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Abstract: Blink rate, a major physiological response in humans, directly affects ocular diseases such as
keratitis and dry eye. The blink rate in normal eyes appears at a constant frequency of 6–30 times per
minute and is constant for each individual. In a previous study, the blink rate decreased when viewing
content with high intensity and realism. Therefore, we tried to investigate the change in blink rate
when viewing the content in VR HMD (virtual reality head-mounted display) and AR (augmented
reality) glasses environments. We compared and analyzed the blink rate in four environments: natural
state, viewing monitor, viewing VR HMD, and viewing AR glasses. Twenty-one participants (age,
26.87 ± 3.31 years) viewed the content for 1 min in four environments. One-way repeated ANOVA
was used to analyze the blink rate changes. The study showed that the blink rate was decreased in
the monitor, VR HMD, and AR glasses environments compared to that in the natural environment.
Comparing the VR HMD environment with the AR glasses environment showed that the blink rate
decreased in the VR HMD environment. The results of this study can be used for content use safety
recommendations (guidelines for safe use of contents due to decreased blink rate) in the VR HMD
and AR glasses environments, which are currently attracting attention in the metaverse.

Keywords: blink rate; metaverse; VR HMD; AR glasses; guideline

1. Introduction

Humans receive information from the external environment through various sense
organs. Among them, vision is a higher sense than the other senses and plays an important
role in eliciting or aiding other senses. Most ways that humans acquire external information
is transmitted through vision [1–3].

Eye blinking, a major human physiological reaction, is caused by the interaction be-
tween the levator palpebrae superioris muscle, which lifts the palpebral, and the orbicularis
oculi muscle, which closes the eyelid. When the normally activated levator palpebrae
superioris muscle is deactivated, and the orbicularis oculi muscle contracts, the eye closes.
When the contraction of the orbicularis oculi muscle ceases and the levator palpebrae
superioris muscle contracts, the mechanism that opens the eye results in eye blinking [4–6].

Blinking is an involuntary phenomenon that closes and opens the eyes at a speed of
100–400 ms [7]. In everyday life, blinking occurs unconsciously due to blinking suppression,
which inhibits visual perception activity in the brain. The suppression time is approximately
200–250 ms, and it occurs from just before to immediately after blinking.

Blink types include spontaneous blink, reflex blink, and voluntary blink. A sponta-
neous blink is a natural eye movement that occurs without external stimuli and internal
effort. This type of eye movement occurs in the prefrontal brainstem and occurs without
conscious effort. A reflex blink occurs in response to an external stimulus. It occurs faster
than a spontaneous blink and is generally caused by tactile stimulation, optical stimulation,
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or auditory stimulation. Blinking that occurs voluntarily is a means of communication or
social interaction and can be maintained irregularly by controlling consciousness. Blinking
can occur arbitrarily if the cornea needs lubrication or the eyes require protection in the
case of fast visual movement and proximity. Voluntary blink has a larger amplitude than
the reflex blink and uses the orbicularis oculi. Figure 1 shows the neural circuit that controls
blinking (blue line: conditioned stimulus pathway, green line: unconditioned stimulus
pathway, and red line: conditioned response pathway).
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trum disorders”, 2015).

In individuals with normal vision, a spontaneous blink occurs at a certain frequency.
The factors affecting the blink rate are eyelid condition, eye condition, disease status,
presence of contact lenses, psychological state, surrounding environment, drugs, and other
stimuli. The blink frequency ranges from 6 to 30 times/min [9,10].

The blink response directly affects ophthalmic diseases, such as keratitis and dry
eye [11–13]. In addition to the ophthalmic factors, the tear film on the ocular surface is
evenly dispersed during blinking to remove corneal irregularities and prevent corneal and
conjunctival dehydration. Furthermore, the blink rate is decreased during the viewing of
immersive content; therefore, it is necessary to study the relationship between the viewing
of such realistic media and blink rate patterns.

In general, the blink rate tends to decrease during work compared with that at
rest [14,15]. In addition, the blink rate tends to decrease during reading or demanding
tasks, as these are more visually strict than the typical visual activities [16]. The higher the
focal degree, the lower the blink rate [17,18]. According to various experiments related
to blinking, the lead pilot has a lower blink rate with a shorter duration than that of the
co-pilot in a simulated flight. Individuals driving on busy city roads have a lower blink
rate than those driving on quiet, small city roads [19]. In the study by Kong et al., the blink
rate was twice as high when looking at a white wall than when looking at a monitor or
reading [20].
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The brain focuses on acquiring information from the environment or image and tries
to accept the information better by reducing the blink rate.

The recent method of display contents has the form of a metaverse, which is classified
into virtual reality, augmented reality, lifelogging (mobile-based), and mirror world. As
the metaverse is attracting attention as a means of replacing the internet, exponential
market growth is expected in the future. With the development of immersive experience
technology, the metaverse, a cyberspace, will establish itself as an expansion reality of the
physical real world. In addition, as it is used as a digital world along with the real world,
the usage time will gradually increase. Through virtual reality, one of the technologies to
experience the metaverse, the distance between the display and the eyes has become closer.
In addition, augmented reality services and lifelogging are accessed using mobile phones
with smaller display sizes than existing TVs or monitors.

If the interest arousal due to the use of immersive contents based on the metaverse
increases, it may manifest as a decrease in the blink rate, which may cause pathological
effects on the eye.

In the study of Sheedy et al., ocular dryness is suggested as one of the external
symptoms of stable fatigue [21], and xerophthalmia can be induced by a reduced blink
rate. Ocular dryness is accompanied by visual disturbances, inflammation of the ocular
surface, and ocular discomfort [22], thereby causing symptoms such as irritation, a burning
sensation, and conjunctivitis.

This study proposes an environment to measure the blink rate. In addition, the
effect of four environments (natural, monitor, virtual reality head-mounted display (VR
HMD), and augmented reality (AR) glasses) on the blink pattern was assessed, and safety
recommendations for the use of metaverse content were proposed accordingly.

1.1. Wearable Display of Metaverse (VR and AR)

The head-mounted display (HMD) is an interface device that allows human sensory
organs such as the eyes and ears to experience a virtual environment. HMD is a device that
comprises a high-resolution display, GPS, gyroscope, and wireless communication device.
It recognizes the movements of the user and outputs a corresponding image [23–25].

The conception and development of the HMD concept began in 1968. See-through
HMD, developed by Ivan E. Sutherland, is the world’s first instance of HMD use. The early
HMD system required numerous pieces of equipment, such as a computer for graphic
generation, a computer for trackers, and a computer for interaction. Therefore, it was not
easy to develop HMD due to the low performance of the computer and the lack of software
for development. The types of HMD, depending on the display technology, include an
optical see-through display type, a video see-through display type, and a non-see-through
display type.

1.1.1. Optical See-through Display Type

The optical see-through display type transmits real light through the HMD
display [26,27]. This is a method in which the light passing through the display is combined
with the image generated by the computer. In the early days, the transmitted light was
reduced by half due to the use of a half-mirror. Recently developed models are shifting
towards using projectors and prisms. The optical see-through type has the following advan-
tage: the computer-generated image is output in a translucent state and does not block the
user’s view. However, it is difficult to match the reality viewed by the user with the image
generated by the computer. The optical see-through type display method is classified into
a mobile phone mirroring method and an anchor method according to the augmentation
technology. Figure 2 shows a schematic diagram of optical see-through display.
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1.1.2. Video See-through Display Type

The video see-through display type is a method of synthesizing an image acquired
using a camera and an image generated by a computer and outputting it to the user [28].
It is possible to implement the video see-through type of display by attaching a camera
to an HMD and a pair of glasses that are not manufactured as a video see-through type.
However, there may be delays due to the operation of the camera to synthesize the images
and graphics. Figure 3 shows a schematic diagram of video see-through display.
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1.1.3. Non-See-through Display Type

In the non-see-through display type, the view is blocked such that the outside envi-
ronment cannot be visualized, and the user’s sense of immersion is high [29,30]. It uses
an optical method that uses a lens to magnify the display at close range. This led to the
popularization of HMD, which previously required expensive equipment. The position
and posture of the user are tracked using an infrared sensor or an inertial measurement unit
(IMU) sensor in the case of a non-see-through HMD. Figure 4 shows a schematic diagram
of non-see-through display.
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2. Materials and Methods
2.1. Participants

The participants selected in this experiment were 21 (male 16, female 5) individuals in
their 20s and 30s (26.87 ± 3.31 years old) who provided informed consent to participate in
the study. Participants had no ophthalmic, mental, or systemic diseases as well as far and
near-corrected vision of 0.8 or higher, and no suppression on the worth 4 dot test.

Participants were recruited through an in-school notice for employees and students
who were working and attending Kwangwoon University. Participants who completed the
experiment were paid a designated participation fee.

2.2. Experimental Environment

Before starting the experiment, the participants completed physical condition and
history questionnaires to check for factors that could affect the results. The items on
the history questionnaire were divided into three categories: job, body use (exercise and
gaming), and past ophthalmic history. Participants with factors affecting the experiment
were excluded.

The experiments were performed in the natural, monitor, VR HMD, and AR glasses
environments. After measuring the blink rate in the natural environment, the participants
randomly performed an experiment in the four environments to prevent the order effect.

The blink rate was measured for a total of 2 min for stabilization and then for 1 min,
except for 30 s before and after. For measurement accuracy, the participants were not
informed about the measurement of the blink rate.

The blink rate in the natural state was measured using a camera (Model: TD20, Sony,
Tokyo, Japan) without the examinee being made aware of the measurement. During the
measurement, the examinee maintained a comfortable sitting position on the chair, and
after the measurement was completed, the recorded file was checked to determine the
blink rate. The measurement of blink rate in the monitor environment was performed
using a 24 in monitor (Model: Ultron 2457, Hansung, Gimhae-si, Korea). The experiment
was performed at a viewing distance of 1.0 m. It was recorded with the TD20 camera in
the same way as the natural environment, and after the measurement was completed, the
recorded file was checked to determine the blink rate. The content used ‘Grandmother’s
Doll’. The blink rate in the VR HMD environment was measured using FOVE HMD to
measure the blink rate while viewing content. The measurement position was adjusted
using the Position Tracking Camera. It was measured by determining whether it was a
blink using the ocular shown in the HMD eye tracking camera video debug tool. As for the
content, ‘Grandmother’s Doll’ was used in the same way as the monitor environment. The
blink rate in the AR glasses environment was measured using Hololens 2 while viewing
the content. Measurements were performed in an environment in which 3D modeling
content provided by Hololens 2 was freely operated. Figure 5 shows the equipment used
in the experiment.
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2.3. Research Data Analysis

Data analysis was performed using one-way repeated measures analysis of variances
(ANOVA) on SPSS (Ver. 18.0 for Window, SPSS Inc., Chicago, IL, USA). Post hoc analy-
sis (difference between groups) was performed using a paired-sample t-test. Statistical
significance was set at p < 0.05 with a 95% confidence interval.

Repeated measures ANOVA is an extension of the paired-sample t-test, in which three
or more measurements are acquired. It can be used when acquiring measurements from
the same person at regular intervals and analyzing the results of repeated measurements
depending on the time point.

3. Results
3.1. Comparison of the Blink Rate in the Natural Environment and Monitor Environment

Table 1 and Figure 6 show the comparison between the measured blink rate per
minute in the natural environment (18.05 ± 2.56 count/min) and monitor environment
(15.81 ± 2.09 count/min). The blink rate was comparatively decreased (Z = −4.050,
χ2 = 57.466, p < 0.001) at a statistically significant level in the monitor environment.

Table 1. Comparison of the blink rate in the natural environment and monitor environment (n = 21).

M ± SD Z χ2 p-Value

Natural 18.05 ± 2.56
−4.050 57.466 p < 0.001

Monitor 15.81 ± 2.09
Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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3.2. Comparison of the Blink Rate in the Natural Environment and VR HMD Environment

Table 2 and Figure 7 show the comparison of the measured blink rate per minute in the
natural environment (18.05 ± 2.56 count/min) and VR HMD environment
(10.81 ± 3.89 count/min). The blink rate was comparatively decreased (Z = −4.017,
χ2 = 57.466, p < 0.001) at a statistically significant level in the VR HMD environment.

Table 2. Comparison of the blink rate in the natural environment and VR HMD environment (n = 21).

M ± SD Z χ2 p-Value

Natural 18.05 ± 2.56 −4.017 57.466 p < 0.001
VR HMD 10.81 ± 3.89

Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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3.3. Comparison of the Blink Rate in the Natural Environment and AR Glasses Environment

Table 3 and Figure 8 show the comparison of the measured blink rate per minute in the
natural environment (18.05 ± 2.56 count/min) and AR glasses environment
(14.19 ± 1.97 count/min). The blink rate was comparatively decreased (Z = −4.047,
χ2 = 57.466, p < 0.001) at a statistically significant level in the AR glasses environment.

Table 3. Comparison of the blink rate in the natural environment and AR glasses environment
(n = 21).

M ± SD Z χ2 p-Value

Natural 18.05 ± 2.56 −4.047 57.466 p < 0.001
AR Glasses 14.19 ± 1.97

Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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3.4. Comparison of the Blink Rate in the Monitor Environment and VR HMD Environment

Table 4 and Figure 9 show the comparison of the measured blink rate per minute in the
monitor environment (15.81 ± 2.09 count/min) and VR HMD environment
(10.81 ± 3.89 count/min). The blink rate was comparatively decreased (Z = −3.834,
χ2 = 57.466, p < 0.001) at a statistically significant level in the VR HMD environment.

Table 4. Comparison of the blink rate in the monitor environment and VR HMD environment (n = 21).

M ± SD Z χ2 p-Value

Monitor 15.81 ± 2.09 −3.834 57.466 p < 0.001
VR HMD 10.81 ± 3.89

Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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3.5. Comparison of the Blink Rate in the Monitor Environment and AR Glasses Environment

Table 5 and Figure 10 show the comparison of the measured blink rate per minute in the
monitor environment (15.81 ± 2.09 count/min) and AR glasses environment
(14.19 ± 1.97 count/min). The blink rate was comparatively decreased (Z = −4.102,
χ2 = 57.466, p < 0.001) at a statistically significant level in the AR glasses environment.

Table 5. Comparison of the blink rate in the monitor environment and AR glasses environment
(n = 21).

M ± SD Z χ2 p-Value

Monitor 15.81 ± 2.09 −4.102 57.466 p < 0.001
AR Glasses 14.19 ± 1.97

Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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3.6. Comparison of the Blink Rate in the VR HMD Environment and AR Glasses Environment

Table 6 and Figure 11 show the comparison of the measured blink rate per minute
in the VR HMD environment (10.81 ± 3.89 count/min) and AR glasses environment
(14.19 ± 1.97 count/min). The blink rate was comparatively decreased (Z = −3.148,
χ2 = 57.466, p = 0.002) at a statistically significant level in the VR HMD environment.

Table 6. Comparison of the blink rate in the VR HMD environment and AR glasses environment
(n = 21).

M ± SD Z χ2 p-Value

VR HMD 10.81 ± 3.89 −3.148 57.466 0.002AR Glasses 14.19 ± 1.97
Unit: count/min, SD: standard deviation, Wilcoxon signed-rank test.
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4. Discussion

Blinking is an important factor in ocular physiology, and involuntary blinking is
controlled by mechanisms associated with fatigue, loss of attention, and stress [31]. Blink
speed and duration are used in various fields, such as assessing sleepiness [32], evaluating
driver workload [33], diagnosing neurological disorders [34], and diagnosing Parkinson’s
disease (reduced blink speed).

The blink rate decreases as the gaze intensity becomes stronger than the natural state.
The decrease in the blink rate leads to the pathological action of the ocular, which requires
great attention. Toda et al. [35] reported that 51.4% of patients complaining of stable fatigue
experienced dry eyes, and 71.3% of patients with dry eyes experienced stable fatigue. The
blink rate is reduced in environments that require near-field work and concentration [14,15];
therefore, the symptoms of dry eyes can worsen to a disease state when subjected to a
recognition requirement task.

In this paper, compared with the natural environment, the blink rate decreased in
the order of the monitor environment, the VR HMD environment, and the AR glasses
environment. In addition, the comparison between the monitor environment, the VR HMD
environment, and the AR glasses environment showed that the blink rate decreased in the
order of the VR HMD environment, AR glasses environment, and monitor environment.
It is judged that the metaverse environment increases the degree of interest and the gaze
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intensity. The same tendency was suggested in previous studies [13–19] that showed a
decrease in the blink rate when performing visual activities with a higher intensity of gaze
than natural visual activities.

In general, near-work, such as reading, causes visual fatigue, and the degree of fatigue
varies depending on the environment. In this study, the blink rate was the smallest in a VR
HMD environment where the physical viewing distance was close. In general, to increase
the sense of immersion when experiencing immersive contents, the size of the display can
be increased or the viewing distance can be set closer. As the sense of immersion increases,
the concentration of contents increases, and the blink rate decreases. In addition, as the
viewing distance approaches, the crystalline lens becomes contracted, and if this condition
persists, visual fatigue occurs. The VR HMD-based contents environment completely
blocks external reality stimulation so that only the contents displayed in HMD are visible.
This characteristic is a factor that increases the sense of immersion in VR HMD contents.
Although there is no burden of accommodation of the crystalline lens due to the optical
convex lens embedded in the HMD, caution is required for long-term use because the
physical distance between the ocular and the display is very close. It should also be noted
that ocular diseases may occur as the time to use contents increases in a state in which the
blink rate is reduced. The blink rate is affected, not visual fatigue or cognitive control [36].
Since the use of VR HMD for a long duration may result in the development of disease due
to a decrease in the blink rate, it is necessary to refrain from using it for a long duration.
If its use for a long duration is inevitable, taking a break is important. Compared with
VR HMD, the monitor environment and AR glasses environment are relatively close to
the natural environment and may be less burdensome to use for a long time. However, it
is recommended to take 5–10 min of break for voluntary blinking when using them for
60–70 min.

5. Conclusions

With the metaverse becoming a hot topic, the rate of using equipment in the form of
HMD and glasses to experience the virtual world and augmented reality has increased. This
paper attempted to evaluate the change in the blink rate in the metaverse environment using
experiments to measure the blink rate in the natural environment, monitor environment,
VR HMD environment, and AR glasses environment. Considering the current status of
research, the use of HMD contents with high immersion appears to be a factor that can
decrease the blink rate. Blinking plays an important role in preventing dryness of the
cornea, removing foreign substances through tears, and preventing blurring of the image
due to eye movement. Therefore, users must be aware of the physiological role of blinking
when using HMD.

In adults, it is recommended to stop using HMD for a while and give rest to the eyes
if the individual experiences dryness. Children need sufficient guidance from their parents.
Since individual blink rates are very important in ocular physiology, the blink rate during
the use of special content should be observed as a major functional factor.
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