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Abstract: Food security is the foundation of development. We comprehensively characterized the
spatiotemporal patterns of non-grain production (NGP) areas in China and elucidated the underlying
factors driving NGP. Our objectives were to map NGP on cultivated land (NGPCL) in China, and to
quantify its spatiotemporal patterns, to investigate the factors underlying NGP spatial differentiation,
and to provide a scientific basis for developing NGP management policies and reference points
for protecting cultivated land in other countries. We mapped NGPCL in China from 2000 to 2018
using remote sensing and geographic information system data. The spatiotemporal evolution of
the NGP rate (NGPR) was also investigated. The dominant factors driving NGP progression and
associated interactions were identified using geographic detectors. From 2000 to 2018, the NGPR
gradually decreased from 63.02% to 52.82%. NGPR was high in the west and low in the east, and its
spatial differentiation and clustering patterns were statistically significant. Precipitation, temperature,
altitude, and soil carbon content were the dominant factors affecting the spatial differentiation in
NGPR. The interaction between these factors enhanced the spatial differentiation.

Keywords: China; non-grain production; spatiotemporal evolution; geographical detector

1. Introduction

As the world’s most populous country, China has always emphasized food production
and the protection of cultivated land. In recent decades, China has experienced rapid
economic growth and urbanization, which has been accompanied by patterns that appear
contradictory (e.g., in terms of the use of cultivated land) to the emphasis China has tradi-
tionally placed on food security [1]. For example, extensive research has been conducted on
the conversion of agricultural land into construction land, which has resulted in reduced
agricultural output [2–5]. However, the changes in agricultural land use that have attracted
the most interest have been qualitative, not quantitative (i.e., associated with the reduction
in agricultural land). Specifically, the “non-grain phenomenon,” which refers to a change
in planting structure within cultivated land, has attracted substantial attention from the
Chinese government and researchers.

The non-grain phenomenon is widespread in China [6]. A Chinese government
document titled “Opinions on preventing non-grain production of cultivated land and
stabilizing grain production” emphasizes that high-quality cultivated land should be used
for grain production, with an emphasis on the three major grains: rice, wheat, and corn.
Farming activities that deviate from this governmental requirement are categorized as
non-grain production (NGP) areas. NGP includes the cultivation of cash crops, floriculture,
planting trees, and excavating ponds. These activities lead to a major shift away from
grain production, resulting in labeling land as non-grain cultivating land. According to
the latest statistics from China, cultivated land has reduced by 7.53 × 106 ha over the past
20 years, and the average annual reduction in area is expanding. Clearly, a significant
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area of cultivated land is being removed from food production, which is attracting the
attention of the central Chinese government. Some researchers have concluded that NGP is
gradually expanding in China. Currently, the non-grain production rate (NGPR) in China
is approximately 27%.

Although NGP enables farmers to diversify their output, thereby potentially increas-
ing their financial gain and promoting China’s rural economic development, NGP has
significant drawbacks. The most important aspect of NGP is that it directly reduces the
land area used for grain cultivation, which poses a threat to the country’s food security.
NGP also threatens local biodiversity, exacerbates non-point source pollution, and increases
carbon dioxide emissions.

Previous studies on NGP have been conducted from multiple perspectives. Some have
examined the qualitative drivers of NGP, whereas others have focused on environmental
and socioeconomic factors. Some studies have even investigated the causes of NGP from the
perspective of farmers. However, most of these studies suffer from common limitations. For
example, these studies typically examine small study areas, which limits the macroscopic
insights that can be gleaned from the present state of NGP in China.

Remote sensing and geographic information systems (GIS) are potent research tools
for the large-scale monitoring of cultivated land [7]. With the increasing spatial resolution
of remote sensing imagery and continuous technological advancement, remote sensing and
GIS can effectively monitor and determine the NGP of cultivated land (NGPCL). However,
only a few studies have used remote sensing data to study NGPCL.

To address the lack of national-scale spatial research on NGP, and to provide macro-
and large-scale insights for understanding NGP, we comprehensively characterized the spa-
tiotemporal patterns of NGP in China and elucidated the underlying factors that drive these
patterns. The specific research objectives were: (1) to map NGPCL in China and quantify
associated spatiotemporal patterns; (2) to study the factors underlying the spatial differen-
tiation of NGPR; (3) to provide a scientific basis for developing NGP management policies;
and (4) to establish a reference point for cultivated land protection in other countries.

2. Materials and Methods
2.1. Study Area and Data Acquisition

We investigated 2323 county-level units. These units spanned 31 provinces (limited
by the availability of data, not including Taiwan Province, Hong Kong, and the Macau
administrative area). Apart from driving factor data, land use data were obtained from
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx, accessed on 16 April 2022). In addition, spatial
data for wheat, rice, and corn in China during 2000–2018 were obtained from a study by
Luo et al. [8]. These data are available at https://data.mendeley.com/datasets/jbs44b2
hrk/2, accessed on 16 April 2022. This dataset describes the annual spatial distribution of
China’s three most important ration crops at a 1 km resolution. Multiple cropping index
data were obtained from a study by Liu et al. [9]. This dataset is a 250 m spatial resolution
distribution map of the annual multi-cropping index. Complete data for each county were
extracted for geographic detection analysis.

2.2. Methodology
2.2.1. Exploratory Spatial Data Analysis

Exploratory spatial data analysis (ESDA) is a collection of methods and techniques for
spatial data analysis using spatial correlation measurements. ESDA is crucial for describing
and visualizing spatial distribution patterns. In particular, ESDA can reveal spatial ag-
glomeration and elucidate the mechanisms behind spatial interactions between objects [10].
We used ESDA to analyze the spatial distribution pattern of non-grain cultivated land in
China from three aspects: global spatial autocorrelation, local spatial autocorrelation, and
standard deviation ellipse.

https://www.resdc.cn/Default.aspx
https://data.mendeley.com/datasets/jbs44b2hrk/2
https://data.mendeley.com/datasets/jbs44b2hrk/2
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Global spatial autocorrelation was used to determine whether spatial correlations
were present between the attribute values of spatially adjacent or disparate area units.
The commonly used statistical measures of correlation in spatial statistics are Geary’s C,
Moran’s I, and Getis’ G, with Moran’s I being the most common. Moran’s I is represented as
a value between −1 and 1. The closer the absolute index value is to 1, the more significant
the observed spatial correlation. A negative index indicates a negative spatial correlation,
whereas a positive value indicates a positive spatial correlation. When Moran’s I is equal to
0, spatial correlation is absent and only randomness exists [11]. According to Moran’s I,
spatially correlated phenomena are likely to be similar. The following equation was used
to calculate the global autocorrelation index:

I =
i=1

n

∑(xi − x)

j=1
n

∑ Wij
(
xj − x

)
/

i=1
n

∑(xi − x)2
i=1

n

∑
j=1

n

∑ Wij (1)

where n is the number of spatial grid data points; xi and xj are the attribute values of
spatial objects at points i and j, respectively; x is the mean of xi and xj; and the spatial
weight matrix Wij indicates the strength of the relationship between the ith and jth points
of a spatial object. Wij can be represented by various parameters, such as area, distance,
and reachability.

Global Moran’s I indicates the overall correlation between spatial objects, and can
identify clustering in the spatial distribution of the object. However, it cannot pinpoint
the clustering distribution in space. To pinpoint the clustering distribution, we used the
local Moran’s I statistic. Unlike the global statistic, local Moran’s I measures the spatial
correlation between objects in local space. Local Moran’s I facilitates the visualization of
the spatial clustering of data with a cluster map that delineates and categorizes spatially
correlated locations [12]. Local Moran’s I is calculated as follows:

Ii =
yi − y

s2

n

∑
j

wij(yi − y) (2)

where y is the mean; Wij is the spatial weight matrix; and s2 represents the discrete variance
of yi.

The standard deviation ellipse is a spatial statistical method that measures the global
characteristics of the spatial distribution of geographical elements from multiple perspec-
tives, including concentration, discrete trends, and directional distribution. This method
also discerns statistical insights, such as centrality, directionality, and expansion direction
deviation. We used the standard deviation ellipse method to explore the spatial evolution
of China’s NGP by determining the direction of change of the center of gravity and the
dispersion trend. The core parameters of a standard deviation ellipse mainly include the
center, azimuth, and major and minor semi-axes.

2.2.2. Geographic Detector (GeoDetector) Model

The GeoDetector model is a statistical method used to investigate the spatial het-
erogeneity of geographical phenomena for identifying the factors that drive heterogene-
ity [13,14]. GeoDetector assumes that a study can distinguish multiple subregions. When
the sum of the subregion variances is less than the total regional variance, spatial het-
erogeneity is present. A consistent spatial distribution between two variables indicates a
statistical correlation between the variables. The core idea is that if an independent variable
strongly influences the dependent variable, the spatial distribution of the independent
and dependent variables should be similar. This model includes four sub-detectors: factor,
risk, interaction, and ecological detections. This study mainly used factor detection and
interaction detection.
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The q value of each factor is calculated by the factor detector, which quantitatively
analyzes the spatial differentiation of each factor, and detects to what extent a certain factor
explains spatial differentiation. The following formula was used to calculate factor detection:

q = 1− ∑m
n=1 Nnσ2

n
Nσ2 (3)

where n = 1, 2, . . . , m, represents the stratification or partitioning of the independent
variable X and the dependent variable Y; Nn and N represent the number of units in layer
n and in the whole area, respectively; and σ2

n and σ2 are the dependent variables Y in layer
n and in the whole area, respectively. The variance of the q value indicates the explanatory
power, and ranges from 0 to 1. The larger the q value, the stronger the explanatory power
of the independent variable X for the dependent variable Y and vice versa.

Interactive detection was used to determine whether the interaction of the independent
variables Xm and Xn strengthened or weakened the explanation of the dependent variable
Y, or whether the effects of the independent variables on the dependent variable Y are
independent. The specific measurement method is to take the driving factors X1 and X2 as
examples and to calculate the explanatory power q(X1) and q(X2) of the two independent
variables to the dependent variable Y. Then, the interaction between the two independent
variables and the explanatory power q(X1∩X2) of the dependent variable Y are calculated.
Finally, the magnitudes of the three calculation results are compared to judge whether
the influence of the interaction of two factors on the dependent variable is enhanced or
weakened relative to a single factor. The judgment basis is shown in Table 1.

Table 1. Factor interaction type.

Judgment Basis Interaction Code

q(X1∩X2) < min(q(X1), q(X2)) Nonlinear Weaken NW

min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2)) Univariate Nonlinear Weaken UNW

q(X1∩X2) > max(q(X1), q(X2)) Bivariate Enhance BE

q(X1∩X2) = q(X1) + q(X2) Independent IN

q(X1∩X2) > q(X1) + q(X2) Nonlinear Enhance NE

2.3. Variable Description
2.3.1. NGPR Measurement

According to the Chinese government document titled “Opinions on preventing the
non-grain production of cultivated land and stabilizing grain production,” only rice, wheat,
and corn were included in this study. All land cultivation practices other than those for
these three crops were defined as NGP. We used NGPR to measure NGP according to the
following formula:

NGPR = 1− L
C × I

(4)

where L is the sum of the area of wheat, corn, and rice; C is the cultivated land area; and I is
the multiple cropping index.

2.3.2. Driving Factor Determination

This study refers to previous research findings [5,15–17]. Considering the availability
and classicality of factor data, we identified the principal selection drivers of NGPR (Table 2).
In addition to weather, topography, soil, and socioeconomic variables, 11 representative
indicators were selected as driving factors. These factors explain the driving forces at
various levels of NGP. Moreover, we used night light indicators to measure the level of
urban development [18,19].
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Table 2. Driving forces.

Index Code Resolution Data Sources

Weather factors
Average annual precipitation X1 0.1◦ × 0.1◦ University of East Anglia Institute
Average annual temperature X2 0.1◦ × 0.1◦ University of East Anglia Institute

Topography Elevation X3 30 m Shuttle Radar Topography Mission
Slope X4 30 m Shuttle Radar Topography Mission

Soil factors
Soil carbon content X5 1 km Harmonized World Soil Database
Soil organic matter X6 1 km Harmonized World Soil Database

Socioeconomic factors

Population density X7 100 m United Nations Population
Density Data

Night light data X8 1 km NPP/VIIRS night
lighting products

Distance from highway X9 / National Basic Geographic
Information Center

Distance from railway X10 / National Basic Geographic
Information Center

Distance from capital city X11 / National Basic Geographic
Information Center

3. Results
3.1. NGPR Measurement and Regional Characteristics
3.1.1. Overall and Regional Characteristics

The national NGPR decreased from 63.02% in 2000 to 52.82% in 2018. However, the
NGPR varied across different regions, owing to factors such as natural resource endowment
and socioeconomic development. From the perspective of county-level units, the spatial
distribution pattern of NGPR characteristics and regional units is relatively consistent.
The following points can be observed in Figure 1: (1) NGPR is distributed in a pattern
of “high in the west and low in the east.” Among the 2323 county-level units, 1078 have
NGPR > 50%, representing 46.4% of the national NGPR. Some hilly and mountainous fields
are small, with small per capita areas, which are not conducive to large-scale mechanized
farming. Thus, farmers prefer planting crops with high economic benefits in these areas.
(2) The spatial NGPR pattern showed a multicenter distribution. A total of 629 county-level
units exhibited a non-grain area larger than 5.0 × 104 ha. The spatial patterns of NGPR
and non-grain areas were not mirrored across counties. For example, the non-grain area of
units with high NGPR was smaller along the southeast coast. In contrast, in the northwest
and northeast regions, the NGPR was high, and the non-grain area was widespread.

3.1.2. NGPR Spatial Variability Patterns

Standard deviation ellipse analysis (Figure 2) revealed that the angle of the standard
deviation ellipse changed from 56.40◦ in 2000 to 76.06◦ in 2018, thus revealing a pattern
related to the spatial concentration and evolution of NGPR. This result indicates that NGPR
is directed from “northeast to southwest.” The spatial NGPR pattern is also decentralized.
Specifically, the long axis of the standard deviation ellipse gradually shortened from 2000
to 2018, whereas the short axis remained largely unchanged. Under the combined action
of the long and short axes, the eccentricity gradually decreased. Further, the area of the
standard deviation ellipse gradually decreased from 4.33 × 108 ha in 2000 to 4.18 × 108 ha
in 2018, thus exhibiting a clear decentralization trend.
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3.2. Spatial Correlation and Differentiation Patterns of the NGPR
3.2.1. Global Spatial Correlation Characteristics

Significance tests were performed on the global spatial autocorrelation of NGPR.
From 2000 to 2018, the global spatial NGPR autocorrelation passed significance tests at
the 1% level, indicating that NGPR has a strong spatial correlation. The global Moran’s I
values for NGPR in 2000, 2005, 2010, 2015, and 2018 were 0.310, 0.274, 0.271, 0.254, and
0.325, respectively. These values indicate a positive spatial autocorrelation. The NGPR
distribution was thus spatially clustered, and the degree of spatial clustering increased over
time (Table 3).

Table 3. Global Moran’s I from 2000 to 2018.

2000 2005 2010 2015 2018

Moran’s I 0.310 0.274 0.271 0.254 0.325
Z 90.882 80.496 79.650 74.671 95.314

3.2.2. Local Spatial Differentiation Patterns

A local indicator of spatial association (LISA) cluster distribution map and a Moran
scatter plot of NGPR in China’s county areas were calculated for each county. Figure 3
shows 2323 county-level geographic units distributed across four zones: H-H (high-high
clustering), L-H (low-high clustering), L-L (low-low clustering), and H-L (high-low cluster-
ing). Even at a local scale, the NGPR spatial cluster pattern maintained the same “low in
the east and high in the west” distribution as that at the country-wide level. H-H clustering
was most strongly associated with arid regions of northern China, the Sichuan Basin, and
surrounding areas. The Huanghuaihai Plain, the middle and lower reaches of the Yangtze
River, and the Northeast Plain showed L-L clustering, whereas H-L and L-H clustering
exhibited sporadic distributions and local fluctuations. Most clustering fell within the first
and third quadrants of the Moran scatter plot (Figure 4), indicating the probable dominance
of H-H and L-L clustering.
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The stable distribution of NGPR with H-H clustering was primarily observed in
Xinjiang, the Sichuan Basin, and in parts of the Loess Plateau. From 2000 to 2018, the
overall change in NGPR coverage was characterized as “stabilizing in the northwest and
expanding to the southwest”. Most of the stable distribution of NGPR with L-L clustering
appeared in the Huanghuaihai Plain and parts of the middle and lower reaches of the
Yangtze River. The overall coverage from 2000 to 2018 showed that coverage was “stable
in the southeast and expanding to the northeast.” The NGPR areas with H-L and L-H
clustering were small and sporadic, mainly occurring in peripheral regions adjacent to
H-H and L-L clusters. In addition, hot spot analysis indicated the presence of NGPR hot
spots in the west, and cold spots in the east. These results corresponded to the LISA cluster
distribution map, further supporting the significance of the observed high- and low-value
clusters (Figure 5).
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3.3. Factor Identification of NGPR Spatial Differentiation
3.3.1. Identifying Dominant Factors

In this study, the factor detector method was used to obtain q-values for five typical
time points in 2000, 2005, 2010, 2015, and 2018. These q-values were then ranked (Table 4).
The explanatory power of each factor passed the 1% significance level test.

Table 4. Factor detection results for the spatial differentiation of the non-grain production rate
in China.

Factor
2000 2005 2010 2015 2018

q Rank q Rank q Rank q Rank q Rank

X1 0.128 3 0.100 3 0.086 2 0.072 3 0.062 5
X2 0.172 1 0.164 1 0.127 1 0.130 1 0.108 2
X3 0.137 2 0.116 2 0.078 4 0.064 4 0.087 3
X4 0.030 8 0.034 7 0.027 8 0.041 5 0.035 8
X5 0.105 4 0.089 4 0.081 3 0.096 2 0.132 1
X6 0.030 9 0.026 9 0.031 5 0.027 7 0.019 10
X7 0.025 10 0.021 11 0.011 11 0.023 9 0.012 11
X8 0.047 5 0.030 8 0.028 6 0.029 6 0.068 4
X9 0.046 6 0.047 5 0.028 7 0.026 8 0.053 6
X10 0.023 11 0.023 10 0.014 10 0.016 11 0.035 7
X11 0.045 7 0.036 6 0.026 9 0.018 10 0.022 9

Note: X1–X11 represent average annual precipitation, average annual temperature, elevation, slope, soil carbon
content, soil organic matter, population density, night light data, distance from highway, distance from railway,
and distance from capital city, respectively.

Overall, the factors with the greatest impact on the spatial differentiation of NGPR
were annual average precipitation, annual average temperature, elevation, and soil carbon
content. Each factor had a q-value greater than 0.1.

When examining the dominant factors, interesting patterns emerged. First, the ex-
planatory power of the annual average precipitation, annual average temperature, and
elevation decreased over time. Specifically, the q value of the annual average precipitation,
annual average temperature, and elevation decreased from 0.128, 0.172, and 0.137 in 2000 to
0.062, 0.108, and 0.087 in 2018, respectively. These results reflect a decrease in the influence
of natural constraints in shaping NGPR progression. The explanatory power of nighttime
lights, distance from highway, distance from railway, and soil carbon content increased
between 2000 and 2018. Their q-values increased from 0.047, 0.046, 0.023, and 0.105 in 2000
to 0.068, 0.053, 0.035, and 0.132 in 2018, respectively. This result indicates that the influence
of socioeconomic development and soil quality factors on the spatial differentiation of
NGPR is increasing.

In addition, a stable pattern emerged on ranking the explanatory powers of the
most dominant factors. Ranked from highest to lowest, the average annual temperature,
elevation, average annual precipitation, soil carbon content, and nighttime lights were the
top five factors in 2000. This trend remained mostly unchanged in 2018, with soil carbon
content, annual average temperature, elevation, nighttime lights, and average annual
precipitation topping the list.

3.3.2. Interaction between Factors

The dominant factors were selected from factor detection, and used to analyze the
interaction mechanisms affecting NGPR spatial differentiation to further investigate the
changes in the explanatory power of NGPR upon the interaction of different driving factors.
Data from the years 2000, 2005, 2010, 2015, and 2018 were analyzed. The results (Table 5)
revealed that the factors had a relatively close relationship during the research period, rather
than being independent of each other. The q-values obtained from the interaction between
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the driving factors showed different degrees of improvement. The combined effect of two
factors typically improved the explanatory power of the NGPR spatial differentiation.

Table 5. Spatial differentiation interactive detection results for non-grain production rate in China.

Factor Interaction
2000 2005 2010 2015 2018

q Type q Type q Type q Type q Type

X1∩X2 0.221 BE 0.180 BE 0.189 BE 0.185 BE 0.143 BE
X1∩X3 0.217 BE 0.195 BE 0.148 BE 0.124 BE 0.174 NE
X1∩X5 0.198 BE 0.157 BE 0.149 BE 0.127 BE 0.185 BE
X1∩X8 0.224 NE 0.172 NE 0.160 NE 0.123 NE 0.172 NE
X1∩X9 0.162 NE 0.137 BE 0.109 BE 0.088 BE 0.111 BE
X2∩X3 0.243 BE 0.234 BE 0.189 BE 0.185 BE 0.192 BE
X2∩X5 0.224 BE 0.209 BE 0.189 BE 0.184 BE 0.201 BE
X2∩X8 0.232 NE 0.211 NE 0.174 NE 0.169 NE 0.190 NE
X2∩X9 0.183 NE 0.191 NE 0.147 BE 0.144 BE 0.150 BE
X3∩X5 0.163 BE 0.139 BE 0.125 BE 0.134 BE 0.175 BE
X3∩X8 0.170 NE 0.143 BE 0.101 BE 0.096 NE 0.132 BE
X3∩X9 0.142 NE 0.123 NE 0.085 BE 0.068 BE 0.102 BE
X5∩X8 0.131 BE 0.105 BE 0.109 BE 0.121 BE 0.161 BE
X5∩X9 0.116 NE 0.115 BE 0.093 BE 0.105 BE 0.145 BE
X8∩X9 0.091 BE 0.079 NE 0.058 NE 0.057 NE 0.104 BE

In terms of the types of interaction, 72% of the interactions among the dominant factors
showed bivariate enhancement (BE), whereas the rest showed nonlinear enhancement (NE).
From the year 2000 to 2018, the explanatory power of each two-factor interaction was
different, indicating volatility over time.

Specifically, the explanatory power of the interaction between precipitation and tem-
perature on NGPR decreased from 0.221 in 2000 to 0.143 in 2018. This interaction remained
BE, mainly owing to the explanatory power of the decreasing temperature and precipitation
during this period. The explanatory power of the interaction between precipitation and
elevation initially decreased and then increased. The type of action changed from BE to NE.
This change was mainly related to the change in a single factor (elevation). The explanatory
power of the interaction between precipitation and soil carbon content decreased and then
increased, and the effect type was BE, likely because of the increasing influence of soil
carbon content on NGPR spatial differentiation. The explanatory power and action type of
the interaction between elevation and nighttime lights showed an unstable change. The
explanatory power first decreased and then increased, whereas the action type underwent
the following changes: NE→ BE→ NE→ BE. These sporadic changes were mainly caused
because the explanatory power of elevation and nighttime light fluctuated over time.

4. Discussion

The central government, local governments, and farmers have different goals for
cultivated land use [20]. The central government aims to maintain the basic welfare of the
populace, local governments aim to pursue local economic growth and improve official
performance, and farmers try to maximize their personal economic gains. Thus, the impact
of NGP on each group is different. Because planting non-food crops can achieve higher
economic benefits and can significantly promote local economic development, some local
governments can ignore or even allow NGP behaviors to a certain extent. Farmers are
largely driven by economic interests, so they tend to plant cash crops with higher economic
returns instead of growing food crops. For the central government, NGP threatens the
security of national food supply, and if left unchecked for a long time, NGP may cause
substantial costs to manage the resulting economic fluctuations and social unrest. Therefore,
NGP caters to the short-term development needs of local governments and farmers, but is
not conducive to safeguarding the common interests of the central government and society
in the long run [21–26].
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4.1. Impact of NGP on Food Security

NGP first impacts the quality of cultivated land. There are obvious differences in
the impact of different types of NGP on the quality of cultivated land. Previous studies
have showed that economic crops, such as vegetables and oil crops, have little effect on the
ploughing layer. Additionally, if a reasonable crop rotation and effective nutrition practices
can be adopted, the quality of cultivated land can be improved. Some fruits can destroy the
original soil structure of cultivated land and reduce the quality of cultivated land, but it is
relatively easy to restore cultivated land fertility. However, if the cultivated land is used
for the production of fast-growing trees, such as poplar, or other types of economic trees
with developed root systems, soil degradation, e.g., soil compaction and acidification, often
arises because the trees absorb water and fertilizers during long-term planting [27–32].
Digging ponds and breeding fish in many areas completely removes the cultivated layer
of arable land. In these cases, a large amount of foreign soil is required to rebuild the
cultivated layer and gradually restore the land quality. Thus, different NGP types have
different effects on the quality of cultivated land, so their role in food security should
also be analyzed differently. Moderately supporting NGP behaviors that are beneficial
to the quality of cultivated land is beneficial to national food security, whereas long-term
laissez-faire NGP behaviors that damage the cultivated layer can seriously threaten national
food security.

The second factor is the impact on grain yields in different regions. The main grain-
producing areas play an important role in stabilizing national food security. Most studies
propose that grain production practices should focus on the main grain-producing areas.
Additionally, these studies propose the adoption of strict measures to increase agricultural
investment, adjust the structure of grain varieties in a timely manner, and establish a
system of preferential interests. It is thus important to prevent NGP behaviors in major
grain-producing areas to ensure China’s food security as a whole. In fact, it is unfair to
pin the heavy responsibility of ensuring food security on the main grain-producing areas
alone. As some major grain-producing areas are economically underdeveloped traditional
agricultural areas, these areas bear a heavy responsibility for grain production and pay
relatively high costs for arable land protection. The low profit margin of grain crops further
affects the economy of the main grain-producing areas. A complete regional compensa-
tion system has not been established, which exacerbates the inequitable distribution of
grain production responsibilities among different functional areas, thereby threatening the
stability of China’s grain production and supply [33–44].

4.2. Drivers of NGP

The land economic theory states that the essence of land use is the interaction between
people and land. Similarly, NGP is the result of interactions between people and land. NGP
is affected by nature, economy, society, and institutions. Owing to the comprehensive effect
of various factors, the driving factors of NGP are distinct at different scales, but they mainly
include subjective factors from farmers themselves, the objective natural environment of
cultivated land, and socioeconomic factors [45–49].

Farmers are the most important actors during the utilization of cultivated land. Their
behavioral habits, action logic, and psychological expectations directly or indirectly de-
termine the choice of planting behavior, which, in turn, affects the agricultural planting
structure. Since China is a large agricultural country with a long history, the effect of the
historical and cultural background of farmers cannot be ignored in their planting decisions.
With the rapid advancement of urbanization, Chinese farmers are also accelerating their dif-
ferentiation. Research on the grain-growing logic of new agricultural management entities
is conducive to comprehensively and systematically characterize the heterogeneity of Chi-
nese farmers. The natural environment of cultivated land is another important prerequisite
for agricultural management choices. Previous studies have found that the natural environ-
ment of cultivated land is inseparable from NGP. Scholars typically examine cultivated land
quality, geographical location, village type, and topography. A good natural environment
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for cultivated land is the primary prerequisite for crop cultivation. At the same time, the
environment provides the possibility to develop adaptable crops. Strategies to control
NGP should be adapted to the land conditions, and differentiated control plans should be
proposed according to the natural factors that cause NGP. Socioeconomic development is
an important driving force for the transformation of the agricultural structure, and is an
important driving factor for NGP. Previous research mainly studied NGP formation from
the perspective of economic benefits, farmland transfers, industrial and commercial capital
going to the countryside, and grain subsidy policies. With the comprehensive promotion of
rural revitalization, a large amount of industrial and commercial capital has been moved to
the countryside. However, owing to the profit-seeking nature of industrial and commercial
entities, under the guidance of economic interests, the tendency of new agricultural busi-
ness entities toward NGP is particularly strong. Therefore, driven by rapid urbanization,
industrial and commercial capital cannot achieve the original intention of revitalizing the
countryside, but instead exacerbate the NGP situation of the planting structure [5,50–55].

4.3. NGP Control Measures

NGP is affected by the background of rapid urbanization, and is the result of multiple
factors, including the farmers interests, the natural cultivated land environment, and socioe-
conomic factors. Distinct regions exhibit different manifestations. Therefore, identifying
and analyzing different NGP types is an important prerequisite for the rational recognition
and management of NGP. Future research should clearly distinguish how different non-
grain types impact NGP and affect the quality of cultivated land. Further, future studies
should propose targeted management and control strategies [56–60].

From the perspective of food security, NGP prevention and control is an important and
difficult research topic in China. In general, the foremost problem of NGP control is to solve
the problem of the relatively low returns from growing grain. To this end, many studies
advocate that grain subsidies should be increased to make grain growing truly profitable
for farmers. Fundamentally, the essence of NGP from the perspective of food security is
the need to coordinate the competition between short-term economic benefits and long-
term food security. Therefore, it is necessary to develop policies at the national level for
constructing a “benefit sharing” mechanism for grain-producing areas. The main grain
sales, production, and sales balance areas could thus trade grain production indicators for
main grain production areas with better arable land resource endowments. This approach
can ensure the stability of national grain output and provide moderate support for NGP to
help farmers increase their income [61–66].

5. Conclusions

This study systematically examined the evolution of NGP in China from 2000 to 2018.
We specifically investigated the spatial pattern of NGPCL in China and elucidated the key
factors driving NGPR. Our results support the following conclusions: (1) From 2000 to
2018, the national NGPR gradually decreased from 63.02% to 52.82%. However, owing to
factors such as natural resource endowment and socioeconomic development, NGPR varies
greatly in different regions. (2) A significantly positive spatial correlation of NGPR exists in
Chinese counties, with the distribution having a geographical clustering effect. The degree
of spatial clustering is also increasing. From 2000 to 2018, the overall coverage showed
a trend of stable northwest coverage and expansion to the southwest. (3) The dominant
factors controlling the spatial differentiation of NGPR are annual average precipitation,
annual average temperature, elevation, and soil carbon content. Interactions between these
factors improve the explanatory power of NGPR spatial differentiation. The interaction
type between the dominant factors is mainly two-factor enhancement, supplemented by
nonlinear enhancement.

Overall, this study is a large-scale study on a national scale. On the basis of this study,
detailed future studies could be conducted at the plot scale. At the same time, the impact of
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NGP on the ecosystem and farmers’ grain-growing behavior at the household scale could
be investigated.
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