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Abstract: A better understanding of river capacity for contaminants (i.e., water environmental ca-
pacity, WEC) is essential for the reasonable utilization of water resources, providing government’s
with guidance about sewage discharge management, and allocating investments for pollutant re-
duction. This paper applied a new framework integrating a modified hydro-environmental model,
Soil and Water Assessment Tool (SWAT) model, and load–duration curve (LDC) method for the
dynamic estimation of the NH3-N WEC of the data-scarce Luanhe River basin in China. The impact
mechanisms of hydrological and temperature conditions on WEC are discussed. We found that 77%
of the WEC was concentrated in 40% hydrological guarantee flow rates. While the increasing flow
velocity promoted the pollutant decay rate, it shortened its traveling time in streams, eventually
reducing the river WEC. The results suggest that the integrated framework combined the merits of
the traditional LDC method and the mechanism model. Thus, the integrated framework dynamically
presents the WEC’s spatiotemporal distribution under different hydrological regimes with fewer
data. It can also be applied in multi-segment rivers to help managers identify hot spots for fragile
water environmental regions and periods at the basin scale.

Keywords: water environmental capacity (WEC); SWAT; load-duration curve (LDC); pollution load
distribution; water quality

1. Introduction

The rapid development of urbanization and the social economy has caused river
quality degradation in developing countries [1,2]. With the effective control of oxygen-
consuming organic pollutants, ammonia nitrogen (NH3-N), one of the most common
aquatic contaminants responsible for eutrophication, has been included as a constraint
indicator of total pollutant discharge control since 2011 (Twelfth Five-year Plan in China).
Furthermore, in the Fourteenth Five-year Plan in China, the government put forward a
target to reduce the total NH3-N discharge by more than 8% between 2020 and 2025. Under
the overall reduction objective, there is an urgent requirement for scientific planning of
allowable load allocation to combine the reduction target and local water quality standards
throughout the country [3]. Water environmental capacity (WEC) is one of the most effec-
tive strategies currently adopted in domestic environmental management [4–6]. It plays
a similar role to total maximum daily loads (TMDLs) [7–9], carrying capacity [10], assim-
ilative capacity [11,12], and so on, which reflects the maximum abilities of a water body
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to accommodate pollutants under the limitation of target water quality [13]. According to
the Chinese Academy for Environmental Planning (CAEP) [4], for better management of
pollutant discharge, WECs have been further categorized: ideal WEC, actual WEC, and rem-
nant WEC. Ideal WEC is a natural property of water bodies, representing the self-cleaning
capacity of a water body through dilution and assimilation processes. It is quantified by the
maximum allowable loads, consisting of point and non-point source pollutants. Because
non-point source pollution (e.g., agricultural or urban surface runoff) is challenging to
control, CAEP proposed the concept of actual WEC, representing the maximum allowable
loads for point source pollutants. Actual WEC is calculated by the difference between the
ideal WEC and non-point source pollution loads. It is mainly used by the government to
regulate and control wastewater discharge from local industries and large-scaled livestock
breeding farms. Meanwhile, remnant WEC is the carrying capacity left after deducting all
existing point source pollutions from the actual WEC. It reflects the local pollution state,
and whether the water body can accommodate more pollutants. Therefore, both actual and
remnant WECs are calculated based on the ideal WEC. With the estimation of ideal WEC,
the total maximum allowable loads can be quantified and appropriately allocated between
the different regions to coordinate socioeconomic development and aquatic environmental
protection. Combining the investigation of synchronous discharges of two pollution types,
the other WECs can be further determined.

To determine WEC, many methods have emerged based on mechanistic water qual-
ity models [14,15] and the system-optimized model [16,17]. However, these methods are
associated with abundant iterative trials and tedious calibrations, which can therefore
hardly be popularized nationwide. In addition to the complicated approaches, the Environ-
mental Protection Agency (EPA) provided a load–duration curve (LDC) method, which is
straightforward for estimating the loading capacity [18]. The core of the LDC method is to
establish the flow cumulative frequency curve (i.e., flow duration curve (FDC)) based on
the historical runoff data and multiply it by the water quality standards to generate the
maximum allowable loads in each flow regime (herein similar to ideal WEC). The LDC
method can easily be used in any river section and easily connects the flow variability with
the number of allowable loads [19,20]. However, it does not consider the transport and
transformation mechanisms after the pollutants load into the river [21]. Thus, it would
be deficient if other factors, e.g., temperature and flow velocity, also greatly impact the
pollutant’s fate. The method based on the steady-state water quality model is consequently
preferred for estimating the river WEC because it considers the pollutants’ decay processes
with lower computing resources and data needs [4,21]. Currently, the domestic studies
of WECs management were mainly based on the guidance from CAEP [4], taking a 90%
hydrological guarantee flow rate (i.e., low flow condition) or the driest monthly average
discharge in the last 10 years of statistics as the design conditions for WEC estimation [3,22].
Li et al. [5] fond that the annual NH3-N WEC calculated under 90% guarantee flow rate
was half of the result under a 70% guarantee flow rate in the Zhangweinan subbasin.
Lacking the consideration of the spatial-temporal heterogeneity of flow conditions is the
main reason for the uncertainty of WEC estimation. Furthermore, a long-term hydrological
dataset is hard to collect, especially for data-scarce regions, as even the determination
of a guarantee flow rate has to reference the adjacent river net. The lack of hydrological
monitoring causes difficulties in water quality protection [23,24]. In addition to flow rate,
another key parameter for WEC estimation is the integrated degradation coefficient (k),
which determines the decay rate of the contaminant in the river channel. In previous studies
based on steady-state model, k was usually considered to be a constant [3,12,25]. Actually,
it has been confirmed that k is simultaneously affected by flow velocity and water tempera-
ture [24–27]. Even for some mechanism water quality models, Qual2K, for instance, only
takes into account temperature correction for k whilst ignoring the effect of velocity [28].
Zhang et al. [27] calculated the WEC in Xiaohe river basin based on MIKE11 model, while
neglecting the effects of temperature variation on k. Therefore, there is an urgent need for
the localized parametrization and quantification of effect magnitudes from key factors on
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k. After addressing the essential roles played by these factors, a further estimation of the
ideal WEC at different spatiotemporal scales can be taken to fill the gap that makes the
steady-state model inapplicable under dynamic river conditions.

The methods of ideal WEC can be classified as head-control and end-control according
to the pollutant control strategies in the steady-state model. Both strategies assume the
pollutants’ input at the uppermost river segment. The difference is whether the water
quality throughout the traveling period obeys the criterial level setting from the uppermost
section (head-control) or is allowed to overshoot briefly—as long as it achieves the standard
by the downstream section (end-control) [25]. They, respectively, represent the lowest
and highest limits of pollutant discharging in WEC management. These two strategies
have applicability, for example, as head-control is more beneficial for aquatic community
remediation (e.g., ecological preservation area) [24] and end-control is more suitable for
rivers with top priority for deterioration control [29]. The safety margins for most general
water bodies lay between these two levels. Developing a compromising method that is
more suitable for the general river basin in developing countries and regions is necessary.

This research took the mainstream Luanhe river basin as a case study, providing an
integrated ideal WEC estimation framework, combining Soil and Water Assessment Tool
(SWAT) [30,31] to apply in this data-scarce basin. The main research aims are:

(1) Provide a more applicable method for in-stream WEC calculation in developing
regions based on a modified pollutant control strategy;

(2) Discuss the impact mechanisms of hydrological and temperature conditions on WEC
in detail and establish the real-time responses of WEC to these factors;

(3) Integrate the modified WEC estimation method and the real-time response process to
develop a hydro-environmental model for dynamic WEC estimation;

(4) Combine the SWAT model and LDC method to present a spatiotemporal distribution
of WEC under different hydrological regimes; identify the hot spots of fragile regions
and periods; and provide suggestions for managers about the collaborative pollutant
control at a basin scale.

2. Materials and Methods
2.1. Study Site

Luanhe River basin (115◦27′ E–119◦56′ E, 39.43◦ N–42◦41′ N) is located in the north-
eastern part of the North China Plain, which is an arid to semi-arid region with a total area
of 42,641 km2. It is one of the sub-basins of the Haihe—the largest basin of northern China,
which covers the Beijing–Tianjin–Hebei urban agglomeration. The upper reaches of the
Luanhe river basin are plateau areas with a large variety of elevations, and the midstream is
in an incised valley in a hilly region. The downstream is a piedmont plain, which is greatly
affected by human activities [32]. The mainstream Luanhe River flows through 17 subbasins
from the northwestern to northeastern area. The average total annual precipitation and
temperature from 2006 to 2019 were 445.87 ± 107.6 mm and 7.5 ± 4.54 ◦C, respectively,
with nonnegligible spatiotemporal heterogeneity. From the 2015 land-use distribution,
forests and grassland covered 39.51% and 30.26%, respectively, of the whole river basin,
and agricultural land occupying 22.44%. The remaining land types were building land,
water, and bare land. More regional details are shown in Figure 1.
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Figure 1. Study area. (a) Location of Luanhe and Haihe basins in China; (b) topography, river 
streams, and hydrological stations in the study basin; the mainstream of Luanhe is divided into 22 
calculation units from upstream to downstream, the classification number in Figure (b) was the 
sequence number of calculation unit ID, and WECs were estimated based on each unit separately 
(these calculation units were labeled as Reach 1–Reach 22 in the following context); (c) land-use 
types in 2015 from China resource and environmental data platform. 

2.2. Integrated Framework for Dynamic Water Environmental Capacity Estimation 
The framework consists of two key steps—the modified hydro-environmental 

(MHE) model establishment [25] and the LDC development. The core of the MHE model 
is the one-dimensional water quality model and a modified pollutant control strategy. To 
consider a dynamic perspective, the real-time responses of WEC to various hydrological 
and temperature conditions were established. Due to the lack of observed hydrological 
data in mainstream Luanhe, the SWAT model was used for the development of FDCs in 
each subbasin, which provided the flow variabilities of the river basins. Combining the 
MHE model and FDCs, developed LDCs were established on the basin scale to discuss 
the spatial-temporal distribution of WECs under different hydrological regimes. The 
flowchart of the integrated framework is shown in Figure 2. 

Figure 1. Study area. (a) Location of Luanhe and Haihe basins in China; (b) topography, river streams,
and hydrological stations in the study basin; the mainstream of Luanhe is divided into 22 calculation
units from upstream to downstream, the classification number in Figure (b) was the sequence number
of calculation unit ID, and WECs were estimated based on each unit separately (these calculation
units were labeled as Reach 1–Reach 22 in the following context); (c) land-use types in 2015 from
China resource and environmental data platform.

2.2. Integrated Framework for Dynamic Water Environmental Capacity Estimation

The framework consists of two key steps—the modified hydro-environmental (MHE)
model establishment [25] and the LDC development. The core of the MHE model is
the one-dimensional water quality model and a modified pollutant control strategy. To
consider a dynamic perspective, the real-time responses of WEC to various hydrological
and temperature conditions were established. Due to the lack of observed hydrological
data in mainstream Luanhe, the SWAT model was used for the development of FDCs in
each subbasin, which provided the flow variabilities of the river basins. Combining the
MHE model and FDCs, developed LDCs were established on the basin scale to discuss the
spatial-temporal distribution of WECs under different hydrological regimes. The flowchart
of the integrated framework is shown in Figure 2.
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of the study basin were obtained from the China resource and environmental data plat-
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and all spatial data were resampled to 200 m with the nearest-neighbor method in ArcGIS. 
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provided by the China Ministry of Ecology and Environment). The modeling period of 
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result, we set 2008–2011 as the warm-up period and 2012–2014 and 2015–2016 as the cali-
bration and validation periods, respectively. The performance of flow estimation was an-
alyzed through two indexes, Nash and Sutcliffe efficiency (NSE) [42] and R2 (correlation 
coefficient) [43]. Considering the complicated mechanisms and the large number of pa-
rameters involved during simulation processes, SWAT Calibration and Uncertainty Pro-
grams (SWAT-CUP) was utilized for sensitivity analysis and the best combination search-
ing of parameters. Furthermore, we used the Sequential Uncertainty Fitting version 2 

Figure 2. Flowchart of integrated estimation method based on a modified hydro-environmental
(MHE) model and load–duration curve method.

2.2.1. SWAT Model Setup and Evaluation

The low availability of flow data in the Luanhe River basin is an obstacle in establish-
ing FDCs and continuous long-term WEC research that can be overcome with hydrological
modeling. SWAT is a semi-distributed, process-based model for time-continuous hydrolog-
ical processes and water quality simulation [20]. It is widely used for runoff and non-point
source pollution predictions under different management practices, weather, land use, and
soil conditions. Because of its powerful physically based mechanism, the SWAT model
is desirably applied in data-scarce or ungauged areas. The hydrological SWAT process is
formed with land and channel modules and driven by water balance factors, including
precipitation, infiltration, runoff, groundwater returns, channel movement loss, evapo-
transpiration, etc. [33]. Spatially explicit DEMs, land use, and soil and climate data are
required for the SWAT model. A 2015 land-use map and topography data of the study basin
were obtained from the China resource and environmental data platform. Soil data were
obtained from the Harmonized World Soil Database (HWSD) [34,35], and all spatial data
were resampled to 200 m with the nearest-neighbor method in ArcGIS. Input climate data
were from the China Meteorological Assimilation Datasets (CMAD) [34,36–41], including
daily precipitation, temperature, wind speed, relative humidity, and solar radiation. The
missing climate data were replaced through the weather generator (WGN) within the
SWAT model.

The monthly average flow data of two hydrological monitoring gauges (Wulongji
and Luanxian) from 2012 to 2016 were used for model validation (validation data were
provided by the China Ministry of Ecology and Environment). The modeling period of
SWAT depends on the input climate data (CMAD), which were from 2008 to 2016. As
a result, we set 2008–2011 as the warm-up period and 2012–2014 and 2015–2016 as the
calibration and validation periods, respectively. The performance of flow estimation was
analyzed through two indexes, Nash and Sutcliffe efficiency (NSE) [42] and R2 (correlation
coefficient) [43]. Considering the complicated mechanisms and the large number of param-
eters involved during simulation processes, SWAT Calibration and Uncertainty Programs
(SWAT-CUP) was utilized for sensitivity analysis and the best combination searching of
parameters. Furthermore, we used the Sequential Uncertainty Fitting version 2 (SUFI-2) al-
gorithm in SWAT-CUP as a calibration algorithm [44]. Based on 5 years of monthly average
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flow data simulated through SWAT, the FDCs in each sub-watershed were created in the
Luanhe mainstream.

2.2.2. Modified Hydro-Environmental Model Establishment
Water Environmental Capacity Calculation

Because the lateral length of the sewage mixing process is far less than the river length,
a one-dimensional water quality model is applicable here [21]. It contains a flow movement
module, which is described by the Saint-Venant equations, as shown in Equations (1) and (2),
and an advection–dispersion module in Equation (3) [21,45]. Equation (4) represents the
decay process of river pollutants in the one-dimension steady system.

∂Q
∂x

+
∂A
∂t

= 0 (1)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂Z
∂x

+
gQ
h2
|Q|
RA

= 0 (2)

∂AC
∂t

+
∂QC
∂x

=
∂

∂x

(
Ex

∂AC
∂x

)
+ AS + A f (C, t) (3)

u
∂C
∂x

= −kC (4)

where Q is the flow rate (m3/s); A is the cross-sectional area (m2); x (m) is the distance of
water flow from the headstream through travel time t (s); g is the gravitational acceleration
in m/s2; Z is the water level in m; h is the Chezy coefficient (m1/2/s); and R is the hydraulic
radius in m. In the advection–dispersion module, C is the concentration of reaction pollu-
tants in mg/L; Ex is the diffusion coefficient in m2/s; S refers to the source/sink terms in
(mg/L/s); f is the reaction term for NH3-N; and u is the average flow velocity (m/s).

Based on this decay regulation, we developed a hydro-environmental model, as
illustrated in Figure 3. We generalized a pollutant outlet involving point and non-point
sources discharged in the middle of each calculated unit rather than the head section such
as in the other two strategies mentioned above. The contaminants, therefore, experienced
different decay processes before and after the load inputs. The first half of the stream
follows the quality standard set in the head section; the end-control is carried out in the
second half of the stream. The processes are described in Equations (5) and (6):

C′i =
C0ie

(− ki
1
2 Li

86.4ui
)Qi + Wi

Qi + qi
(5)

Csi = C′i e
(− ki

1
2 Li

86.4ui
) (6)

In Equation (5), i stands for the number of calculated units in the Luanhe mainstream,
i = 1, 2, . . . , 22; Li is the length of the calculated unit in km; ui is the average flow
velocity (m/s); qi is the sewage discharge in m3/s; Qi is the river discharge of each unit
in m3/s; assuming that the pollutants from the sewage outlets are fully mixed with the
river water at the moment of discharge into the channel, the concentration of NH3-N at
the discharge outlet is C′i ; C0 and Csi refer to NH3-N concentrations at the upstream and
down control cross-section in each calculated unit, all in mg/L; when Csi is equal to water
quality criteria, Wi is the water environmental capacity at each calculated unit (kg/d),
representing the maximum allowable loads discharged by the sewage outlet. By combining
two equations, Wi can be derived in Equation (7). Because the calculated result of Wi is
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in g/s, a conversation factor (86.4) is necessary to change it to kg/d. Additionally, the
maximum allowable loads in Luanhe mainstream is the sum of WEC in 22 calculated units.

Wi =

[
QiCsie

ki×
Li

86.4×2ui −QiC0ie
−ki×

Li
86.4×2ui

]
× 86.4 (7)
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Model Parameters Determinations

Integrated degradation coefficient (k, d−1) and flow velocity (u) are crucial param-
eters in WEC calculation. From Equation (4), k can be determined through equation:
k = 86.4 ln

(
C0
C1

)( u
L
)
. In the one-dimensional model, decay rate is quite sensitive to water

temperature. According to the Arrhenius equation [46], the temperature adjustment k can
be presented as:

k2 = k1 × θ(T2−T1) (8)

where k1 is the degradation coefficient under a referenced temperature, which is usually set
at 20 ◦C; T2 is the actual water temperature; θ is the empirical parameter and should be
calibrated. Taking the log transform of both sides of the equation, the degradation rate and

temperature can be solved with the equation: T2 =
ln k2

k1
lnθ + T1. If we take 1

lnθ as a gradient
under the linear regression between T2 and ln k2

k1
, θ can be calibrated with a few measured

k’s in different water temperatures. Therefore, combined with the above equations, the
dynamic k can be finally decided with Equation (9)

k = 86.4a
(u

L

)b+1
θ(Ti−20) (9)

where a and b are parameters that can be directly calibrated in the equation by several
observations or based on the relationship ln C0

C1
= a

( u
L
)b [24] under 20 ◦C. During the

calibration of k, the selected river section must be relatively straight with a stable flow rate,
avoiding sewage outlets, tributaries into the river, dams, and other blocking buildings.
Meanwhile, the synchronous monitoring of the water quality and flow and velocity of up-
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and downstream cross-sections should be fully provided. In this research, the daily water
temperature, hydrological, and water quality data used for decay rate calibration were
provided by the China Ministry of Ecology and Environment.

The other crucial factor relating to the WEC calculation is velocity. Leopold and Mad-
dock [47] put forward an empirical power exponent formula to describe the relationship
between flow rate and velocity:

u = aQb (10)

where u represents flow velocity (m/s); Q is the flow rate (m3/s); a and b are empirical
coefficients calibrated by observed flow rate and velocity data, respectively. The local
hydrological yearbook in 2015 [48] provided synchronous monitoring flow rate and velocity
data in Luanhe mainstream, which was used to calibrate these empirical coefficients.

3. Results
3.1. Historical Flow Estimation Based on SWAT Model and Traditional LDC Creating

Depending on the time range of input climate dataset, the modeling period of SWAT
was from 2008 to 2016. Additionally, because the validation hydrological datasets were
from 2012 to 2016, the calibration and validation periods of the model were set from 2012
to 2014 and 2015 to 2016, respectively, and 2008–2011 was set as warm-up period. The
whole Luanhe river basin was divided into 69 subbasins. According to Moriasi et al. [42],
NSE and R2 indexes above 0.5 were acceptable for distributed process-based hydrological
models. The performance ratings of streamflow predictions are presented in Table 1. The
performance was “Good” or “Adequate” for both stations during both periods. Figure 4
demonstrated that July–September was the rainy season in the studied watershed. Mean-
while, 2012, 2013, and 2016 were wetter than the other years, with a streamflow of more
than 100 m3/s during wet periods. From Geng et al. [49], precipitation is the primary regu-
lation of streamflow in the Luanhe river basin. This is reflected in Figure 4, as variations
of river runoff were highly related to monthly accumulated precipitation. Continuously
heavy rainfall was the main trigger for the runoff peak value. According to USEPA [18],
FDCs can generally be divided into five flow duration intervals (FDIs): 0–10% is defined as
the high flow interval (HFI); 10–40% is the moist conditions interval (MCI); 40–60% (MFI) is
the mid-range flow interval; 60–90% and 90–100% are the dry conditions interval (DCI) and
low flow interval (LFI), respectively (Figure 5). Combined with the long-term river runoff
simulated through SWAT and each subbasin’s allowable ammonia nitrogen concentration,
we established LDCs for Luanhe mainstream. From Figure 5, there was an overall gradual
increase in permitted load discharges from upstream to the outlet, and these variations
were dominated by streamflow conditions and water quality standards.

Table 1. Performance rating (PR) for streamflow prediction by SWAT.

Luanxian Wulongji

Calibration PR Validation PR Calibration PR Validation PR

R2 0.88 Very good 0.81 Very good 0.86 Very good 0.7 Good
NSE 0.81 Very good 0.64 Adequate 0.65 Very good 0.67 Very good
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3.2. The Calibration of Integrated Degradation Coefficient and Relevant Influencing Factors

Water temperature (T) and flow velocity (u) are two main uncertainties in the decay
rate estimation [24,50]. However, few researchers quantified the magnitudes of these factors.
Common WEC estimations directly reference the value from laboratory research or obtain
the recommended values from national guidelines [4] lacking spatiotemporal anisotropy.
Thus, our research calculated the decay rate, which can fluctuate with temperature and
hydrological conditions based on the relationships between k–T and k–u. Furthermore, we
compared the results with relevant research in the Haihe basin.

Limited by the lack of synchronous water quality and daily flow observations in
Luanhe, Ziya River (also belonging to the Haihe basin) was selected for the localization
of k. Daily pollutant concentrations of the Yanjiazhuang Bridge section (YJZB), Xiahuai
Town section (XHT), and Xiaojue hydrological gauge from 2014 to 2019 were used for the
dynamic k measurement, according to Equation (9). The measured k ranged from 0.09 to
0.67 at 2.3~25 ◦C, slightly higher than the research of Shan [51] (0.025–0.521 at 5~27.5 ◦C).
The differences may be because the latter was measured in an incubator under different
light and temperature conditions without considering the impact of streamflow. The effects
of flow velocity and temperature on k for NH3-N are further demonstrated in Figure 6a.
Both factors had varying positive influences on the decay process of nutrient contaminants.
Using Equations (8) and (9), θ was calibrated as 1.09 with an R2 of 0.85; a and b were
calibrated as 0.074 and −0.4928, respectively. As a result, the dynamic k for NH3-N can be
described in Equation (11) with an RMSE = 0.64/d and R2 = 0.79. Additionally, combined
with the rating curves between Q and u of the monitoring gauges in Luanhe mainstream,
which are shown in Figure 7, the flow velocity of Luanhe can be calculated through SWAT
modeling flow rates. Localized k can therefore be solved.

k = 6.406
(u

L

)0.5072
1.09(Ti−20) (11)
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3.3. The Results of the Modified Hydro-Environmental Model

There was a more significant fluctuation of load capacity by the MHE model com-
pared with traditional LDC methods, as shown in Figure 8a,b. Under the disturbance
by temperature and flow velocity, the river basin had more WECs for NH3-N in most
high flow conditions compared with LDC. Nevertheless, runoff is still governed by the
overall trend of WECs. Because of the relatively lower flow rate in 2014 and 2015, WECs in
these two years were also lower than in other years. To compare the performance of MHE
models, we used the head-control model by Zhao et al. [24] and the end-control model by
Liu et al. [52] to study the uncertainties of WEC calculations. The three models presented
similar trends during five years, higher in the summer and rainy seasons, always peaking in
August. During most flow conditions, there were significant differences between the head
and end control models, and the maximum difference was up to 27,500 kg/d. The MHE
model results were always between the two models, but closer to the head-control. The
discrepancies between the MHE and head-control models were mainly concentrated in the
HFI and MCI periods and were gradually closer with decreasing flow rate. Meanwhile, the
overestimation of WEC from the end-control model always existed in most flow regimes
compared with the other two models.

From Figure 8c, WEC was calculated via our model in the outlet subbasin, mainly
concentrated in wet seasons from July to September, which accounted for 72% of the
12-month total capacity. The average dry season WECs (between December and April of
the following year) were much lower with little fluctuation, remaining stable between 400
and 700 kg/d. A dramatic expansion of the monthly average WEC appeared from June to
July and declined from September after the peak of 14,250 kg/d in August. In Figure 8d,
although high flow conditions only took up 10% of the cumulative frequency, it contributed
40% of the self-cleaning capacity for nutrient loads during five years, three times more than
that in MFI and four times more than the sum of the capacity in DCI and LFI. Comparing
the median and average values in the box plots, pronounced fluctuations were found
in most hydrological condition zones except for HFI, and there was a significant WEC
outlier in LFI. In addition to hydrological attributes (including runoff and flow velocity),
temperature also apparently affects the capacity of river basins in each FDI.
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Figure 8. Comparison of MHE model, Liu-model (end-control model), Zhao-model (head-control
model), and the traditional LDC model in the outlet subbasin under: (a) time series from 2012 to 2016;
and (b) different flow regimes. (c,d) Capacity variations from the MHE model of outlet subbasin at
different months and flow regimes, respectively.

4. Discussion
4.1. Estimation of the Water Environmental Capacity

Different pollutant control strategies may cause a significant difference in WEC deter-
mination, while few models of WEC distinguish the regional applicability when choosing
implementation strategies. As shown in Figure 8, the head control strategy is much stricter
because it supposes that pollutant discharge outlets are in the head of river segments and
follow the water quality restriction from the head section to ensure that the whole reach
consistently achieves quality criteria. Meanwhile, for end control, the quality restriction is
set in the downmost section of each reach. It allows pollutant concentrations of the upper
river to exceed water quality criteria as long as they reach the standard before arriving at
the lower section (through dilution and assimilation processes) [29]. The stricter approach
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is beneficial for aquatic environmental restoration; however, it is not suitable for undevel-
oped regions confronting the conflict between high production requirements and aquatic
environmental deterioration. A better method for WEC management at the basin scale is
to comprehensively consider the current states of pollutant discharge and of the aquatic
environment, including sewage treatment plant distribution, local production mode, and
the urbanization level, using two control methods over the whole river basin rather than a
single consideration [29]. However, this comprehensive assessment is unenforceable for
data-scarce regions. Moreover, using different control strategies may cause controversy
over fairness in local governments, threatening management implementation [53]. As a
result, the MHE model presented a more feasible idea to fulfill in the whole river basin.
Shen and Zhao [21] conjunctively used the Bayesian statistics method and a mechanism
model to assess the TMDL of a river on the Eastern Shore of Virginia and compared it
with the traditional LDC method. The result suggested that the LDC method underesti-
mates because it does not fully consider the impacts of the river channel’s geomorphology
and temperature conditions on contaminant transport. Furthermore, WECs calculated
by the head-control model are even lower than those estimated from the traditional LDC
method (Figure 8), reflecting excessively conservative features of the head-control strategy.
On the contrary, the MHE model presents higher applicability and promotional value in
developing regions.

4.2. Effects of Hydrological and Temperature Conditions on WEC

There is broad recognition of the primary regulation of runoff on pollutant loads [19,54].
For instance, the LDC put forward by the EPA establishes the maximum allowable load
variation according to different flow regimes [18]. However, this method ignores the
influential mechanisms and magnitudes caused by temperature and flow velocity, which
also significantly affect contaminant attenuation and assimilation. Water temperature
manipulates WECs for NH3-N, mainly by affecting the pollutant decay rate. As presented
in Equation (9), under the same hydrological conditions, a 10 ◦C increase will double the
degradation coefficients, similarly to Shen and Zhao’s finding [21]. The average monthly
water temperatures at Luanxian station vary between 2.9 and 27.8 ◦C from 2012 to 2016;
thus, ignoring temperature fluctuations results in inaccurate simulations.

The effects of streamflow velocity on WECs are mainly considered as the first-order
decay rate relationship. In previous studies, rapid flow always accompanies superior
hydrodynamic conditions, which benefit pollutant decay processes; this was also confirmed
in our research [24,52,55]. However, for estimating WECs, the effects of the discharge rate
are not only on decay rate but the spatial traveling range of pollutants from the upstream
cross-section. Under the same time interval, the larger velocity, the farther pollutant travels
with channel water mass. This means that under greater discharge rate, the downstream
water quality will be more affected by the pollutant concentration from incoming flow,
leading to a lower carrying capacity of loads discharge from downstream sewage outlets.
On the other hand, the pollutant will be washed to downstream together with the rapid
movement flow without adequate degradation. At the same length of river channel, slower
velocity provides more time for contaminants to degrade, resulting in a higher WEC, and it
can be reflected by either MHE model, head or end control model.

The impacts of water temperature, flow rate, and velocity on WECs in the outlet
subbasin were further demonstrated through surface response diagrams in Figure 9. Under
a 1 mg/L NH3-N concentration in the upstream background and downstream target
concentration, the WECs corresponding to the temperature and flow rate of 0~30 ◦C and
0–250 m3/s are shown in Figure 9a. Thus, higher water temperature and flow rate allowed
greater WECs. Specifically, a 10 ◦C increase was able to cause 2.4~13.85 times the increase
in WECs under the unaltered hydrological conditions, and the influence of temperature
would be more significant at a higher flow rate. Meanwhile, with the constant temperature
of 20 ◦C, a 1% increase in runoff might cause a 0.05~0.53% (average increase of 0.4%)
rise in the loading capacity. We also found that WECs became less sensitive to flow rate
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changes as the temperature decreased, especially under 5 ◦C. As studied by Shan [51], the
integrated degradation processes for ammonia in the Haihe basin are mainly controlled by
nitrifying bacteria, whose fate heavily relies on water temperature. When the temperature
is <10 ◦C, the activity of nitrobacteria dramatically declines; at <5 ◦C, most nitrobacteria
are in a dormant state, nearly stopping nitrification processes. During this time, WECs
are mainly contributed to by dilution processes with no assimilation capacity. Figure 9b
further illustrates various WECs under 20 ◦C, corresponding to the flow rate and velocity
from 0~250 m3/s and 0~0.35 m/s, respectively. It can be seen from Figure 9b that despite
the negative impact caused by velocity, flow rate is the determining factor and always
positively affects WEC. This is because the flow rate (Q) is equals to the average velocity
(u) multiplied by the discharge section area (A) and A grows with u for subcritical flow;
consequently, Q grows at a faster rate than u. It can also be reflected in the rating curve
between Q and u (Figure 7). Although the rise of v causes a decline in WEC, it also causes
a rapid increase in Q, which may lead to a greater growth of WEC as a result. However,
it should be noted that although Q and u were one-to-one correspondence based on the
rating curve of Luanhe mainstream, they were assumed to be two independent variables
in Figure 9b, i.e., the same Q could correspond to a different u because we regarded A
as an arbitrary variable coefficient. Therefore, the maximum WEC with a high flow rate
and low velocity might occur when A is very large (such as near the estuary); and the
minimum WEC corresponds to a low flow rate and high velocity, which might occur with
a small A, for example, in narrow mountainous rivers. It can be seen that no matter how
the geomorphology of river channel changes, Q and u have similar effects on WEC.
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4.3. Application of the Method to Multi-Segments and Management Implications

From the 17 subbasins created through SWAT in the Luanhe mainstream and ad-
ministrative control units provided by the newly released “Fourteenth five-year plan” in
China, we further demarcated the mainstream into 22 calculation units (labeled as Reach
1–Reach 22 from up to downstream, as shown in Figure 1b.). For comparison, we divided
the element WECs by their reach lengths to convert them into unit WECs (kg/d/km), as
shown in Figure 10. There was an apparent spatiotemporal variation of unit WECs from
−65 to 1229 kg/day/km. The higher capacities were mainly concentrated downstream
and during better flow conditions (i.e., upper right portion of the heat map), and there was
little difference in unit WECs under 90% probability (i.e., low flow condition).

It should be noted that the WECs estimated in this study are ideal WECs, which do not
consider any existing load discharge, point pollutants from sewage outlets, or non-point
pollution from the riverside, for instance, and should reflect the impacts of nature conditions
on water self-cleaning capacity [20]. However, the calculation of Reach 15 and Reach 18
showed a value below zero, which means that even though there is no pollutant discharge
from the river bank (which is impossible), the water body cannot achieve the quality
standard when it reaches the end section. This was derived from the inconsistent water
quality criteria setting between the upstream (with looser standards) and downstream
(with more stringent standards) of the two reaches. Based on the sampling data from
Hadwen et al. [56], Zhao et al. [24] found the same circumstance of negative ideal WECs in
two Australian rivers (Gwygir and Ovens Rivers). Actually, it can be explained that the
allowable excessive discharge from upstream occupied the environmental capacity of lower
reaches because of the self-contradictory settings of water quality standards. We therefore
suggest cooperative management between Reach 14 and Reach 19. More specifically, the
setting of the target water quality cannot only consider the local water functional plan, but
the effects from adjacent areas. Furthermore, the maximum allowable loads in cooperative
regions should be integrally allocated to sub-reaches according to the river length, water
function plan, industrial structure, etc.
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In the Luanhe mainstream, more than 77% of capacities were concentrated during
HFI and MCI. The corresponding months were mainly from July to September, which
accounted for 69% of the total WECs. The aggregation of allowable loads was because
of the beneficial hydrodynamic conditions and relatively higher temperatures during the
summer season. On the contrary, LFI was only 0.98% of the total WECs in the five years.
This means that at least 90.2% capacities for NH3-N will be underestimated if we only
take the LFI condition for WEC investigation as the guidance under CAEP [4]. Despite
this conservative estimation, it is necessary for restoring and protecting the environment;
however, excessive underestimation would also involve lots of unnecessary load reduction
costs [8]. Comparing with the traditional LDC method in Figure 8b, our model more
clearly reflects the effects of water temperature and velocity under different hydrological
guarantee flow rate. To further verify the validity of our results, we compared our results
with other studies in similar scenarios. Men et al. (2021) [57], also calculated the WEC in
Luanhe mainstream, but only the part within Chengde city. This research was based on the
traditional end-control WEC method, under the 90% hydrological guarantee flow rate and
a constant integrated degradation coefficient. The result suggests that the WEC in Chende–
Luanhe mainstream is 507.71 t/a (i.e., 1390.99 kg/d). In order to make a quantitative
comparison, we extracted the results in our research involving in Chende, i.e., from Reach
2–Reach 17, and the five years average WEC in our dynamic method is 2039.92 kg/d.
Because Men’s WEC model did not consider the variations of hydrological and temperature
conditions, the result is usually a certain value, set as the upper limit of pollution discharge
in water environmental management. It should be noticed that the control strategy in
Men’s research is end-control, which has been proved as the most lenient strategy for
pollutant discharging in the WEC management [25,29]. Nevertheless, it was still 31.81%
lower than the WEC calculated by dynamic method. Dynamic treatment can control the
discharge limit according to months or flow regimes, avoiding the unnecessary costs of
load reduction. Li et al. (2022) [58] calculated the WEC in the Guojiatun–Wulongji section
of Luanhe mainstream. Li’s research combining the MIKE11 model calculated the river
WEC between June and July 2019. It also considered the dynamic changes of hydrological
conditions and pollutant-integrated degradation coefficient through the MIKE11 model
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within a 30 s simulation step, and as a result, the monthly average WEC was 2550.33 kg/d.
We extracted the results in June and July of Reach 5–Reach 14 to match Li’s research. The
average WEC of our method was 2313.07 kg/d, fairly close to Li’s result. The comparisons
further revealed the reliability and practicability of our method.

Meanwhile, during low flow periods, the dominant pollutant threat was from a point
source, while nonpoint source pollutions appear in rainy seasons because of the stronger
water flush processes. The allocation of WECs for these two pollution types should be
considered separately in terms of different flow regimes [20,53,59]. Therefore, the unitary
LFI consideration in current management may be inadequate, especially for non-point
source diagnosis and control. For a more reasonable use of environmental resources in the
whole basin, we suggest managers should separately control pollutant discharge following
the distribution pattern of WECs in different flow regimes. Furthermore, site selection for
discharge sources, such as poultry farms, wastewater treatment plants, and factories, might
prefer regions with better self-cleaning capacities, i.e., Reach 20, Reach 21, and Reach 22.
Factories able to cooperate with seasonal sewage discharge regulations can be planned
for upper regions such as Reach 10–Reach 13. The head stream regions with lower ideal
WECs (Reach 1–Reach 3 and Reach 6–Reach 7) need to be circumvented in factory site
selection planning.

5. Conclusions

In this study, an integrated WEC estimation framework combining a modified hydro-
environmental model and the LDC method developed a more appropriate pollutant control
strategy for developing regions. The framework closely coupled the changes of hydrological
condition and water temperature, dynamically presenting the spatiotemporal distribution
of WECs under different hydrological regimes with low data. It can help local planners
and managers identify hot spots for dischargeable regions and periods at a basin scale. The
main findings can be summarized as follows:

(1) Hydrological conditions play a dominant role in WEC regulation. In the Luanhe River
basin, 77% of the capacities were concentrated in high flows and moist conditions,
and mainly from July to September. It would be more reasonable if the basin sewage
discharge strategies were regulated according to different FDIs rather than a single
low flow condition.

(2) The increase in flow velocity indeed promoted the decay rate of pollutants in the river,
but shortened the traveling time within the calculated units, leading to the pollutants
being washed downstream without adequate degradation, which eventually reduced
the channel WEC.

(3) Considering the maldistribution of WECs between the upper and downstream, the
point sources of pollution, e.g., sewage treatment plants, should be planned to avoid
fragile regions of the upper and middle reaches.

(4) A coordinated water quality control should be implemented in the fragile reaches
(e.g., Reach 15 and Reach 18 in Luanhe River), improving the quality standard of their
adjacent upstream reaches to give space for local hydro-environmental restoration.
Otherwise, the fragile reaches will hardly meet the standard, even if they have not
discharged sewage.

Overall, the integrated framework presented a higher promotional value and appli-
cability for developing regions’ loading capacities management. However, we did not
quantitatively distinguish the point and non-point source loads, and only tentatively di-
agnosed them through the flow conditions based on their dominant periods. We hope
that future SWAT models can further determine the quantified allocation of two pollutant
sources. Furthermore, our model was not tested for low degradable pollutants, such as
total phosphorus and heavy metals, which can alter aquatic community states by long-term
persistence and interactions with other pollutants [60–62]. As a result, the applicability of
our model should be further discussed when referring to these contaminants.
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