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Abstract: Based on the theoretical framework of the Environmental Kuznets Curve (EKC), this study
investigates whether tourism development can decrease air pollution. This study applies the panel
smooth transition regression approach and panel data for 2005–2019 from 283 prefecture-level cities
in China to examine the nonlinear effect of tourism development on PM2.5, emissions. Our results
reveal that the effects of tourism on PM2.5, emissions vary according to the modes of tourist arrivals.
At the national level, the effect of tourism on PM2.5 emissions exhibits an inverted-U shape. At the
regional level, tourism exerts a U-shaped impact on PM2.5 emissions in eastern China, and tourism is
nonlinearly negatively associated with PM2.5 emissions in central and western China. An important
theoretical contribution of our study is the proposal and validation of the U-shaped tourism-induced
EKC hypothesis.

Keywords: tourism development; PM2.5 emissions; PSTR model; tourism-induced EKC hypothe-
sis; China

1. Introduction

In recent years, the tourism industry has been regarded as one of the strategic pillar
industries of the Chinese national economy, partially because it exerts an increasingly
important impetus to promote economic growth and increase employment [1,2]. According
to data from of the Ministry of Culture and Tourism of the People’s Republic of China, the
number of domestic tourist arrivals reached 6.0 billion in 2019, an increase of 8.4%, and the
total tourism revenue reached 961.3 billion USD, an annual increase of 11%. The tourism
industry makes a comprehensive contribution of 1.59 trillion USD to the GDP, accounting
for 11.05% of the GDP. There are 79.87 million direct and indirect employees in the tourism
industry, accounting for 10.31% of the total workforce in China.

Another reason for the importance of the tourism industry is that tourism was once
characterized as a ‘smokeless industry’. Tourism-induced air pollution (including NOx,
PM2.5, PM10, CO, and SO2 emissions) is marginal in comparison with that of the manu-
facturing industry [3,4]. Therefore, tourism is a promising economic and environmental
alternative to Fordist-style resource extraction and production [5]. Many tourists consider
air quality when deciding on their destinations [6]. Therefore, clean air at a destination
can improve a tourist’s experience. In contrast, travelling in a polluted environment de-
presses travelling experiences and negatively affects tourists’ willingness to revisit [7]. This
creates a necessity for clean tourist destinations to cater to tourist demand. Thus, tourism
contributes to mitigating air pollution. Moreover, the air quality of tourism-oriented cities
is generally superior to those of manufacture-oriented cities.

However, the rapid development of the tourism industry has resulted in controversies
regarding tourism being environmentally friendly. Tourism-induced pollution has become
a prevalent topic in academic tourism circles. Some scholars believe that the current eco-
nomic growth and development driven by tourism comes at the cost of pollution and
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environmental degradation [8,9]. Tourism-induced air pollution emissions are greater
than those of other service sectors. This may be because tourism is an energy-intensive
industry [9], and almost all sectors (e.g., catering, transportation, retailing, and accommo-
dation) within the tourism industry have experienced increased demands for heavy energy,
thereby resulting in large air pollution emissions [10]. A study found that almost 70% of
the carbon emissions generated by the tourism industry originates from the combustion of
fuels used for accommodation, transportation, and land use [11,12]. Higham et al. (2016)
found that the demand for transportation, catering, accommodation, and other tourism
processes significantly contributed to global air pollution emissions [13]. Therefore, exces-
sive and unduly expanding tourism pose severe challenges to the environmental quality of
tourist destinations.

These conflicting views from existing studies may lead to inconsistent results regard-
ing whether and to what extent tourism significantly affects air pollution. Although the
relationship between tourism and air pollution has been well-documented, there are still
drawbacks. First, previous studies have mainly focused on the influence of air pollution
on tourism, and less attention has been devoted to the effects of tourism on air pollution.
Second, regarding the proxy variables of air pollution, most studies focus on CO2 emis-
sions, neglecting other air pollutants such as PM2.5, PM10, and SO2. Finally, a large body
of empirical studies have already proven that tourism development will lead to severe
externalities that will threaten air quality [14,15], but this influence may not be simply
linear [16,17]. The hypothesis of the tourism-induced environmental Kuznets curve (EKC),
which depicts the inverted U-shaped relationship between tourism and air pollution [12],
is widely applied to test nonlinear impacts. However, whether the tourism-induced EKC
hypothesis also holds for other pollutants, such as PM2.5, has rarely been investigated.

Our study empirically investigates the effect of tourism development on air pollution
based on panel data from 283 cities in mainland China between 2005 and 2019. PM2.5
emissions are indicators of air pollution because PM2.5, the culprit of air pollution in
Chinese cities [8], can exert severe harm to human health and the environment more than
other air pollutants. According to the WHO (2016), high PM2.5 concentrations can induce
strokes, lung cancer, heart disease, chronic obstructive pulmonary disease, pneumonia, and
other diseases. A study that went beyond examining the nonlinear tourism-air pollution
nexus by introducing quadratic terms into linear models [8,18] found that an endogeneity
problem, such as ordinary least squares, fixed effects, and panel data regression models,
may exist in linear models and can lead to biased and inconsistent results [19,20]. The
frontier econometric technique of the panel smooth transition regression (PSTR) model is
employed. To achieve the research objective, we attempt to answer the following questions
using the empirical results: Does tourism development exert an impact on PM2.5 emissions
under different levels of tourism specialization? Does the tourism-induced EKC hypothesis
hold true for different regions? If this is the case, what is the underlying mechanism?
What are the characteristics of the spatial distribution of this influence? These answers will
facilitate a profound understanding of the relationship between tourism and air pollution,
which will contribute to ensuring the healthy development of the tourism industry in the
foreseeable future.

To the best of our knowledge, this study is novel for reasons as follows: First, regarding
the tourism-induced EKC hypothesis, this research provides new insights regarding the
influence of tourism development on air pollutant PM2.5, thereby validating the tourism-
induced EKC hypothesis for China and further proposing an extended tourism-induced
EKC model. Second, instead of traditional econometric methods, this study applies the
PSTR model to explore the nonlinear impact of tourism development on air pollution under
the different threshold values of tourism specialization. In the PSTR model, the relationship
between air pollution and tourism development smoothly transitions from a high tourism
development regime to a low tourism development regime. Additionally, the PSTR model
can effectively address the possible problem of endogeneity among variables [21]. Finally,
because of the internally heterogeneous characteristics across regions in China’s vast



Int. J. Environ. Res. Public Health 2022, 19, 8442 3 of 19

territory, it is necessary to implement a case-by-case analysis on a regional scale [22]. This
study divides China’s 283 cities into 3 distinct regions, including 100 east cities, 107 central
cities, and 76 west cities, as these 3 separate groups have different levels of air pollution and
tourism development. To reveal these disparities, it is important to explore the nonlinear
effects of tourism development on air pollution within a more homogenous group of cities
(i.e., with similar conditions).

The remainder of this paper Is organized as follows. Section 2 reviews the effect of
tourism on air pollution and the tourism-induced EKC hypothesis. Section 3 describes
the theoretical analysis, methods, and data. Section 4 presents the empirical results. The
discussion and conclusions are presented in Section 5.

2. Literature Review
2.1. The Effect of Tourism on Air Pollution

Although most studies find evidence supporting a significant impact of tourism
development on air pollution, the direction of its influence is still under discussion. Overall,
these empirical results can be classified into three strands of research. The first strand
suggests that tourism has a positive effect on air pollution. Many studies find that tourism
leads to an increase in air pollution [16,23]. Koçak et al. (2020) and Katircioğlu (2014)
determined that tourism increases energy consumption and CO2 emissions. Some studies
using pollutants other than CO2 have found a positive effect of tourism on destination
air pollution. For example, Saenz-de-Miera and Rosselló (2014) used a semi-parametric
approach to model the impacts of air pollutant PM10 in Mallorca, Spain [14]. The results
indicated that a 1% increase in tourist arrivals could be related to a 0.45% increase in PM10
emissions. Robaina et al. (2020) studied the influence of tourism on PM10 concentrations as
a representative of air quality in five European countries. The empirical results prove that
tourism growth can deteriorate air quality in Austria and Italy [24].

The second strand considers the negative impact of tourism on air pollution. Lee and
Brahmasrene (2013) found that tourism was negatively correlated with CO2 emissions in
27 European countries. Specifically, a 1% increase in tourism resulted in a 0.11% decrease
in CO2 emissions [25]. Bojanic and Warnic (2020) examined the impact of tourism on
global greenhouse gas (GHG) emissions. Their findings indicate that countries with higher
tourism densities have lower GHG emissions and higher environmental performances [26].
Tian et al. (2021) found that a 1% increase in tourism development leads to a 0.05% decrease
in CO2 emissions in the long run in G20 economies [10]. Ciarlantini et al. (2022) found
some differences in the impacts of international and local tourism on air pollution, that is,
that international tourism negatively affects NOx, PM10, and PM2.5 emissions, while local
tourism increases their emissions [27].

The third strand shows a nonlinear relationship between tourism and air pollution.
Paramati et al. (2017) concluded that, when CO2 emissions exceed a certain threshold, the
estimated coefficient of tourism on CO2 emissions begins to decrease owing to government
policies, especially in developed countries [16]. Sherafatian-Jahromi et al. (2017) found
an inverted U-shaped EKC between tourism and CO2 emissions in five Southeast Asian
countries [17]. Balsalobre-Lorente et al. (2020) used OECD countries as a case study and
found that tourism has an inverted U-shaped impact on CO2 emissions [28].

In China, only a few studies have considered the effect of tourism on air pollution, and
the conclusions are inconsistent. For example, Bi and Zeng (2019) explored the effects of
tourism on carbon emissions in China from nonlinear and spatial perspectives and found
that a significant inverse U-shaped relationship exists between them. Moreover, they found
that tourism has a spatial nonlinear spillover effect on carbon emissions [29]. Similar results
obtained by Zeng et al. (2021) suggest that the direct effect of tourism development on
PM2.5 emissions exhibits an inverted U-shaped curve [8].
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2.2. Tourism-Induced EKC Hypothesis

The Environmental Kuznets Curve (EKC) hypothesis, proposed by Grossman and
Krueger (1991), suggests that, when a country’s economic development is at a low level,
environmental deterioration intensifies with economic growth; when economic develop-
ment reaches a specific threshold, that is, after reaching a critical, or ‘inflection point’,
environmental pollution continuously decreases with economic growth. This implies that
environmental quality is gradually improving. It demonstrates an inverted U-shaped
pattern between economic growth and pollution. Thereafter, a large number of studies
have emerged to validate the EKC hypothesis, but the results have been inconsistent [30].
There are more than four types of EKCs in the literature, such as the inverted U-shaped,
U-shaped, N-shaped, and M-shaped curves [31,32].

The tourism-induced EKC hypothesis, first proposed by Katircioglu (2014) [33], pro-
vides a theoretical basis for our study. Until the recent decade, this hypothesis has drawn
some attention from scholars in the context of rapid tourism development [16,34,35]. It
indicates that environment pollution follows an increasing and then decreasing trend with
the development of the tourism industry. Subsequently, many studies have tested the
tourism-induced EKC hypothesis in different countries and regions [8]. Akadiri et al. (2019)
confirmed the globalization-tourism-induced EKC hypothesis and found that international
tourism and the squared term of real income have an inverse significant impact on carbon
emissions [36]. Katircioglu et al. (2018) investigated the role of tourism development on
the ecological footprint quality of the top 10 tourist destinations and found that tourism
development has an inverted U-shaped relationship with the ecological footprint, support-
ing the tourism-EKC hypothesis [8]. Gao and Zhang (2021) validated the tourism-induced
EKC hypothesis for southern Mediterranean countries, but failed to support the hypothesis
for the northern Mediterranean region [37]. Yildırım et al. (2021) tested the tourism-EKC
hypothesis for 15 Mediterranean countries and found that tourist arrivals increased carbon
emissions until a certain threshold was reached and then decreased carbon emissions above
this level [38]. Ciarlantini et al. (2022) explored the relationship between air pollution
and tourism growth in five European countries and failed to validate the tourism-EKC
hypothesis for any of the countries [27].

3. Theoretical Analysis, Method, and Data
3.1. Theoretical Analysis

Various theories have been used to reveal the theoretical connections between tourism
development and air pollution and to explain the shape of the EKC, such as the dynamic
general equilibrium theoretical model [39] and Dutch disease theory [40]. There are mainly
three shapes in tourism literature describing the relationship between tourism and pollution:
two linear (positive and negative) relationships and an inverted U-shaped relationship (see
Figure 1a–c). This study attempts to extend the conventional theoretical tourism-induced
EKC framework, that is, the U-shaped tourism-induced EKC hypothesis, and then verifies
its validity through the following empirical analysis.

In contrast to the conventional EKC hypothesis, the U-shaped tourism-induced-EKC
hypothesis (see Figure 1d) suggests that air pollution continues to decrease as tourist
arrivals increase in regime 1 until tourist arrivals reach a certain threshold. When tourist ar-
rivals exceed the threshold (regime 2), the effect of tourist arrivals on air pollution becomes
positive. This is because, when the number of tourists exceeds a destination’s carrying
capacity and the government’s environmental governance capacity, tourism development
will lead to severe air pollution. This study hypothesizes that, as tourist arrivals are associ-
ated with air pollution, once tourist arrivals reach a certain threshold, the air quality will
decrease. Thus, a U–shaped relationship may exist between tourism development and air
pollution, namely, the U–shaped tourism induced-EKC hypothesis.
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3.2. Method
3.2.1. Panel Smooth Transition Regression Model

To account for the potentially non-linear impact of tourism development on air pollu-
tion, this study adopts the panel smooth transition regression (PSTR) approach developed
by Gonzalez et al. (2005) [41], which can resolve the heterogeneity problem of different units
in a nonlinear framework [42]. In this study, the PSTR model had the following advantages:
Firstly, the PSTR model allows for parameter heterogeneity in the panel model [21,43].
Second, the PSTR model allows for a smooth transition between regimes [44]. Finally,
transitions within the PSTR model could effectively verify the tourism-EKC hypothesis that
exhibits a U-shaped or inverted U-shaped pattern. Based on the above considerations, it is
appropriate to implement a PSTR model to capture the nonlinear and regime-switching
effects of tourism on air pollution.

The general equation of the PSTR model with two more regimes can be defined
as follows:

yit = µi + ϕxit +
γ

∑
j=1

β jxitgj

(
qit

(j); γj; cj

)
+ αzit + εit, (1)

where i = 1, . . . , N and t = 1, . . . , T; N and T represent the number of cities and period of
the panel, respectively. In Equation (1), yit denotes the dependent variable and xit denotes a
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vector of the time-varying independent variable. ϕ and β denote the estimated coefficients
of the linear and nonlinear components, respectively. µi stands for the individual fixed
effect, zit denotes the control variables and α is their estimated coefficients. εit is the random
errors. git

(
qit

(j); γj; cj

)
stands for the transition function of the transition variable qit.

Further, the equation of git

(
qit

(j); γj; cj

)
can be expressed as follows:

git

(
qit

(j); γj; cj

)
=

(
1 + exp

(
−γ

m
∏
j=1

(
qit

(j) − cj

)))
,

γ > 0, c1 ≤ c2 ≤ c3 . . . ≤ cm

(2)

where γj is the number of transition function which describes transition slope, cj stands for

the location parameter and m is the number of git

(
qit

(j); γj; cj

)
. Gonzalez et al. (2005) [41]

found that it is sufficient to consider only the cases of m = 1 or m = 2 that capture the
nonlinearities caused by regime switching. m = 1 corresponds to a logistic PSTR model,
and m = 2 represents a logistic quadratic PSTR specification [45], where there is a U-shaped
or inverted U-shaped pattern described by the shape of the transition function [46].

3.2.2. Linearity Test and Non-Remaining Nonlinearity Test

Before the estimation, according to Colletaz and Hurlin (2006) [47], a linearity test of the
PSTR model must be conducted by applying the Lagrange multiplier (LM), F-version LM
(LMF), and pseudo-LR tests to check whether the regime-switching effect is effective [48].
The equations of the LM, LMF, and LR tests can be specifically constructed as follows:

LM =
TN(SSR0 − SSR1)

SSR0
, (3)

LMF =
TN(SSR0 − SSR1)/k
SSR0/(TN − N − K)

, (4)

LR = −2[log(SSR1)− log(SSR0)], (5)

where k denotes the number of independent variables, SSR0 denotes the sum of the squared
residuals under H0 (linear panel model with individual effects), and SSR1 denotes the
sum of the squared residuals under H1 (PSTR model with two regimes). Under the null
hypothesis, the LM and LR statistics are χ2(k) distributions, whereas the LMF statistics
are distributed with F values (k, TN-N-K). If the null hypothesis (H0) does not pass the
significance test, then the PSTR model is linear. If the null hypothesis (H0) is rejected, the
PSTR model is nonlinear. Next, the non-remaining nonlinearity test proposed by Fouquau
et al. (2008) [49] can be used to determine the number of transition functions and the
number of regimes to be included in the PSTR model [50].

3.3. Variable Selection and Data Sources

This study uses panel data from 283 prefecture-level cities in mainland China from 2005
to 2019. In the regression model, the annual average PM2.5 concentrations (in micrograms
per cubic meter, µg/m3) are used to measure the level of air pollution because PM2.5 con-
centrations are widely monitored and their data are continuously collected by governments
worldwide, making them easily obtainable. In current tourism and environmental research,
it is a common practice to use PM2.5 concentrations as a proxy for air pollution [8,51]. Some
scholars have found that tourism exerts a positive effect on PM2.5 emissions [51,52]. How-
ever, Zeng et al. (2021) found that the direct effect of tourism on PM2.5 emissions exhibits an
inverted U shape [8]. The PM2.5 data for 2005–2019 were obtained from the measurement
data of global surface PM2.5 concentration by atmospheric composition analysis group of
Washington University (https://sites.wustl.edu/acag/datasets/surface-pm2-5/, accessed

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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on 12 January 2022). Following the study of Xu et al. (2020) [51], this study employs ArcGIS
software to vectorize these raster data into the annual average concentrations of PM2.5.

The core explanatory variable is the level of tourism development, which is represented
by the ratio of total tourist arrivals to the local inhabitants (TA) [1]. The total tourist arrivals
are comprised of local and international tourist arrivals. Annual data on total tourist
arrivals for each city were derived from the China City Statistical Yearbook (2006–2020)
and the Statistical Yearbook of each province (2006–2020).

Further, the economic development level (PGDP), population density (DENS), R&D in-
vestment (TECH), fixed capital investment (INVEST), transportation development (TRAFF),
and green coverage (GREEN) have significant impacts on air pollution [8,53–55]. Trans-
portation development is proxied by the ratio of the total passenger traffic volume of
highways, railway transport, and civil aviation to local inhabitants. Therefore, these vari-
ables set as the control variables are included in the PSTR model. The data for these control
variables were obtained from the China City Statistical Yearbook (2006–2020). To eliminate
possible heteroskedasticity in the data, all variables were logarithm-sized. Table 1 presents
the descriptive statistics of the study variables.

Table 1. Descriptive statistics for the variables.

Variables Definition Obs Mean SD Min Max

lnPM Logarithm of annual average PM2.5
concentrations (µg/m3) 4025 3.751 0.360 1.150 4.687

lnTA Logarithm of the ratio of total tourist
arrivals to the local inhabitants 4025 1.389 1.061 −1.986 4.286

lnPGDP Logarithm of per capital GDP (CNY) 4025 2.333 0.105 0 2.752

lnDENS
Logarithm of the ratio of local

inhabitants to urban area (million
persons /10,000 km2)

4025 −1.185 0.933 −5.36 1.015

lnTECH
Logarithm of the ratio of Investment in

Science and Technology to public
expenditure of government

4025 −4.757 1.246 −15.538 0

lnINVEST Logarithm of the ratio of fixed capital
investment to GDP 4025 −0.410 0.601 −3.655 2.396

lnTRAFF

Logarithm of the ratio of the total
passenger traffic volume of highway,

railway transport, and civil aviation to
local inhabitants

4025 2.577 0.882 −5.138 8.144

lnGREEN Logarithm of the ratio of green
coverage to urban area 4025 −0.989 0.397 −5.627 1.352

3.4. Model Setting

To explore the linear and nonlinear effects of tourism on air pollution, we followed
the model of Stochastic impacts by regression on population, affluence, and technology
(STIRPAT model) developed by York et al. (2003) [56] to specify the basic and logarithmic
model as follows:

Ii,t = αPa
i,t Ab

i,tT
c
i,tµi,t, (6)

LnIi,t = α + aLnPi,t + bLnAi,t + cLnTi,t + µi,t, (7)

where P, A, and T represent the population, affluence, and technology, respectively; a, b,
and c are their estimated coefficients; α denotes the constant; µ is the error term; and I and
t denote the city and year, respectively. According to Liddle (2014) [57], Ahmad and Ma
(2021) [12], and Zeng et al. (2021) [8], tourist arrivals as indicators of affluence and other
control variables are included in the STIRPAT model. The linear model can be rewritten
as follows:

LnPM = α + aLnDENSi,t + bLnTAi,t + cLnTECHi,t + dLnPGDPi,t + eLnINVESTi,t + f LnTRAFFi,t +
gLnGREENi,t + µi,t.

(8)

In the PSTR model, it can further be specified as follow:
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LnPM = α + a0LnDENSi,t + b0LnTAi,t + c0LnTECHi,t + d0LnPGDPi,t + e0LnINVESTi,t + f0LnTRAFFi,t +
g0LnGREENi,t + ∑γ

j=1[a1LnDENSi,t + b1LnTAi,t + c1LnTECHi,t + d1LnPGDPi,t + e1LnINVESTi,t +

f1LnTRAFFi,t + g1LnGREENi,t]∗ gj

(
qit

(j); γj; cj

)
+ µi,t

(9)

4. Empirical Results

Figure 2 shows the spatial distribution of PM2.5 concentrations and total tourist arrivals
in 2005 and 2019. A darker color in the figures implies higher PM2.5 concentration and
total tourist arrival values. China has suffered severe PM2.5 air pollution in the past
15 years, demonstrating a deterioration of air quality. Highly polluted cities are located
in the North China Plain and Sichuan Basin. There was a slight change in the spatial
distribution of PM2.5 concentrations among cities between 2005 and 2019. The annual
average PM2.5 concentration for the entire area decreased from 45.79 µg/m3 in 2005 to
33.79 µg/m3. Nevertheless, it can still harm human health because the annual average is
above 10 µg/m3 [51].

From 2005 to 2019, the tourism industry at the city level developed rapidly. According
to the official statistics of China, the total number of total tourist arrivals increased from
1.2 billion in 2005 to 6 billion in 2019 (more than a 500% increase). There were significant
differences in the levels of tourist arrivals among the cities. The degree of high tourist
arrivals increased throughout the period, depicting a hierarchical diffusion trend from
east to west. Due to unique resource endowments, location conditions, and transport
accessibility, the high-value areas of total tourist flows are scattered in Beijing–Tianjin,
the Yangtze River Delta, Pearl River Delta urban agglomerations [58], and the Chengdu-
Chongqing Economic Circle. As suggested by Xu et al. (2020) [51] and Yang and Wong
(2012) [58], changes in tourist arrivals exhibit a core-periphery evolutionary pattern that
centers on these core cities and diffuses to the surrounding cities.
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As a prerequisite for empirical analysis, it is necessary to test the order of integration
of these variables to avoid a spurious regression. This study utilizes four unit-root tests,
including the LLC, IPS, Fisher-ADF, and Fisher-PP tests, to check sequence stationarity in
their levels and first differences. Table 2 presents the results of the stationarity tests. Most
variables (lnTA, lnPGDP, lnINVEST, lnTECH, and lnGREEN) pass the stationary test both
in their levels and first differences, indicating that the variables are stable. Three variables
of lnPM, lnDENS, and lnTRAFF failed to reject the null hypothesis of stationarity in their
levels, but pass the stationary test at a 1% level after the first-order difference, indicating
that they are I (1).

Table 2. Results of the stationarity test.

LLC IPS ADF−Fisher ADF−PP Conclusion

lnPM 1.162 14.464 178.191 400.978 Nonstationary
D.lnPM 18.425 *** 16.258 *** 1230.91 *** 3629.20 *** Stationary

lnTA 9.376 *** 1.164 655.301 *** 1023.27 *** Stationary
D.lnTA 11.049 *** 13.066 *** 1100.53 *** 2733.32 *** Stationary
lnPGDP −5.559 *** 9.169 393.726 *** 810.519 *** Stationary

D.lnPGDP −22.278 *** −20.086 *** 1454.06 *** 4375.37 *** Stationary
lnDENS −15.329 *** 4.365 469.918 758.046 *** Nonstationary

D.lnDENS −29.112 *** −12.645 *** 1011.48 *** 2763.52 *** Stationary
lnINVEST −7.382 *** −5.387 *** 863.154 *** 1875.17 *** Stationary

D.lnINVEST −9.474 *** −16.510 *** 1271.30 *** 3969.88 *** Stationary
lnTECH −13.546 *** −3.489 850.017 *** 1181.34 *** Stationary

D.lnTECH −26.448 *** −21.556 *** 1565.70 *** 2408.56 *** Stationary
lnTRAFF −4.067 6.397 372.726 *** 596.351 *** Nonstationary

D.lnTRAFF −13.763 *** −7.725 *** 845.667 *** 2516.24 *** Stationary
lnGREEN −27.514 *** −8.789 *** 898.184 *** 1378.12 *** Stationary

D.lnGREEN −23.663 *** −20.052 *** 1447.31 *** 3458.67 *** Stationary
Panel Kao residual cointegration test −6.742 ***

Notes: *** p < 0.01.
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Furthermore, the panel cointegration test was used to verify whether a long-term equi-
librium relationship exists among the studied variables [59]. The panel Kao cointegration
test in Table 2 passed the cointegration test at a 1% statistical level, confirming that there is
a long-term stable link among the variables. Therefore, the PSTR analysis is appropriate.

After performing the stationarity test, it is essential to test whether the empirical
analysis based on the PSTR model is appropriate using linearity and remaining nonlinearity
tests. This study used lnTA as the transition variable to investigate the effect of tourism
development on air pollution under different levels of tourism arrivals. Table 3 shows the
results of the linearity and remaining nonlinearity tests. The null hypothesis of linearity
(H0: r = 0 vs. H1: r = 1) was rejected for the LM, LMF, and LRT tests, indicating that the
effect of tourism development on air pollution is nonlinear. Thus, this study determined
the number of transition functions. The results in Column 2 show that the null hypothesis
of the non-remaining nonlinearity test (H0: r = 1 vs. H1: r = 2) cannot be rejected for the
LMF test, indicating that the PSTR model has only one transition function. Finally, AIC
and BIC were used to select the number of location parameters. According to Table 3, the
values of AIC and BIC at m = 1 are −4.668 and −4.644, respectively, which are less than
their values of −4.667 and −4.642 under m = 2, respectively. This implies that the optimum
number of location parameters is 1. Therefore, the PSTR model with one transition function
(r = 1) and one transition location (m = 1) was preferred and selected.

Table 3. Linearity and remaining nonlinearity tests.

H0: r = 0 vs. H1: r ≥ 1 H0: r = 1 vs. H1: r ≥ 2

LM 597.188 *** 25.860 **
LMF 92.497 *** 3.451
LRT 643.603 *** 25.939 **

AIC BIC
m = 1 −4.668 −4.644
m = 2 −4.667 −4.642

Notes: ** p < 0.05, *** p < 0.01.

Column 3 in Table 4 reports the non-linear effects of tourism on PM2.5 emissions,
estimated using the panel threshold regression (PTR) model. The threshold variable TA has
a single threshold of 2.045 and produces two regimes for the PTR model. When the TA is
less than 2.045, the estimated coefficient of lnTA is −0.067 and is significant at a 1% statistic
level, implying that a 1% increase in PM2.5 emissions may significantly lead to a 0.067%
decrease in the number of tourist arrivals. When the TA exceeds 2.045, the coefficient is
negative and statistically significant, with an effect size of −0.97, which is stronger than
that in the first regime. The control variables lnPGDP, lnTECH, lnINVEST, and lnTRAFF
have positive effects on the lnPM, showing that economic development, R&D investment,
capital investment, and transportation can significantly increase PM2.5 emissions.

Columns 4 and 5 show the estimated results of the PSTR model with one transition
function and one transition location. The location parameter c was 2.294, indicating that
the PSTR model transitioned to a double-regime mode. The transition parameter γ is 0.419,
indicating that the transition between the two regimes is smooth.

In terms of the effect of tourism development on PM2.5 emissions, when lnTA is
less than 2.294 (TA < 9.915), the estimated coefficient of lnTA is 0.098 and is significant
at 1% level, indicating that, under the low-tourism development regime, a 1% increase
in the ratio of tourist arrivals to local inhabitants can induce a 0.098% increase in PM2.5
emissions. A possible reason is that, in cities with low levels of urban tourism development,
many short-sighted behaviors, such as over-exploitation and disorderly competition in
the tourism industry, a large number of high-energy consumption and high-pollution
enterprises, and imperfect environmental regulations, lead to higher PM2.5 emissions [8].
When lnTA exceeds 2.294 (TA > 9.915), the estimated coefficient of lnTA is −0.155, which
is significant at a 1% statistical level. This result indicates that, under the high-tourism
development regime, tourism development can exert a significantly negative effect on
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PM2.5 emissions. Therefore, there is an inverted U-shaped link between tourism and
PM2.5 emissions, verifying the presence of an inverted U-shaped EKC hypothesis for
tourism [8,60]. For each city, the estimated coefficients of the lnTA were further interpreted
as individual elasticities (Figure 3a). We find that the individual elasticities of the lnTA
decrease and change from positive to negative with an increase in the lnTA. Figure 3b
shows the spatial distribution of high-to-low tourism regimes based on the average TA in
each city, showing that 224 cities are in the low-tourism development regime and 60 cities
are in the high-tourism development regime.

Table 4. Estimated results of the PSTR model for China.

FE Model PTR-FE Model
PSTR Model

Linear Nonlinear

lnTA −0.094 ***
(0.003)

0.098 ***
(0.010)

−0.155 ***
(0.016)

lnPGDP 0.006
(0.022)

0.0005
(0.021)

0.288 ***
(0.033)

−0.574 ***
(0.053)

lnDENS −0.128 ***
(0.028)

−0.120 ***
(0.027)

0.068
(0.046)

−0.389 ***
(0.027)

lnTECH 0.030 ***
(0.002)

0.029 ***
(0.002)

0.006
(0.007)

0.062 ***
(0.016)

lnINVEST 0.016 ***
(0.004)

0.009 **
(0.004)

−0.014
(0.016)

0.043
(0.034)

lnTRAFF 0.045 ***
(0.003)

0.041 ***
(0.003)

0.032 ***
(0.011)

0.003
(0.025)

lnGREEN −0.0004
(0.006)

−0.003
(0.005)

−0.013
(0.020)

0.010
(0.057)

lnTA (lnTA < 2.045) −0.067 *
(0.003)

lnTA (lnTA ≥ 2.045) −0.097 ***
(0.003)

_cons 3.750 ***
(0.062)

3.754 ***
(0.061)

Hausman test 81.58 ***
γ 0.419
c 2.294
N 4245 4245

Notes: standard error are in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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Among all the control variables, this study finds that the economic development
(lnPGDP) has a positive significant effect on PM2.5 emissions under the low-tourism devel-
opment regime, but its impact is significantly negative under the high-tourism development
regime. One possible reason for this is that tourism-oriented economic development can
decrease air pollution in local cities. Variable transportation development (lnTRAFF) is
positively correlated with PM2.5 emissions under both regimes, but its coefficient becomes
nonsignificant under the high tourism development regime.

One may be concerned about the existence of a heterogeneous relationship between
tourism and air pollution when considering different regions as destinations. Therefore,
this study further divided the entire sample into the three sub-samples of easter, central,
and west cities and examines heterogeneity across different regions. The main estimation
results for the East, Central, and West cities based on the PSTR model are presented in
Table 5.

Table 5. Estimated results of PSTR model for different regions.

Variables
East Cities Central Cities West Cities

Linear Nonlinear Linear Nonlinear Linear Nonlinear

lnTA −0.357 ***
(0.077)

−0.028 ***
(0.014)

0.344 ***
(0.076)

−0.086 ***
(0.025)

−0.044
(0.040)

−0.054 ***
(0.015)

−0.087 ***
(0.016)

lnPGDP 0.668 ***
(0.090)

−0.533 ***
(0.098)

−0.676 ***
(0.100)

−0.013
(0.061)

0.069
(0.104)

0.056
(0.063)

−0.142 ***
(0.034)

lnDENS −0.019
(0.095)

−0.245 ***
(0.052)

−0.019 ***
(0.042)

−0.185 ***
(0.059)

0.356 ***
(0.041)

−0.017
(0.064)

−0.170 ***
(0.014)

lnTECH 0.102 ***
(0.028)

−0.010
(0.025)

−0.066 ***
(0.022)

0.086 ***
(0.016)

−0.098 ***
(0.025)

0.016 ***
(0.004)

0.018 *
(0.010)

lnINVEST −0.126 ***
(0.052)

0.222 **
(0.054)

0.037
(0.038)

−0.359 ***
(0.053)

0.608 ***
(0.093)

0.039 ***
(0.014)

−0.008
(0.019)

lnTRAFF 0.075 ***
(0.047)

0.013
(0.051)

−0.042
(0.034)

0.128 ***
(0.035)

−0.187 ***
(0.057)

0.009
(0.007)

0.060 ***
(0.014)

lnGREEN 0.650
(0.141)

−0.380 ***
(0.142)

−0.561 ***
(0.104)

−0.011
(0.072)

−0.019
(0.111)

0.014 *
(0.008)

−0.049 *
(0.028)

γ −0.108; 6.463 0.213 1.500
c 2.362; 2.796 1.893 1.633
N 1500 1605 1140

Notes: standard error are in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.

For the East cities of China, there are two location parameters, 2.362 and 2.796, which
transition to a triple-regime PSTR model. Interestingly, this indicates that tourism-induced
air pollution is U-shaped (see Figure 4a), which contradicts the conclusion based on the
full sample. Specifically, when the threshold variable lnTA is less than 2.362, the estimated
coefficient of lnTA is equal to −0.357 and is significant at a 1% statistical level, indicating
that, under the low-tourism development regime, tourism development can reduce PM2.5
emissions. When the lnTA is between 2.362 and 2.796, the impact is still negative but
becomes less sensitive (−0.028). When the lnTA is higher than 2.796, the coefficient is
significant (0.344) at a 1% level, indicating that, under the high-tourism development
regime, tourism can increase PM2.5 emissions. These empirical results support the U-
shaped tourism-induced EKC hypothesis. According to the sample of the east cities, most
cities with a high regime (lnTA > 2.796), including Beijing, Benxi, Huzhou, Sanya, Xiamen,
and Zhoushan, also have high PM2.5 emissions.

For the Central and West cities, both PSTR models have double regimes. In the model
for the Central cities, the effects of the lnTA are negative under both regimes, but the
impact becomes weaker and nonsignificant under the high tourism development regime
(Figure 4b). In the model for China’s West cities, the effects of the lnTA are significantly
negative under both regimes, and their impact becomes stronger with an increase in the
lnTA (Figure 4c).
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A robustness check must be conducted to ascertain the reliability of the estimated
results. We used the contribution of the total tourism revenue to the GDP (lnTR) as an
important indicator of tourism development and as a substitute for the lnTA. Table 6
presents the robustness results of the effect of tourism revenue on PM2.5 emissions in China.
The direction and magnitude of the coefficients of tourism revenue remain unchanged.
Similarly, the impact of most control variables changed slightly. These results support the
robustness of this study.
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Table 6. Results of robustness check.

Linear Nonlinear

lnTR 0.012 **
(0.005)

−0.0003
(0.006)

lnPGDP −0.003
(0.043)

−0.153 ***
(0.019)

lnDENS −0.162 **
(0.079)

−0.110 ***
(0.009)

lnTECH 0.023 ***
(0.003)

0.025 ***
(0.006)

lnINVEST −0.020 **
(0.008)

0.061 ***
(0.011)

lnTRAFF 0.044 ***
(0.005)

−0.016 *
(0.008)

lnGREEN 0.007
(0.006)

−0.072 ***
(0.017)

γ 2.195
c −1.853
N 4245

Notes: standard error are in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.

5. Discussion and Conclusions

This study highlights the importance of the relationship between tourism develop-
ment and air pollution owing to its implications for sustainable tourism development.
Considering the main criticisms of the tourism-induced EKC hypothesis, this study focuses
on whether and how tourism can reduce or contribute to air pollution. Using a dataset of
283 prefecture-level cities in mainland China for 2005–2019, this study applies the PSTR ap-
proach to investigate the nonlinear effect of tourism development on air pollution proxied
by PM2.5 emissions. Considering the internal heterogeneity across the different regions, we
partitioned China into three distinct regions of East, central, and West cities, and further
explored the validity of the tourism-induced EKC hypothesis as well as the impacts of
other variables on air pollution at both the national and regional levels.
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Based on the theoretical framework of the EKC, our results show that the effects
of tourism development on air pollution are neither linear nor nonlinear. Specifically,
at the national level, the empirical results from the PSTR model reveal a significantly
inverted U-shaped relationship between tourism and air pollution, supporting the validity
of the conventional tourism-induced EKC hypothesis in China. When the number of
tourists reaches the high regime (lnTA > 2.271), its effect on PM2.5 emissions changes
from promoting to inhibiting. These findings are consistent with those of Bi and Zeng
(2019) [29] and Zeng et al. (2021) [8], who found an inverted U-shaped impact of tourism
on air pollution in China. However, our findings differ from those of other studies. For
example, Zhang and Gao (2016) failed to provide evidence to support the tourism-induced
EKC hypothesis in China [22]. Ahmad and Ma (2021) found that a 1% increase in tourism
development can induce a 0.386% decrease in carbon emissions in Asian Tigers [12]. Saenz-
de-Miera and Rosselló (2014) provided evidence that a 1% increase in tourist arrivals can
induce a 0.45% increase in PM10 concentrations [14]. The differences among the above
conclusions may be attributed to the differences in sample sizes, research methods, and
sampled economies [12].

At the regional level, the results of the nonlinear marginal analysis indicate that the
effects of tourism on PM2.5 emissions across different regions are heterogeneous. For
the East cities, the effect of tourism on air pollution exhibits a U-shape, confirming the
validity of the U-shaped tourism-induced EKC hypothesis. When the lnTA exceeds the
second threshold value of 2.796, its effect on PM2.5 emissions transitions from inhibiting
to promoting. For the Central and West cities, tourism exerts inhibitory effects on PM2.5
emissions in both the linear and nonlinear parts of tourist arrivals. These results imply that
the tourism-induced EKC hypothesis does hold for central and western China. The findings
differ slightly from those of Zhang and Gao (2016), who found that the tourism-induced
EKC hypothesis is weakly supported in eastern and western China and fail to document
the evidence in central China [22].

5.1. Theoretical and Policy Implications

Theoretically, our research contributes to the debate on the importance of the rela-
tionship between tourism development and air pollution. First, we propose a U–shaped
tourism-induced EKC hypothesis which extends the theoretical connection between tourism
development and air pollution under the traditional EKC framework. Our findings provide
support for these two seemingly conflicting perspectives and empirically confirm that the
nexus between tourism development and air pollution is nonlinear. This means that the
mechanism through which tourism may have a significant impact on air pollution depends
on different regimes of tourist arrivals. We have proved the nonlinear negatively shaped
and inverted U-shaped relationships, which were automatically assumed in existing stud-
ies. We found empirical support for the extended tourism-induced EKC hypothesis that
displays a U–shaped impact.

Second, the nonlinear relationship between tourism and air pollution in our study
may provide new insights into the ambiguous results of the linear model in the existing
literature. Scholars should consider the nonlinear behavior of tourism-induced air pollution,
not by including squared tourism specialization terms in their linear model, but by using a
regime-switching model, such as the PSTR model. According to Lahouel et al. (2022) [49],
the results in the linear models can be problematic, as they cannot portray all configurations
with regard to nonlinear behavior.

The findings of this study may provide valuable policy recommendations. First,
the empirical results have documented that tourism can be responsible for air pollution
reduction, implying that tourism is a cleaner industry than manufacturing and agricultural
industries. However, as some scholars have suggested, tourism is an energy-intensive
industry that produces a large amount of pollution; therefore, governments should not
neglect the negative environmental externality of tourism and should formulate a series of
stricter regulations and measures for the tourism industry to reduce pollution emissions and
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ensure the coordination between tourism and environmental protection. For example, the
development of green tourism or eco-tourism can reduce air pollution. Second, the validity
of the tourism-induced EKC is vital for considering sustainable growth and development for
national and regional growth. At the national level, the early stages of tourism development
should be of more concerns. Environment-friendly policies and measures should be issued
by the government to maintain a balance between tourism development and environmental
protection [10]. For the eastern region, we should focus more on the middle and later stages,
as the substantial tourism development may lead to severe air pollution. In addition, the
use of renewable energy and low-emission technology should be strongly encouraged by
the government in the tourism sector to reduce air pollution.

5.2. Limitation and Future Research

Our study has some limitations. First, due to limited data availability, this study
lacks discussions on the profiles of tourists (including local and international tourists) and
other air pollutants such as CO, SO2, and NO2. According to Zhang et al. (2020), different
tourism sectors have different effects on air pollution; thus, their profiles can influence
this relationship [52]. Future research should focus on the effects of different types of
tourism on different types of air pollution. Second, this study considered the level of
tourist arrivals as the transition variable in the tourism-air pollution nexus. However, other
relevant mechanisms through which tourism influences air pollution should be considered
as transition variables in the PSTR model. Future studies should investigate the regime-
switching effects of institutional quality, economic structure, and R&D investment on the
relationship between tourism and air pollution. Finally, considering that air pollution may
be relevant to the presence of old industries, heavy industries, and different industries in
different regions to a large extent, future studies should compare the difference between
the tourism air pollution nexus and the heavy industry air pollution nexus.
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