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Abstract: Intensity Analysis has generally been applied as a top-bottom hierarchical accounting
method to understand regional dynamic characteristics of land use and land cover (LULC) change.
Given the inconvenience of transition level in the detailed and overall presentation of various category
transitions at multiple intervals, a novel transition pattern is proposed to represent the transition’s size
and intensity and to intuitively identify the stationary mode of transition, which helps the transition
level to connect to the mode with the process. Intensity Analysis was conducted to communicate
the transition between LULC categories in Hengyang from 1980 to 2015. The patch-generating land
use simulation (PLUS) model was employed for multi-scenario projection from 2015 to 2045. From
1980 to 2015, 2005 was a significant turning point in the speed of LULC change in Hengyang, and
the change rate after this time point was three times that before the time point. The gain of built-up
and bare, and the loss of cultivated was always active. The reason for the large loss of forest is that
forest comprises the largest proportion of Hengyang. The loss of cultivated and the loss of forest
contributing to the built-up’s gain is much larger, but the mechanism behind the transition differed.
A stationary targeting transition mode from cultivated to built-up in Hengyang was detected. The
PLUS model confirmed that the area of forest, cultivated and grass will reduce, and the rate of
decrease will slow down in the future, while water areas will slightly increase. Our work enriches the
methodology of Intensity Analysis and provides a scientific reference for the sustainable development
and management of land resources in Hengyang.

Keywords: land use and land cover change; Intensity Analysis; patch-generating simulation;
Hengyang; China

1. Introduction

Human activities are changing the Earth’s systems in a way that threatens well-being
and development [1], and they have a significant impact on the environment at the local,
regional and global levels [2]. With the deepening global change research, land use and
land cover (LULC) change has become the core component of global environmental change
research [3]. LULC change is both the reason and result of biophysical processes and the
social economy, with great influence on climate change, biodiversity, grain yield, and air
contamination [4]. Measuring the dynamics of LULC change and modeling effective spatial
projections are important aspects to deal with environmental change and to achieve regional
sustainable development, which is considered a necessary means to better understand and
address socio-economic and land resource issues [5,6].

Over the past decades, remote sensing (RS) and geographical information systems
(GIS) have provided strong data sources and technical support for the monitoring and
detecting of LULC change and urban expansion and sprawl [7]. Compared to conventional
ground surveys, RS has remarkably helped in the efficient acquisition and storage of Earth
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surface data, which facilitates the quantification of long-time series LULC dynamics [8].
Currently, the common methods to quantify the temporal change of LULC maps at several
points in time include single and comprehensive dynamic degree [9], transfer matrix [10],
change trajectory [11], and Intensity Analysis [12]. However, the popular single dynamic
degree only considers the net change of category, which is the absolute value of the
gain minus loss, thus ignoring the simultaneous expansion and reduction of the category
spatially. For comprehensive dynamic degree, readers have used multiple ways to calculate
the degree for confusing mathematical notation [13]. Furthermore, this degree is the
sum of the loss intensities of different categories, which is proven to have no practical
interpretation [14]. In change trajectory, the LULC maps in various time points are overlaid
by raster calculations, and are then counted for different category encodings composed
of a series of numbers, which provides abundant transfer information. However, it is
similar to the transfer matrix to count the size of changes between categories, neglecting
the interpretation of the impact of the category’s initial size on changes. Intensity Analysis
as one systematical method can characterize which processes of LULC change are intensive
compared to random or uniform [12]. This method has been adopted in the study of LULC
change, urban expansion [15,16], desertification [17,18], and regional comparison [19–21].
Stationary in Intensity Analysis refers to the transition from category i to category j that
shows the same targeting or avoiding characteristics at all intervals [12]. To diagnose, the
information is needed for researchers and decision makers to help governments better
formulate land use policies.

However, when the original Intensity Analysis involves more categories and intervals,
its transition level results are difficult to intuitively and quickly reflect the size and intensity
of a variety of transition processes, as well as the stationary mode. Accordingly, the transi-
tion level was taken further through optimization and visualization by graphics expression
and cross-contingency tables [22–24]. The improvement of this is not the integration of
size, intensity, and stationary mode between the category’s transition, although it can show
all transition intensities and whether each transition process targets or avoids. Scientific
analysis of the stationary modes and mechanisms in regional LULC change has been an en-
lightenment for promoting regional sustainable development and innovating land resource
utilization. Thus, further improvement in this way is always expected. Specifically, based
on the transition level of the Intensity Analysis, a novel transition pattern is constructed
to quickly and intuitively represent the size, intensity, and mode of land transition in
this study.

To comprehend probability trends in LULC, the spatiotemporal simulation of LULC
is used as a powerful tool to analyze the consequences and the underlying driving force
of regional human activities interacting with the natural environment [25]. Cellular au-
tomata (CA) was first applied to geographical modeling in 1979 [26], mainly used in urban
development studies at the outset [27,28], which effectively relates urban expansion to
socio-economic development through the defining transition rules. However, the single
model or method still was flaws despite its existing merits, hence the need for integrating
modeling in LULC simulations. The coupling of the CA and Markov Chain (MC) model
has become a common method to simulate LULC evolution and spatial distribution due to
its prediction based on process state, strong parallel computing, and dynamic expression
ability [29]. A large number of scholars have conducted in-depth research in this field
and have gradually developed a series of hybrid models and algorithms, such as the DT-
based urban expansion model [30], multi-criteria evaluation (MCE)-CA-MC [31], logistic
regression (LR)-CA-MC [32], SLEUTH model [33], artificial neural network (ANN)-CA [34],
MLP-CA-MC [35], CLUE-S model [36], FLUS model [25], etc. Recently, a patch-generating
land use simulation (PLUS) model was proposed to simulate land use patch change and
analyze the potential driving of LULC dynamics [37]. The PLUS model improves the
previous mining methods of transition rules, such as transition analysis strategy (TAS)
and pattern analysis strategy (PAS). A new land expansion analysis strategy (LEAS) is
proposed on the random forest (RF) algorithm and maintains the advantages of adaptive
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inertia competition and roulette competition mechanism of the future land use simulation
(FLUS) model [38]. Multi-type random patch seeds (CARS) are applied to model multiple
LULC types at fine-scale resolution. The RF algorithm as a machine learning method with
a powerful fitting capacity is suitable for mining the complicated transition rule of the CA
model [39]. Many studies have shown that the PLUS model can more accurately simulate
the spatial pattern and evolution process of LULC compared with other models [40,41].

China has experienced unprecedented economic growth and urbanization since the
launch of economic reforms in the late 1970s, which also brings a drastic change in the
spatiotemporal pattern of LULC [42]. In several study cases, many scientists have inves-
tigated the LULC of urban agglomerations and developed areas in China [43], such as
Beijing–Tianjin–Hebei [44], the Yangtze River Delta [45], Guangdong–Hong Kong–Macao
Greater Bay Area [46,47] and national central cities [48]. However, socioeconomic devel-
opment of urban areas in different regions, different cultures, and different levels often
experiences various LULC change processes. Therefore, under the background of rapid
urbanization and rural revitalization in China, it is necessary to systematically understand
the LULC change in medium and underdeveloped regions. As one of the old industrial
bases in central China, Hengyang is playing a bridgehead in undertaking coastal industrial
transfer. Meanwhile, Hengyang is one of the typical representatives of hilly ecological
fragile areas in south China. In recent decades, Hengyang’s rapid economic development
has been attended by a large population that has increased in concentration and urban
expansion and sprawl, which result in the buildup of pressure on land and in the reduc-
tion of agricultural land and forests [49]. In the past, several scholars have studied the
land change in Hengyang from the perspectives of ecological security of land [50], urban
boundary delineation [51], projection under a single scenario [43], and urban expansion
simulation [52]. However, the in-depth quantitative analysis of a long-term LULC change
in Hengyang is still lacking.

Therefore, to analyze and model LCLC change in Hengyang, the main objectives of
this study were as follows: (1) how to apply the improved Intensity Analysis framework to
study the size, intensity, and stationary characteristics of regional LULC change; (2) various
LULC changes in Hengyang under different scenarios. Building on high-resolution LULC
observation data, the improved Intensity Analysis was employed to explore the intensity
of LULC change and its stationary characteristics in Hengyang from 1980 to 2015, and then
the PLUS model was applied to project the spatial pattern of LULC in Hengyang under
different scenarios from 2015–2045. Our study enriches the analysis ability of the transition
level of Intensity Analysis and has certain guiding significance for the sustainable planning,
utilization, and protection of land in Hengyang. In addition, it provides an important
reference for the land management of other medium-developed cities in central China.

2. Materials and Methods
2.1. Study Area

Hengyang is located in the south of Hunan Province and the middle reaches of the
Xiangjiang River (110◦32′16′′~113◦16′32′′ E, 26◦07′05′′~27◦28′24′′ N). The terrain is high
around the perimeter and low in the middle, forming the “Hengyang Basin” with a total
land area of about 15,310 km2 (Figure 1). The study area belongs to a subtropical monsoon
climate, with an annual average temperature of about 18 ◦C and an average annual rainfall
of about 1352 mm. In recent years, the economy of Hengyang in Hunan Province has
maintained rapid growth. In 2020, Hengyang achieved CNY 350.8 billion in GDP, ranking
fourth in the province, and is the second-largest city with a population of 6.64 million. The
urbanization rate is 54.27% [53]. Hengyang has jurisdiction over seven counties (Figure 1b).
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Figure 1. The geographical location of the study area.

2.2. Data Source and Processing

In this study, the LULC data in Hengyang in 1980, 1995, 2005, and 2015 (30 m resolu-
tion) are derived from the remote sensing monitoring dataset of land use and land cover
in China, which can be provided by the Data Center for Resource and Environment Sci-
ences, Chinese Academy of Sciences (http://www.resdc.cn, accessed on 28 June 2021). The
dataset was made by human–computer interaction visual interpretation based on Landsat
TM/ETM+/OLI images, and its overall accuracy is higher than 90% [54,55]. According to
the analysis for the study area, the LULC category in Level I is named as cultivated, forest,
grass, water, built-up, and bare. The PLUS model requires driving factors such as the social
economy and natural environment data. Therefore, road networks, governments, water,
elevation, and other driving factors of LULC change in Hengyang were used to analyze and
simulate the dynamic evolution of land. The GDP, population grid data, annual precipita-
tion and temperature distribution of 1 km resolution data, and soil type data were collected
from the Data Center for Resource and Environment Sciences, Chinese Academy of Sci-
ences (http://www.resdc.cn, accessed on 19 October 2021). Soil types include acidic purple
soil, paddy soil, red soil, and 11 other soil types. Traffic road data, including multi-level
highway networks, high-speed railways, railways, highways, and other vector sources
were taken from the non-secret vector map data product (1:1 million scales). This product is
provided by the National Geomatics Center of China (https://www.webmap.cn, accessed
on 28 October 2021). The primary road mainly includes national roads and provincial
roads; the secondary road includes roads below provincial; the arterial road is made up
of the main roads inside urban. The Digital elevation model (30 m) is available from the
United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov, accessed
on 28 June 2021). To simulate future LULC change, various types of data were processed
correspondingly based on TerrSet and ArcGIS 10.8 software, and the results are shown in
Figure 2. On the whole, the driving factors can be divided into natural class, including
elevation, slope, annual average temperature, annual average precipitation, distance to
rivers, soil type, and socio-economic class, including distance to highways, distance to
railways, distance to railway stations, distance to governments, distance to arterial roads,
distance to primary roads, distance to secondary roads, population density and GDP.

http://www.resdc.cn
http://www.resdc.cn
https://www.webmap.cn
https://earthexplorer.usgs.gov
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Figure 2. Spatial variables related to LULC change in Hengyang.

The flowchart of this study mainly includes three components (Figure 3). First, mul-
tiple types of the collected natural and socio-economic data were processed to obtain the
driving factor dataset and expansion map that meet the experimental requirements. Second,
the intensity and characteristics of LULC change in Hengyang were quantified by applying
Intensity Analysis method and a new transition pattern. Third, the LULC demand under
different scenarios by Markov Chain is forecasted, and then, the PLUS model is used to
allocate that demand. The spatiotemporal change of LULC under different scenarios is
compared and analyzed.
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2.3. Intensity Analysis

Intensity Analysis method is a quantitative analysis method for analyzing category
change [12]. It excavates the change information deeply based on the transfer matrix and
obtains the different LULC patterns of the interval, category, and transition levels. The
calculated intensity of LULC change at each level is compared with the corresponding
uniform intensity (Figure 3). The interval level is to compare the total changes of different
time intervals, and the category level compares the loss and gain of each LULC type in
each time interval. The transition level compares the size and intensity of other categories’
transition to a specific category. Equations (1)–(6) describes the calculation method of
Intensity Analysis [12] and the mathematical notation (Table 1).

Equations (1) and (2) respectively calculate the annual change rate at interval [Yt, Yt+1]
and the annual uniform rate during the whole period [Y1, YT]. If U = St, the change at the
interval level is stationary, meaning that all intervals were distributed uniformly during
the whole period [Y1, YT]. If St > U, the annual change rate at interval [Yt, Yt+1] is fast;
otherwise, it is slow.

St =
∑J

j=1

[(
∑J

i=1 Ctij

)
− Ctjj

]
/ ∑J

i=1 ∑J
j=1 Ctij

(Yt+1 −Yt)
100% (1)



Int. J. Environ. Res. Public Health 2022, 19, 8491 7 of 18

U =
∑T−1

t=1

{
∑J

j=1

[(
∑J

i=1 Ctij

)
− Ctjj

]}
/ ∑T−1

t=1

[
(Yt+1 −Yt)∑J

i=1 ∑J
j=1 Ctij

]
(YT −Y1)

100% (2)

Table 1. Mathematical notation of Intensity Analysis.

Symbol Meaning

T Number of time points
Yt Year of time point t
t Index of the initial time point of time interval [Yt, Yt+1], extent 1 to T − 1
J Number of categories
i Index of a category at the initial time point for a time interval
j Index of a category at the final time point for a time interval

Ctij Number of pixels from category i at time Yt to category j at time Yt+1
Ctji Number of pixels from category j at time Yt to category i at time Yt+1
St Annual change rate at interval [Yt, Yt+1]
U Uniform change rate at whole time extent [Y1, Yt+1]
Lti Annual intensity of gross loss of category i at interval [Yt, Yt+1]

Rtin
Annual transition intensity from category i to particular category n at interval
[Yt, Yt+1], where I 6= n

Wtn Uniform intensity from the non-n category to category n at interval [Yt, Yt+1]

Equations (3) and (4) respectively calculate the annual gain intensity of category j and
the annual loss intensity of category i at interval [Yt, Yt+1]. Equation (1) gives the uniform
intensity for this category level analysis at interval [Yt, Yt+1]. If Gtj > S, the gain of category
j is active; otherwise, it is dormant. If Lti > S, the loss of category i is active; otherwise, it
is dormant.

Gtj =

[(
∑J

i=1 Ctij

)
− Ctjj

]
/(Yt+1 −Yt)

∑J
i=1 Ctij

100% (3)

Lti =

[(
∑J

j=1 Ctij

)
− Ctii

]
/(Yt+1 −Yt)

∑J
j=1 Ctij

100% (4)

Equation (5) calculates the annual transition intensity from a category non-n to cat-
egory n for gaining category n. Equation (6) calculates the uniform intensity for gaining
category n for transition level analysis. If Rtin > Wtn, the gaining of category n targets
category i; otherwise, the gaining of category n avoids category i.

Rtin =
Ctin/(Yt+1 −Yt)

∑J
j=1 Ctij

100% (5)

Wtn =

[(
∑J

i=1 Ctin

)
− Ctnn

]
/(Yt+1 −Yt)

∑J
j=1

[(
∑J

i=1 Ctij

)
− Ctnj

] 100% (6)

2.4. Transition Pattern

When more time point maps and LULC categories are involved, researchers use the
transition level of Intensity Analysis to be tedious. For example, when the study involves
LULC maps with M time points and N categories, it needs to implement (M − 1) × N
times comparison of transition intensity to determine whether each transition shows
stationary characteristics. To more intuitively and quickly identify the size, degree of
targeting or avoiding, and characteristics of category transition, a novel transition pattern
was designed in this study. Figure 4 describes the transition pattern and how to identify
stationary transition. The temporal stationary mode of change is reflected in the case that
the transition from category i to category j shows the same characteristic (target or avoid)
at continuous intervals [12]. The rows and columns represent losses of a category and
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gains of a category, respectively. In addition, the deviation between the transition intensity
and the corresponding uniform intensity represents how intensely the transition targets or
avoids. The bubble size represents the size of the transition; that is, the area of the transition
accounts for the proportion of the study area. The color of the bubbles indicates that the
transition intensity deviates from the corresponding uniform intensity. If the transition
intensity is greater than the corresponding uniform intensity, the bubble color is deeper red.
Similarly, if the transition intensity is smaller than the corresponding uniform intensity,
the bubble color is deeper blue. Readers can compare the color of bubbles horizontally to
identify whether the transition is stationary during the whole period. Figure 4 shows that
if the color is consistent, the transition is stationary.
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2.5. Dynamic Simulation of LULC
2.5.1. The PLUS Model

The PLUS model includes two modules, a rule mining framework based on the
land expansion analysis strategy (LEAS) and a CA based on multitype random patch
seeds [56]. Based on CA, the PLUS model combines random seed generation and a
threshold-decreasing mechanism to simulate the change of patch level of multi-type land
use [57]. The PLUS mechanism can well meet the purpose of this study and can better
understand the LULC change process on driving forces. Its software can be downloaded
free from the https://github.com/HPSCIL/Patch-level_Land_Use_Simulation_Model (ac-
cessed on 2 August 2021) [37]. First, we used the historical LULC in 2005/2015 and the
dataset of driving factors. In addition, rivers, lakes and reservoirs, and other waters are
difficult to lose under the strict implementation of government on the protection of river
biodiversity, hence the need for inputting constraints of significant water protection in the
PLUS model. The LEAS module applied a random forest algorithm to capture the influence
of the factors on the expansion of LULC types and determined the development potential
of different types of land in the study area and the contribution of each driving factor to
various types of change. Based on the growth probability for each LULC type, taking 2005
as the initial time, the LULC spatial pattern of Hengyang in 2015 was simulated, and the
accuracy was verified with the actual observation in 2015. If the accuracy meets the research
requirements, taking 2015 as the initial time, the LULC spatial pattern of Hengyang under
different scenarios (business as usual, economic development, and ecological protection) in
2025, 2035, and 2045 was projected by setting land demand based on the Markov Chain,
conversion cost matrix and neighborhood weight of category (a reference to category gain
of Intensity Analysis). Various scenarios are detailed in Table 2.

https://github.com/HPSCIL/Patch-level_Land_Use_Simulation_Model
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Table 2. Scenario setting based on the PLUS model.

Scenario Type Description

Business as usual
(BAU)

Based on the LULC change rate from 2005 to 2015 and historical natural and socioeconomic driving
factors, this scenario uses the Markov Chain to predict the future land demand of various types,
which is a demand parameter in the PLUS model. It is the basis for other scenarios.

Economic development
(ED)

Socioeconomic backward is one of the major problems in underdeveloped regions. Therefore, with
economic development, built-up land expansion is a prominent manifestation of backward regions.
Based on BAU, this scenario modifies the transfer probability of the Markov Chain and increases the
transfer probability from cultivated, grass, forest, and water to built-up by 50%, 30%, 10%, and
10%, respectively.

Ecological protection
(EP)

With the overall protection of mountains, rivers, forests, farmland, lakes, and grasslands presented,
the idea of ecological civilization has been deeply rooted in the hearts of the people in China. Based
on BAU, since the built-up is more affected by human activities, the transfer probability from other
types to built-up is reduced by 20% while the transfer probability of cultivated, forest, grass, and
water to other types is reduced by 10% for protecting ecological land.

2.5.2. Validation

To verify the projection ability of the PLUS model, this paper employed the total
operating curve (TOC) and a set of statistical indicators. TOC was improved based on
the relative operating curve (ROC). In the cross-contingency table, ROC represents the
ability of the model to distinguish between pixels changing and pixels not changing for a
category [58]. Compared with ROC, TOC can provide more useful information in adopting
the same data and graphics space [59,60]. TOC software is available from https://lazygis.
github.io/projects/TOCCurveGenerator (accessed on 30 October 2021) [61]. Making the
TOC for each category is based on the expensed Boolean map and gain probability map.
In this study, the figure of merit (FoM) was obtained by overlaying the actual observation
map in 2015 and the simulation map in 2015. FoM is defined by Equation (7).

FoM =
(Hits)100%

Misses + Hits + Wrong Hits + False Alarms
(7)

where Misses represent error pixels due to reference change simulated as persistence; Hits
represent correct pixels due to reference change simulated as change; Wrong Hits represent
error pixels due to reference change simulated as the change to the wrong category; False
Alarms represent error pixels due to the reference persistence simulated as change [62].

3. Results
3.1. Analysis of LULC Change Intensity

Figure 5 shows the size and annual change rate in each interval. If a bar stops before
the uniform line, then the interval is slow. If a bar extends beyond the uniform line, then
the interval is fast. The left side of Figure 5 shows that the size of the change during the
first interval is greater than the size of the change during the second interval, while the
right side of Figure 5 indicates the reason, which is that the duration of the first interval
is greater than the duration of the second interval. The right side of Figure 5 shows that
the annual change rate during the third interval is faster than the first interval and the
second interval. The change rate is not perfectly stationary due to all bars on the right
being unequal to the uniform line. Meanwhile, Figure 5 also indicates that the land is more
affected by socioeconomic and human activities in Hengyang during the third interval,
resulting in the change rate increasing by three times.

Figure 6 shows the size and intensity of gain and loss by category at three intervals. If
a bar stops before the uniform line, then the category is dormant. If a bar extends beyond
the uniform line, then the category is active. The annual change size on the left side of
Figure 6 shows that there is a clear gradual increase in the gross gain of built-up land, with
the annual change area increasing from 2.2 km2 (1980–1995) to 16.9 km2 (2005–2015), while

https://lazygis.github.io/projects/TOCCurveGenerator
https://lazygis.github.io/projects/TOCCurveGenerator
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there was an increasing trend in the gross loss of cultivated and forest lands. The gross gain
and loss of bare land are relatively small. The change intensity of the right side of Figure 6
shows that bare and built-up lands are steadily active because the annual gain intensity
and the annual loss intensity of bare land and the annual gain intensity of built-up land are
greater than the uniform line. Conversely, the change of forest land is dormant because
the change intensity of gain and loss of forest is smaller than the uniform line, while the
change size of forest is relatively great, indicating that forest accounts for a large percentage
of Hengyang.
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Figure 7 shows the size and intensity of the transition from other categories to built-up
land at three intervals. The left side of Figure 7 shows the annual transition size, and the
right side shows the annual transition intensity. If a bar stops before the uniform line, then
the transition avoids. If a bar extends beyond the uniform line, then the transition targets.
The left side of Figure 7 shows that the largest contribution of the built-up land’s gain was
cultivated, followed by forest land. The right side of Figure 7 shows that cultivated targets
the gain of built-up but forest and water avoid it in the whole period.
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3.2. Mode of LULC Change

Figure 8 shows the LULC change characteristic of mode in Hengyang from 1980 to 2015.
The size and color of the bubble represent the transition size percentage of Hengyang and
transition intensity deviation, respectively. Figure 8 presents various transition modes. The
transition processes from cultivated to built-up, from forest to grass, from grass to forest, and
from built-up to cultivated lands are in stationary targeting mode. The transition processes
from cultivated to grass, from forest to cultivated, etc., are in stationary avoiding mode.
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3.3. Validation for Simulation

To verify the simulation accuracy of the PLUS model, the LULC data of 2005 and 2015
and the driving factors dataset were used to obtain the growth probability of every category
in the LEAS module. Then, taking 2005 as the initial time, the CARS module simulated
the spatial pattern of LULC in 2015 under BAU scenarios. The simulated results were
compared with the actual observations in 2015, and then the FoM and TOC were calculated.
The closer the area under the curve (AUC) of the TOC value is to 1, the better the accuracy
of the model. The results of FoM and overall accuracy are 4.6% and 96.2%, respectively. We
input the category’s growth probability and simulated the expansion map for the category
into TOC software to obtain the TOC curve of category gain. Figure 9 shows that the AUC
values of TOC of each category are greater than 0.5 (the baseline value), demonstrating the
satisfactory quality of each category’s calculated growth probability by the LEAS module
of the PLUS model in Hengyang [63].
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3.4. Multi-Scenario Projection Based on the PLUS Model

We input the parameters of predicting land demand and conversion cost matrix into
the PLUS model. In addition, we applied the neighborhood weight parameter referring
to the annual gain intensity of the category level from 2005 to 2015. Based on LULC data
in 2015, the LULC spatiotemporal pattern would be predicted in Hengyang under BAU,
ED, and EP scenarios in the CARS module of the PLUS model (Figure 10, Table 3). Zone 1
located in Hengyang County and Zone 2 located in Qidong County are magnified in
Figure 10.
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Table 3. The PLUS model prediction results under different scenarios (unit: km2).

Category (Area in 2015)
Business as Usual Economic Development Ecological Protection

2025 2035 2045 2025 2035 2045 2025 2035 2045

Cultivated (5816.0) 5717.8 5631.9 5553.4 5678.5 5557.2 5447.7 5736.7 5667.8 5604.5
Forest (8588.6) 8531.9 8493.8 8453.6 8522.8 8475.5 8425.7 8544.0 8518.6 8491.4
Grass (150.1) 129.9 117.0 110.5 129.4 112.6 107.3 132.1 120.5 116.7
Water (307.7) 309.5 312.6 315.9 309.2 312.2 315.5 309.6 312.7 320.1

Built-up (432.6) 578.9 712.7 834.6 628.0 810.5 971.9 545.6 648.6 735.6
Bare (2.6) 2.4 2.4 2.3 2.4 2.3 2.2 2.3 2.2 2.1

Figure 10 shows that the built-up expansion mainly occurred near the original place
and on both sides of railways and roads, and the growth of built-up land is fastest under the
ED scenario, while it was found that the westward expansion of Hengyang is obvious, and
the city built-up land will cross the border with Hengyang County (Zone 1) in Figure 10d–f.
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The expansion of built-up land in Zone 2 is relatively slow compared to Zone 1. There
may be two reasons for this: First, Zone 2 is mainly affected by terrain. Its northern part
is mostly forest and at a higher elevation, which limits human activities and exploitation.
Second, Zone 2 is far away from the city and is not sufficiently radiated and driven by
urban growth in the city. Table 3 shows that water will increase and bare land will decrease,
but the range of change is relatively small. In addition, cultivated, forest and grass lands
will reduce. In the reducing rate, forest is largest, followed by cultivated and grass under
the same scenarios, and ED is largest, followed by BAU and EP for the same category. For
the rapid development in Hengyang, the reduction of forest, cultivated and grass lands can
be alleviated under ecological protection policies and management. Since cultivated land
is the main area around the urban area of Hengyang, it is difficult to avoid the built-up
land occupation of cultivated land in regard to the urbanization and industrialization of
Hengyang. When the problem of grain output decline is caused by cultivated reduction, the
government needs to transform other types of land into cultivated land from farther away
from urban land to achieve the “requisition–compensation balance” of cultivated land.

4. Discussion
4.1. Pattern and Process of LULC Change in Hengyang

In land change science, patterns and processes of LULC change are often discussed for
the analysis of historical land change characteristics [20]. Intensity Analysis here shows
that LULC change has undergone a complex process in Hengyang from 1980 to 2015, and
among the three intervals, the 2005–2015 interval registered the largest annual change rate,
which was three times that of the other two intervals, indicating the rapid change in this
specific period. Another important finding is that the 1980–1995 and 1995–2005 intervals
shared similar annual change (Figure 5), indicating that in the past 35 years, land change
has accelerated since 2005 in Hengyang. This can be explained by the fact that Hengyang
has taken reformational measures to answer to the “Rise of Central China” policy initiated
by the Chinese Government in 2003, and urgent economic needs and regional resource
development have significantly altered LULC in the area of study. Both have led to the
rapid growth in land change size and intensity. With LULC structure statistics and a
transition matrix, scientists will be able to identify land patterns and transition size [43,64].
However, scientists need to pay attention to what is driving category increases, decreases,
and transition size. Figures 7 and 8 show that the transition from cultivated and forest
lands to built-up land was large. Compared with previous studies on Hengyang, category
and transition levels of intensity analyses can better interpret the pattern and process
phenomena. Figure 7 shows that the gain of built-up lands targeted cultivated but avoided
forest lands. The transition from forest to built-up land was large since the original size
of forest was large. The transition from cultivated to built-up land was large as well, due
to the following two reasons: First, the original size of cultivated land was large. Second,
built-up land stably gained targeted cultivated land (Figure 8). In addition, Figure 8 shows
that the mutual transition between cultivated and water lands is stationary targeting as
well, due to the following two reasons. First, water spreads across Hengyang, hence a
greater possibility of being occupied in land change processes. Second, cultivated and
water lands interact as a mosaic structure since rice farming in Hengyang depends on water.
Therefore, the problem for future research is “how to quantify the neighborhood effects
between land types”. Researchers should invent a land category adjacency matrix where
each item value represents a certain adjacency length.

4.2. New Transition Pattern to Communicate Mode of LUCC

Compared with traditional methods such as transition matrix and dynamic degree,
intensity analyses can reveal in-depth patterns and processes of LULC change in a top-
to-bottom analysis [65]. For that, it has been applied to the study of geographic units
of different scales and periods, providing a new quantitative research method for land
change science. In the past, intensity analyses were often visualized by bar charts, where
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bar length represents category change size and intensity and is compared with a uniform
line to identify land category change characteristics such as fast, slow, active, dormant,
target, and avoid [20]. There are two defects in the traditional transition level. First, a
large number of bar graphs are generated to express the size and intensity of different land
categories at various intervals. If the transition level design here follows that of Aldwaik
and Pontius Jr [12], 18 bar charts will be needed for three time intervals and six land
categories, which is relatively complicated. Therefore, previous studies often chose critical
land types for analysis [14,21]. For example, Quan et al. [20] only discussed three situations
at the transition level: the gain of built, the gain of cultivated, and the gain of forest. Space
limit has reduced scientists to such a situation that they cannot simply provide all transition
information on one page. Second, it is inconvenient to compare the transition results of
different time intervals in the transition level of the original Intensity Analysis, in which
each time interval is represented by a single bar chart. Figure 6 in Fahad et al. [66] shows
the gain intensity of four intervals and six land types with 16 bar charts, creating difficulty
for temporal comparison to identify stationary characteristics.

Given the above defects, some scholars, based on Intensity Analysis, have proposed a
few visualization solutions, e.g., a cross contingency table to show whether each transition
targets or avoids [22] and a transition pattern to show transition size and the degree of
targeting or avoiding [23,24,67]. However, since the transition pattern is based on time
intervals, it fails to display LULC change characteristics and modes, e.g., stationary. In this
study, we have offered a new transition pattern with the potential to improve Intensity
Analysis methodology. This diagram shows all time intervals at the same time and can
provide more information besides size and intensity. For example, in Figure 9, in each
transition frame, we can determine stationary characteristics by checking if the color of
bubbles is consistent in the horizontal direction. For example, different from Figure 11
in Xie et al., 2020 [24], Figure 9 shows that the size and intensity of transition under each
interval are horizontally arranged to facilitate scientists in quickly identifying the temporal
stability of the transition process, instead of showing the transition size and intensity by
the interval. We thus recommend researchers to use this transition pattern. It can obtain
full transition information, explore LULC change characteristics and modes in a more
comprehensive way, and facilitate in comparing different regions so that they can discover
similarities in land change modes, make clusters, and discuss the possibility of promoting
a land policy that has been proven effective in a same-type land with similar LULC change
modes. Thus, we have a question for future work: “How to establish a similarity coefficient
to further cluster for multiple regions”.

5. Conclusions

(1) From 1980 to 2015, forest occupied the largest area, followed by cultivated land.
The annual change rates of LULC are non-stationary between the three intervals. Before
2005, the change was slow. The annual change rate for the 2005–2015 interval was three
times that of the other two.

(2) The gain of built-up and bare lands and the loss of cultivated land is stationary
and active. The loss of forest is large but dormant, indicating that the large loss of forest is
attributable to its initial size in the area of study. Cultivated and forest lands contribute
significantly to built-up gains, but with different causes, namely, intensity and large initial
size. The process of cultivated transition to built-up was stationary targeting mode, while
the process of forest transition to grass was stationary avoiding mode.

(3) The PLUS model demonstrates high accuracy and applicability in the dynamic
simulation of LULC change in Hengyang. Under the three scenarios, built-up land will
expand along roads, while cultivated, forest, and grass lands will decrease. In the scenario
of ecological protection, the decrease in forest, cultivated, and grass lands will be curbed,
and the expansion of built-up land will be slowed down, to reconcile human–land conflicts.
This will provide a reference for the sustainable development of LULC in Hengyang.
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