of hospital stay, and
number of hospitalizations) were the most significant predictive variables for the screening
outcomes in frail persons. Previous studies reported that frailty was the most important
predictor of rehospitalization and the second most important predictor of mortality in
patients with cardiovascular disease [39]. Not surprisingly, the sociodemographic questions
revealed importance. According to other studies, sociodemographic variables, namely, age
and gender, are significant features [16,40]. Furthermore, in another recent study, age was
the most important variable in predicting 90-day mortality and the second-most important
variable for 30-day mortality [41].

The unsupervised learning methods are often used to process large databases, such as
EMRs or large patient cohorts. Then, they can also cluster patients (subdividing them into
groups) and characterize outliers or other essential features. Online electronic diagnosis
systems are increasingly used by the population and healthcare professionals to a lesser
extent. Most symptom checkers are ruled-based systems based on simple (conventional
methods) decision trees. Therefore, ML is increasingly applied to EMRs in various health
fields because they contain large, heterogeneous datasets that can be used to train disease
detection or classification approaches using the supervised learning method [29].

Regarding algorithms, SVM was the most often applied ML method for frailty screen-
ing [5,31,36,38]. SVMs are competent in finding the best possible separation of different
categories by familiarizing the weights of polynomial functions. ML models are typically
trained using EMR or national cohorts. However, they require challenges to be applied
effectively to information: the quantity and quality of the data. For example, deep neural
networks commonly require massive training sets. Therefore, poor-quality training data
(e.g., missing values) from EMRs will reduce the model’s overall quality [29]. Thus, ML has
already shown clinically practical applications in frailty screening. It has the potential to
support specialists in clinical and foster personalized health. Combined databases have the
tremendous potential to provide sufficient data [29] because AI "feeds" on data. The more
and better-quality data it accesses, the more it can excel at tasks. Some advanced algorithms
need annotated data to ensure that those can learn. These annotated data depend on the
health professionals. Relying on the algorithm utilized, they could require lots of annotated
data. Thus, the dedicated contribution of “data annotators” is critical for the benefit of
implementing AI in healthcare systems, as well as established standard methods to report
data [28]. As is the case, Aponte Hao and colleagues include the RECORD Statement [42],
promoting quality and transparency [36].

The accomplishment of AI and its place in clinical practice and healthcare depends on
whether it can infiltrate the boundaries of an evidence-based approach, the lack of policies,
and the lack of enthusiasm of health professionals to use it. On the other hand, the demand
for AI to be implemented into everyday health professions is increasing among researchers,
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policymakers, clinical professionals, patients, hospitals, and developers. Therefore, it is
essential to an integrated and appropriate multidisciplinary approach [28].

Some limitations regarding the data quality that impact the results should be noted.
Although it is a validated tool for screening frailty, the CFS could not be advantageous to
AI, because of the dichotomization, which fails to capture the severity of diseases, i.e., a
person classified with pre-frail could be classified in the same category as a person with
severe frailty. Therefore, an alternative could be to evaluate CFS as a continuous variable,
bringing the distribution underlying the distribution of classes closer to the distribution of
classes, then generating decision limits for the transformation back to the ordinal CFS to
evaluate performance [36]. As well as in the CFS, the FRS-26 also be prone to bias in the
quality of data and incapacitation of capturing the severity of symptoms [21]. In addition,
the eFP, which could not classify frailty adequately, is often thought to reduce frailty to
physical deficiencies and ignore mental and cognitive health problems [5]. In another study,
they also merged pre-frail and fragile groups into a single group due to the limited number
of fragile participants, and the size of the data (time series) was transformed to improve
quality [37]. Moreover, other potential limitations include extensive missing data and test
data being relatively small [31].

The accuracy of AI-generated results is highly dependent on the quality of the input
data. Whether frailty is identified via the ML methods, very-high-quality data must be
utilized if identification is ultimately proven accurate [31,41]. Further, efforts devoted to
increasing the quality of the input data, such as standardized codes rather than free text
and regular attention to data cleansing, may substantially improve the accuracy of the
result obtained. The limited availability of high-quality data for training correctly labeled
in medical claims, lack of detailed physiologic information, and indicators of the severity
of comorbidities are inconsistently assigned, leading to a training set with underprivileged
reproducibility and no “ground truth” to learn associations [28].

The heterogeneity of models makes it difficult to understand how accurate these
methods might be in clinical practice or how reproducible they are in various clinical
environments. The successful application of AI within the healthcare sphere does not
remove the requirement for maintaining the quality of databases; instead, it is dependent
on such activities. Another limitation is the studies using the codes ICD-10. The codes
do not fully capture disease severity and might also miss out on essential elements of
frailty such as weakness, polypharmacy, and need for support in everyday living. In
addition, the potential variation in documentation and coding of diagnoses could contribute
to measurement error (e.g., routine diagnosis and documentation of conditions such as
delirium vary between clinicians and/or hospitals) [26].

In the future, with rapidly advanced wearables and monitoring technologies, we
suggest researching other available frailty indicators—for example, using biosignals for
postural control, gait assessment, and home-based frailty assessment. These types of data
are also easily adapted to AI. They could be practical and feasible, such as falls prevention,
an essential issue for frailty screening [15,33,43–48].

5. Conclusions

This review explores the tools and clinical indicators for frailty assessment and screen-
ing, through AI-based innovative tools. These existing tools, and clinical indicators for
complex frailty, focusing on measures extracted from healthcare datasets were reviewed.
The typical “health-professionally dependent” approaches for frailty screening could be
adapted for technology-based approaches, such as eFI. The potential of AI techniques was
explored; according to our findings, these methods can be used to identify risk factors to pre-
dict pre-frail or frailty. Thus, they facilitate the process to find the best treatment strategies
for a person as well as frailty screening at the public health level. We suggest that databases
collected from different populations be shared for improving the AI-based models.

This narrative review described the complex condition of frailty involving multi factor
and summarized the indicators and the tools that were most used in the recent literature,
as well as the AI models and the accuracies—making it easier for the developer and clinical
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to infer important data/variables for screening frailty. This review aims not to compare
methods but to investigate the evidence for frailty screening. It was possible to conclude
that the potential for ML to focus on frailty is immense, and offers an overabundance of
new opportunities [29].
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