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Abstract: Mineral resource exploitation is one of the activities that contribute to economic growth
and the development of society. Artisanal and small-scale mining (ASM) is one of these activities.
Unfortunately, there is no clear consensus to define ASM. However, its importance is relevant in that
it represents, in some cases, the only employment alternative for millions of people, although it also
significantly impacts the environment. This work aims to investigate the scientific information related
to ASM through a bibliometric analysis and, in addition, to define the new lines that are tending to this
field. The study comprises three phases of work: (i) data collection, (ii) data processing and software
selection, and (iii) data interpretation. The results reflect that the study on ASM developed intensively
from 2010 to the present. In general terms, the research addressed focuses on four interrelated lines:
(i) social conditioning factors of ASM, (ii) environmental impacts generated by ASM, (iii) mercury
contamination and its implication on health and the environment, and (iv) ASM as a livelihood. The
work also defines that geotourism in artisanal mining areas is a significant trend of the last decade,
explicitly focusing on the conservation and use of the geological and mining heritage and, in addition,
the promotion of sustainable development of ASM.

Keywords: mining; artisanal mining; small-scale mining; environment; bibliometric analysis

1. Introduction

Mining is a type of extractive activity considered to be one of the most important
sources of metals and non-metals [1,2]. This activity is not always carried out by large-
scale companies or industrial machinery; being called small-scale or artisanal mining.
Small-scale mining (SSM) was first defined by the United Nations (UN) as: “Any single
mining operation that has an annual raw material production of 50,000 metric tonnes or
less, measured at the mine entrance” [3]. However, despite referring to the production
magnitude or exploitation size, this concept differs at the level of countries and institutions.
For example, in Brazil, the National Department of Mineral Research (DNPM) defines SSM
as an operation that produces between 10,000 t/a (tonnes per year) and 100,000 t/a of
ore [4]. On the other hand, in Ecuador, according to the mining law, the SSM exploits and
processes up to 300 tons of ore per day (tpd) [5].

The SSM can be developed technically (conventional) or in a rudimentary way. When
the operation of the SSM is conventional, it is characterised by being developed under a
legal situation and the technical application of mechanised exploitation, as well as being
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processed with engineering criteria and feasibility studies that guarantee the results of
mineral production [6]. On the other hand, when the operation is carried out through
simple and rudimentary techniques to extract ore without conventional ecological and
engineering principles, it is called artisanal mining (AM) [7]. Currently, no country has
clear regulations defining activities classified as AM, and almost all policies only refer
to the size of the operation [8]. Hilson [9] describes that artisanal mining exploitation
involves “intense labour activity located in remote and isolated sites using rudimentary
techniques, low technological knowledge, low degree of mechanization and low levels of
environmental, health and safety awareness”. This term refers to the rudimentary type of
exploitation, regardless of whether the mine is small or large [10].

Artisanal mining and small-scale mining are used synonymously to refer to mining
activity carried out by individuals or small groups with low technology or machinery [11].
Considering their close relationship, the legislations of developing countries refer to the
term “artisanal and small-scale mining (ASM)” as “individuals, groups, families or mining
cooperatives with minimal or no mechanization, often in the informal (illegal) sector of the
market” [12] (Figure 1).
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However, the definition of ASM is not uniform across many jurisdictions. Although
there is still no internationally agreed upon definition of ASM, country-specific definitions
reflect relevant situations and developments at the local level [13]. According to Secca-
tore et al. [7], “the term ASM is widely used to refer to those small or large operations that
use rudimentary techniques to extract gold that operate legally or illegally and that are
not on the radar of many companies mining companies, governments and international
environmental agencies”. Various authors have studied and characterised this type of
activity [12,14–23].

In general, ASM is an activity that exploits small deposits, has poor capital, lacks stan-
dards to ensure health and safety, is labour intensive, and has a significant environmental
impact [14]. According to [24], millions of people worldwide are dedicated to primitive
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mineral extraction (ASM). Most ASM operators mine precious metals and stones [25].
Other mineable materials, such as minerals, include diamonds, columbite-tantalite, and
bauxite [26–28].

Recent studies have focused on large and medium-scale mining effects, updating
sustainable and environmentally responsible production techniques [29–31]. However, the
effects produced by ASM are still a reality due to economic, legislative, and technological
limitations [22,32,33]. Furthermore, ASM has witnessed a massive expansion worldwide,
employing millions of people [14,34] and producing 15–20% of the world’s mineral pro-
duction [7]. In addition, the areas where activities related to small-scale mining are located
are studied, among other topics, from a geological point of view. In particular, in works
oriented to the definition of the type of existing deposit (e.g., [35–37]), the characterization
of the existing minerals of interest (e.g., [38–40]), and to the proposal of efficient exploitation
alternatives (e.g., [41–43]).

Artisanal mining is driven by poverty, growing as an economic activity and adopted as
a promising, and in many cases unique, alternative income [44]. However, ASM continues
to develop without regulatory control in most developing countries, generating social and
environmental problems in which crime, child labour, soil erosion, mercury contamination,
and mining conflicts stand out [45]. The leading solution proposed by academics and
professionals consists of improving ASM’s environmental, technical, and socioeconomic
performance by implementing regulations that organize and formalize the sector, respecting
miners’ rights [12,19,34].

Several literature review studies related to ASM mainly focus on systematic reviews of
specific topics. Some examples are review studies about its relationship with poverty [24,46],
agriculture [47], operator health [48], ecological problems [49,50], health risks [51,52], mer-
cury contamination [6], mercury management and treatment [53], and water contamina-
tion [54], among others.

To date, no holistic analysis of ASM is recorded. This is possible with a bibliometric
study that allows for knowing the structure and evolution of this field of research. Biblio-
metric analysis is a method that assesses the structure and trends of research in a specific
body of literature [55–60], commonly used to categorize aspects of science as journals, insti-
tutions, universities, authors, and most contributing countries [61]. According to [62], this
type of study is important for (i) obtaining a comprehensive overview of the subject under
investigation, (ii) identifying knowledge gaps, (iii) defining novel lines in research, and
(iv) positioning their contributions in the researched field. Bibliometric analysis can use two
procedures: (i) analysis of scientific production, which leads to an evaluation of the impact
of the field being investigated in the study and its scientific actors (authors, institutions,
countries) [63,64]; and (ii) bibliometric mapping combined with clustering techniques that
allow for evaluating of the cognitive structure and behaviour of the scientific field through
the analysis of research fields, disciplines, and themes [65,66].

Based on the above, and considering the conflict (similarity and variation of definitions
between SSM and AM), the following research question arises: How should we organize
information to carry out a comprehensive analysis of the evolution and trends of the
scientific production of the SSM and AM?

In this study, the term ASM is considered as a holistic concept that integrates SSM
and AM as synonyms of low-production mining activity, characterised by the low-quality
technology used and intensive labour. For this reason, the objective of this study is to
analyse the existing literature base related to ASM through bibliometric methods that allow
for the definition of the main areas being investigated, patterns, trends, and the proposal of
new lines of research.

The article consists of six main sections: the introduction (Section 1), which includes a
review of scientific literature related to ASM in the world; materials and methods (Section 2),
which describes the procedure used in this study; results (Section 3), in which the results ob-
tained from the analysis and processing of the database are presented; discussion (Section 4),
which lies in exposing the importance of the study and the determination of future lines of
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research; the conclusions (Section 5), which include the limitations of the study; and finally,
the references used which support this research.

2. Materials and Methods

Bibliometric research, a meta-analytic literature research tool, was conducted in this
study [57,67]. This type of study is about analyzing (mapping) the structure, evolution,
and research trends of a specific database [55,56,58–60,68] through parameters such as
authorship, citations, keywords, journal, and affiliations [61,69].

For the bibliometric analysis of a specific field of research, it is necessary to use
bibliometric maps [70,71], which can be viewed in different software (e.g., Bibexcel, CitNe-
tExplorer, CiteSpace, CoPalRed, HistCite, Net-work Workbench Tool, SciMAT, Sci2Tool,
VantagePoint, and VOSviewer). This study used the VOSviewer software [65] to build
bibliometric networks in order to facilitate the analysis of the intellectual structure using
various parameters obtained from scientific publications [72]. The research contemplates
a systematic process distributed in three phases (Figure 2): (i) data collection, (ii) data
processing and software selection, and (iii) data interpretation.
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2.1. Data Collection

Most of the research literature on small-scale mining is closely related to artisanal
mining [34,73,74]. Furthermore, scientific contributions on artisanal and small-scale mining
(ASM) generally expose case studies, mainly in developing countries, in which small-scale
mining is a term frequently used to refer to artisanal mining activity [25,75]. Therefore,
considering this relationship, the following search terms are considered in this study: (i) ar-
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tisanal mining, (ii) small-scale mining, and (iii) small mining. The selected terms will allow
for the obtaining of a complete literary body on the subject for its later bibliometric analysis.

Quality databases with accurate and consistent information are essential [76,77]. There-
fore, the Scopus database was selected for the search, as it is considered one of the central
databases with great coverage, facilitating the study and comparison of different scientific
fields [78–83]. In addition to its comprehensive coverage and ease in the tools provided for
bibliometric analysis, in this specific study (artisanal and small-scale mining), we consid-
ered the main reason for the extensive coverage of Scopus in terms of scientific production
related to geosciences [84–86].

Scopus constitutes an indexed and well-organised database of scientific production,
with tools that allow the export of metadata [63,80,87]. In addition, it provides a series of
data on scientific publications such as authors, institutions, countries, number of citations,
and research areas [78,80,88,89]. An important aspect to consider in selecting the database is
that the growth in the coverage of journals from Latin America and the Caribbean indexed
within the Scopus database [90,91] strengthens the analysis carried out in different areas.

The search was carried out on 8 November 2021, using the terms previously defined
in the titles, abstracts, and keywords of the different existing publications in Scopus.
The initial search equation used was: ((TITLE-ABS-KEY (“artisanal mining”) OR TITLE-
ABS-KEY (“small scale mining”) OR TI-TLE-ABS-KEY (“small mining”))), with a result of
1665 documents. Subsequently, the database was delimited through inclusion and exclusion
criteria according to the analysis to be carried out. As a first criterion, it was considered
appropriate to exclude the year 2022 and carry out the study with documents published
up to the present (search date). Subsequently, the number of documents was limited to
articles, since the results obtained from the initial search equation yielded more than 75%
of documents as articles. Finally, considering that the English language is the most frequent
in scientific publications [92], the initial search of the investigated area indicated that more
than 90% of documents are written in English; the study was limited to documents in
that language. The final database represents 1258 documents, which will be the basis for
processing phase two of the study.

2.2. Data Processing and Software Selection

The data processing and software selection phase begins with extracting data from
the Scopus database through a Microsoft Excel spreadsheet. The software uses data anal-
ysis and error elimination [93–95] and evaluated the investigated area’s scientific pro-
duction [96]. Specifically, the downloaded database contains authors, titles, keywords,
years, number of citations, and abstracts. Then, a cleaning and error elimination process is
carried out [97,98], eliminating repeated and incomplete data for this research, obtaining
1257 documents to analyse.

With the adjusted database, we construct two-dimensional bibliometric networks,
which define the research structure of the field being studied using the VOSviewer software
(Version 1.6.17) [65]. The software is freely available and is used as the primary tool for
constructing detailed bibliometric maps through simple graphs [70,99,100]. This software
is used in different scientific areas such as medicine [101–104], management [105–109],
natural and cultural resources [110–112], and geosciences [68,113–116], among others.

2.3. Data Interpretation

The investigated field analysed the results through (i) performance analysis and
(ii) scientific mapping [117]. The first analysis makes it possible to determine the evolution
of scientific production and its impact by evaluating parameters such as authors, year,
affiliations, journals, and countries [118–120]. The subsequent analysis (scientific mapping)
allows for the definition of different relationships between the analysed variables, obtaining
information at the micro-level (co-occurrence of author keywords), meso-level (co-citation
of authors) and macro-level (journal co-citation) [94,121]. Specifically, the objective of the
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analysed approaches was to identify the main areas of research on ASM for the definition
of new lines based mainly on innovative, sustainable, and affordable research.

3. Results
3.1. Performance Analysis
3.1.1. Scientific Production Analysis

Research studies related to artisanal and small-scale mining (ASM) began in 1919,
with the study of Wormleighton [122], which marked the interest in this type of research
on sewage and drainage works in a mining district. However, the first five decades
(until 1979) of research in this field are scarce, with eight articles representing 0.63% of the
total scientific production of ASM. Due to these reasons, excluding these years from the
production analysis is considered pertinent.

This analysis is divided into three periods distributed by decades: period I (from 1981
to 2000), period II (from 2001 to 2010), and period III (from 2011 to 2021) (Figure 3). For
period I, two decades are grouped (1981–2000) due to the low number of published articles.
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Period I (1981–2000): This research period of ASM in the world begins with 124 scientific
articles, in which a similar production trend can be observed every five years (Figure 3).
It is essential to highlight that in 1987 the highest production was obtained within the
analysed period (Figure 3), with 15 published articles. In general, this first period marks
the beginning of ASM research. The primary study topics focus on the contribution of
small-scale mining to world mineral production [123], as well as its contribution to the
socioeconomic development of developing countries [124]. Likewise, case studies of small-
scale mining [125–129], the role of the government in promoting small-scale mining [130],
and the need for government policies [131,132] are presented.

Within this research period, the authors also expose the importance and characteristics
of small-scale mining [133], as well as the primary technical considerations that reduce the
human and environmental risk [134], despite its limitations [135]. Likewise, it is possible
to observe studies focused on the pollution problems of small-scale mining [136,137] (e.g.,
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in water [138], soil [139], and environment [140,141]), seismicity inductions [142,143], and
mining-associated diseases [144].

Period II (2001–2010): This decade is characterised by significant growth in research,
with a total of 191 articles representing 15.15% of the ASM research field. In 2009 there
was a peak in research with 39 publications (Figure 3). Ranging from 2001 to 2010, ASM
research is related to mining environmental management [145–148] and the need for mining
legislation [34,149–152] that will solve environmental pollution problems [42,153–158].
During this period, studies on illegal mining are also visible [159–162], which generate
land-use conflicts due to small and large-scale mining [163,164]. On the other hand, it is
essential to highlight the increase in the scientific production of gold ASM, in which the
scarce legislation [147,152,154,165,166], problems of health in people [167–169], and the
inclusion of women in this type of activity [170] are emphasised.

Period III (2011–2021): Finally, the third period analysed is characterised by an exponen-
tial growth in scientific production related to ASM, with a total of 911 articles representing
74.21% of the total documents analysed (Figure 3). The average annual production ex-
ceeds 80 articles, with a peak in 2020 (161 articles) and 2021 (164 articles) investigated,
defining ASM as a booming research field. As mentioned in previous periods, this field
of research is generally related to lines such as pollution [49,171–177], agriculture prob-
lems caused by ASM [178–181], the association of ASM with poverty [182–184], mining
conflicts [185,186], informal/illegal ASM [187–189], and the influence of ASM on water
quality [190,191], among others. However, this period is characterised by an intensive
growth in the scientific contribution to solving mining conflict problems through ASM
formalization strategies [45,192–198], in addition to contributing to research focused on
strategies for reducing environmental pollution [199,200] and health risk mitigation [201].

3.1.2. Regional and Country Contribution

According to the authors’ different affiliations, the contribution by country indicates
that, worldwide, 46 countries contribute to research related to ASM (Figure 4). In gen-
eral, four countries stand out due to their high scientific production: the United States
(210 articles), United Kingdom (209 articles), Canada (133 articles), and Ghana (109 articles)
(Figure 5). In addition, these countries are characterised by a high number of citations
compared to the other contributing nations, with the United Kingdom standing out as the
most cited country worldwide on topics related to ASM (94,929 citations) (Table 1).

Table 1. Top 10 countries by the number of documents.

Ranking Country Region Documents Citations

1 United States América 210 3989
2 United Kingdom Europa 209 6440
3 Canada América 133 2891
4 Ghana África 109 1792
5 Australia Oceanía 83 1076
6 China Asia 71 1508
7 Germany Europa 67 1209
8 Brazil América 63 931
9 South Africa África 57 394
10 Belgium Europa 56 1307

According to the affiliation obtained, it is essential to note that the top 10 countries
that contributed the most in the field can be differentiated (Table 1), highlighting the
participation of developed countries such as the United States, United Kingdom, and
Canada, leaders in ASM research throughout the world.
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The behaviour of collaboration between countries, based on affiliation data, indicates
that the United States, Canada, Australia, Germany, Austria, and Spain are the countries
with the most significant collaboration (each one collaborates with 45 different countries).
The United States, the country with the highest production, contributes to 45 countries,
of which Canada, Ghana, and Germany stand out. When analyzing the United States
production, the studies focus on issues related to the impact that ASM generates on the
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environment [49,156,157,202,203], health implications [168,171,173,204–206], the effects of
AMS on socioeconomic factors [24,184,207], and the inclusion of women in jobs related
to this type of activity [23,170,208]. Strengthening its studies of problems associated with
ASM, the United States also generated contributions in the areas focused on the need
for ASM regulations [195,209–211], as well as ASM risk and contamination mitigation
alternatives [201,212–214].

Although the United States is the country with the highest scientific production, the
United Kingdom, with only one less article, far exceeds the number of citations in its
works. These studies include the socioeconomic impacts of ASM in developing countries
and strategies focused on the sector’s sustainability [9], environmental problems of small-
scale gold mining [42], poverty-driven informal artisanal gold mining [73], and ASM
reforms [215]. This analysis also includes the study of the dependence on mercury as
an agent of poverty in artisanal gold mining [216] and the pollution generated in these
communities [217]. Studies on strategies to eradicate illegal artisanal mining are also
included [162].

Canada, occupying third place in the contribution of ASM articles, makes contributions
focused on African or South American countries. The investigations are related to the
current use of mercury in ASM [7] and the proposal of actions focused on the reduction of
these types of emissions [218], as well as the responsibility of miners, governments, and
organizations in the search for solutions to pollution problems [41,219,220]. There are also
studies related to the role of ASM formalization in Africa [34].

3.1.3. Journal Performance

The analysis included 468 journals in which 1257 scientific articles were published
(database analysed) related to ASM. Table 2 shows the top 10 of the most outstanding
journals, with 401 articles representing 31.9% of the total.

Table 2. Top 10 journals with the highest number of publications.

Ranking Journal Country Documents
Number Representation Citations SJR * Cite

Score

1 Resources Policy United Kingdom 116 9.2 2912 1.276 6.3

2 Extractive Industries and
Society The Netherlands 82 6.5 951 0.999 4.2

3 Journal of Cleaner Production United Kingdom 40 3.2 1384 1.937 13.1
4 Natural Resources Forum United Kingdom 37 2.9 843 0.646 2.9

5 Science of the Total
Environment The Netherlands 31 2.5 1492 1.795 10.5

6
International Journal of

Environmental Research and
Public Health

Switzerland 27 2.1 450 0.747 3.4

7 Minerals and Energy—Raw
Materials Report United Kingdom 18 1.4 70 0.143 -

8 Geoforum United Kingdom 17 1.4 472 1.584 5.5
9 World Development United Kingdom 17 1.4 820 2.386 8.4
10 Environmental Research United States 16 1.3 677 1.460 7.9

* SJR data was obtained from Scimago Journal & Country Rank.

Resources Policy is the leading journal in scientific publications in the analysed field
with 116 articles representing 9.2% of the total. This journal is the most cited worldwide,
with 2912 citations. The top five studies with the highest citations (Banchirigah [162],
Hilson [221], Siegel & Veiga [34], (Mohammed Banchirigah [215], and y Geenen [193]) focus
on formalization and poverty related to ASM in Africa. Based on its citations (163), the most
relevant study was developed by Banchirigah [162] in Ghana. The study argues for the
need to eradicate illegal mining through formalization, work alternatives, and government
and military intervention. On the other hand, the journal Science of the Total Environment,
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occupying fifth place in the production of ASM, represents the second most cited journal
(1492 citations). The two most cited articles correspond to the one carried out by Hylander
and Goodsite [157] (191 citations) and de Cordy et al. [41] (162 citations), which discuss
mercury contamination from ASM and the costs involved in remediating the environment.

3.1.4. Frequently Cited Documents

Citation analysis exposes a given article’s influence by the citation it receives in
another articles [222]. The scientific production for ASM globally (1257 articles) presents
20,579 citations. Table 3 presents the top 10 of the most cited documents with 1776 citations,
representing 8.63% of the total. The established ranking is characterised by documents
published in 2005.

Table 3. Top 10 most cited documents.

Ranking Authors Year Title Citations Journal

1 Bebbington et al. [223] 2008

Mining and Social
Movements: Struggles Over

Livelihood and Rural
Territorial Development in

the Andes

292 World Development

2 Xiao et al. [173] 2017

Soil heavy metal
contamination and health

risks associated with artisanal
gold mining in Tongguan,

Shaanxi, China

196 Ecotoxicology and
Environmental Safety

3 Hilson & Potter [73] 2005

Structural adjustment and
subsistence industry:

Artisanal gold mining
in Ghana

194 Development and
Change

4 Hylander &
Goodsite [157] 2006 Environmental costs of

mercury pollution 191 Science of the Total
Environment

5 Banchirigah [162] 2008

Challenges with eradicating
illegal mining in Ghana: A

perspective from
the grassroots

163 Resources Policy

6 Cordy et al. [41] 2011

Mercury contamination from
artisanal gold mining in

Antioquia, Colombia: The
world’s highest per capita

mercury pollution

162 Science of the Total
Environment

7 Fisher [224] 2007

Occupying the margins:
Labour integration and social
exclusion in artisanal mining

in Tanzania

149 Development and
Change

8 Veiga et al. [218] 2006
Origin and consumption of

mercury in small-scale
gold mining

149 Journal of Cleaner
Production

9 Hilson [221] 2009

Small-scale mining, poverty
and economic development in

sub-Saharan Africa:
An overview

141 Resources Policy

10 Bose-O’Reilly [167] 2008
Mercury as a serious health
hazard for children in gold

mining areas
139 Environmental Research
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The study by Bebbington et al. [223] is the most cited article (292 citations), with
intervention of authors from the United Kingdom, the United States, Ecuador, and Peru. In
his study, reference is made to the influence of social movements against mining investment
in Latin America. Mainly two case studies are exposed (Ecuador and Peru), in which
it is evident how social activities can significantly modify the form and effects of the
extractive industry.

Second place is occupied by Xiao et al. [173], with the presence of authors from China
and the United States. The research analyses soil contamination from artisanal gold mining
in China and its implications for human health and environmental wellbeing by assessing
heavy metal levels in soil and plants. Likewise, within its objectives, the identification of
plants that promote the phytoremediation of the area is addressed.

Finally, the third most cited article related to ASM is the work developed by Hilson
and Potter [73], authors from the United Kingdom. Their scientific contribution focuses
on analysing Ghana’s National Structural Adjustment Program (SAP) as a driver in the
growth of informal artisanal gold mining driven by poverty.

3.2. Intellectual Structure Analysis
3.2.1. Co-Occurrence Author Keyword Network

The co-occurrence analysis of author words allows for the formation of connections
and the building of a domain structure based on keywords [225]. The analysis included a
process of cleaning and filtering the information, obtaining 90 keywords. Table 4 shows the
top 15 words with the highest occurrence in the area studied, highlighting “artisanal and
small-scale mining”, “mercury”, and “mining” as the top three most frequent keywords in
ASM studies.

Table 4. The 15 main words with the highest occurrence in ASM studies.

Ranking Keywords Occurrences Links Total Link Strength

1 artisanal and
small-scale mining 597 88 764

2 mercury 109 41 198
3 mining 80 49 98
4 gold 60 39 129
5 formalization 48 35 101
6 livelihood 38 24 71
7 poverty 36 23 73
8 heavy metals 34 21 53
9 sustainability 25 14 32
10 conflict 23 20 51
11 environment 21 20 52
12 mercury pollution 21 14 30
13 gender 20 19 44
14 sustainable development 20 20 34
15 galamsey 18 19 34

The bibliometric map obtained grouped the 90 keywords into nodes of different
colours grouped into four clusters that represent the main research areas of ASM (Figure 6).
The nodes’ size varies depending on the number of occurrences of each keyword, and they
are related through links in which the thickness represents a better relationship.
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Cluster 1 (Red Colour): Social Conditioning Factors of the ASM

The social conditioning factors of ASM represent one of the research areas aimed
at understanding how poverty drives the development of this type of activity as a sub-
sistence alternative, which entails informality [189], conflict [185,186], child labour [226],
and women’s labour [227]. Likewise, the link between mining and agricultural activity in
rural areas with low economic resources is exposed as the primary source of subsistence
for people [27,180,228]. Considering this type of problem, it is evident how formalization
represents a considerable challenge [186] and is regarded as a tool that allows for regulating,
controlling, and effectively supporting ASM operators [34,45,197,209,229]. However, sev-
eral case studies show that formalization in various countries aggravates mining conflicts,
informality, poverty, illegality, and state control [193,230–232]; entrenching poverty without
achieving sustainable development [233].

Given this situation, research developed to establish strategies in ASM that allow for
achieving sustainable development [234] through an analysis of social, political, economic,
environmental, and health aspects [235–237]. Some examples of this type of action are:
(i) the implementation of design thinking and multi-criteria decision analysis of ASM [238],
(ii) national minerals policies and stakeholder participation in planning decisions [239],
(iii) collaboration between the LSM and ASM, for the benefit of the communities [240],
and (iv) integration of scientific and local knowledge in the planning of the remediation of
contamination by ASM [214,241].

Cluster 2 (Blue Colour): ASM Environmental Impacts

Artisanal and small-scale gold mining (ASSGM) is the most developed activity in
ASM. In this area of research, significant production of environmental and health impacts
caused by ASSGM is evident [156,218,219], and limited studies are addressing the effects
on the health and environmental impacts of artisanal sandstone mining [242] and diamond
mining [26,234,243].
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The investigations are most frequently related to pollution generated in the soil [244–248],
water [249–251], and crops or trees [158,252], which directly influence the health and well-
being of humans. Faced with this problem, finding innovative research to eliminate, replace,
or reduce environmental pollution in mineral processing is standard. Some examples are
the cyanide phytoremediation by water hyacinths (Eichhornia crassipes) in the cyanide ef-
fluents treatment in small-scale gold mining [253], hyperaccumulation of zinc by Corydalis
davidii in Zn-polluted soils [254], Erato polymnioides as a phytoremediation plant for soils
contaminated with Pb, Zn, Cu, and Cd [255], and Heliconia psittacorum in remediating
soils and water polluted with heavy metals [256].

Cluster 3 (Green Colour): Mercury Contamination and Its Implication on Health and
the Environment

Mercury is a heavy, liquid metal frequently used in artisanal gold mining. This cluster
reflects a marked trend of studies focused on the health and environmental effects of
mercury or methylmercury contamination in soil, sediments, and water [257–259]. This
type of contamination generated significant research on health problems associated with
direct or indirect exposure of humans to mercury due to mining activities [167,260–263], as
well as studies evaluating the risk posed to human health by ingestion of heavy metals that
are present in the water and plants [176,264–266].

Given the implications of mercury on the environment and health, the reason for
the emergence of research that highlights the importance of cooperation between gov-
ernment, regional, and local organisations to improve mineral extraction and processing
processes through legalisation, financial support, technological innovation, and train-
ing [9,212,267,268], as well as studies focused on reducing pollution to ensure human and
environmental health [202,269,270], is evident. These include analyses that seek to min-
imise the use of mercury through price increases [219], laws (agreements) that prohibit its
use in mining [269,271–273], promotion of appropriate technology [154,274], and training
on improved technologies for gold extraction [275] (e.g., use of cassava to leach gold [276]).
Finally, it is essential to highlight how local participation in decision making [277] and in-
digenous participation due to their ecological knowledge [278] are alternatives to achieving
sustainability in ASM mineral processing.

Cluster 4 (Yellow Colour): ASM as Livelihood

In this cluster, the most frequent studies are those related to ASM as a subsistence
activity in rural communities with limited resources. Within her research, the women’s
role in ASM as a means of subsistence due to poverty is emphasised [227,279,280], as well
as the need for policies that improve the economic wellbeing of people who depend on
ASM regardless of gender [229,281]. On the other hand, considering that several countries
chose to ban this type of mining, there is also research related to alternative livelihood
strategies for miners who were displaced from their activity [282,283]. Some examples of
these strategies are promoting agriculture as an alternative economic source [179,284] or
complementary [178], and promoting government support in ASM through regulations
that allow regulating activity [194].

3.2.2. Co-Citation Network of Cited Authors

The analysis carried out allowed for the identification of co-cited authors and authors
that make up the scientific base of the area studied [285]. This type of analysis proposes
that two authors share the same area of research if their documents are cited jointly by
one or more documents [286–288]. The author co-citation network (Figure 7), built in the
VOSviewer software, groups 512 authors (nodes) into six clusters representing similarities
in the topics investigated with more than twenty co-citations.
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Cluster 1 (red colour), “ASM and implications in society”, comprises 206 authors,
including Hilson, G.M. (2212), Maconachie, R. (456); Spiegel, S.J. (363); Bryceson, D.F. (353);
y Banchirigah, S.M. (337) due to its high number of co-citations. This group of researchers
carried out studies within ASM that include: (i) positive and negative effects of artisanal
mining formalization [194,197,198,215,289], (ii) ASM and agriculture as a means of subsis-
tence [47,180,284,290,291], and (iii) analysis of alternatives that improve mineral extraction
or processing systems [269,292–294].

Within cluster 2 (green colour), “consequences and challenges of Mercury in ASM”,
the researchers Veiga, M.M.; Beinhoff, C.; Bose-O’reilly, S.; Telmer, K.H.; and y Drasch, G.
represent the top five co-cited authors, in a cluster with a total of 166 authors. This
research includes studies of mercury contamination in gold mining areas [41,295,296],
evaluation of risks to human health due to exposure to mercury by operators, women, and
children [167,295,297,298], and strategies to reduce this type of contamination based on the
modernization of mineral processing in obtaining gold [148,199,219,299–302].

Cluster 3 (blue colour), “Implications of ASM in health”, composed of 73 authors,
in which Basu, N.; Pardie, S.; Obiri, S.; Aryee, B.N.A.; and Amankwah, R.K. are the
most coveted authors. This cluster mainly includes studies of risk to human health due
to exposure to mercury [48,303], environmental impacts of ASM [49], consumption of
contaminated food or water [304], or multiple heavy metals [305]. Likewise, the authors
expose an interest in providing strategies to reduce pollution produced by ASM, mainly
due to the use of mercury [155,216,217,234,242,306].

Finally, cluster 4 (yellow colour) with 67 authors, called “Effects of artisanal mercury
extraction”, leads to the top five most co-cited authors, represented by Feng, X.B.; Qiu,
G.L.; Li, P.; Wang, J.C.; and Wang, S.F. This group of authors dedicate their studies to topics
related to Hg contamination in the air [307], water [308], sediments, soil, or crops [309–312]
in mercury mining areas, mainly in China. They also analyse the risk posed to miners and
people in mining areas when exposed to Hg or methylmercury [313–315].

3.2.3. Journal Co-Citation Network

The analysis considers the similarity between a group of journals based on the citations
received when two or more journals are cited jointly by several related documents [316].
The objective of this analysis is based on understanding the structures of the academic areas.

Figure 8 shows the co-citation network of 152 journals (nodes) with more than 20 citations,
grouped into four different clusters (differentiated by colours) and their other connections.
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Cluster 1 (red colour), “Management, Policy and Development”, contains 70 journals
representing 8757 citations. In this group, the journals Resources Policy (1799 citations,
United Kingdom), Extractive Industries and Society (939 citations, The Netherlands), World
Development (578 citations, United Kingdom), Natural Resources Forum (526 citations, United
Kingdom), and Development and Change (502 citations, UK) are shown as the top five of the
most talked-about magazines. The studies within this cluster comprise analyses of ASM’s
political, economic, environmental, and social aspects in different parts of the world.

Cluster 2 (green colour), “Environmental Science and Pollution”, with 58 journals and
5675 citations, mainly exposes studies associated with the environmental contamination
of ASM and its human implications. In this group are journals such as Science of the
Total Environment (1170 citations, The Netherlands), Environmental Science & Technology
(365 citations, United States), Environmental Pollution (245 citations, United Kingdom),
Chemosphere (205 citations, United Kingdom), and Water, Air and Soil Pollution (205 citations,
The Netherlands), among others.

Cluster 3 (blue), “Environmental Science and Health”, has 16 journals and 1327 cita-
tions. The journals with the highest citations include Environmental Research (322 citations,
United States), Environmental Health Perspectives (230 citations, United States), International
Journal of Environmental Research and Public Health (230 citations, Switzerland), Minerals
Engineering (101 citations, United Kingdom), and International Journal of Occupational and
Environmental Health (68 citations, UK). Within this cluster, the primary studies focus on
evaluating the impact of ASM on human health due to direct or indirect exposure to
heavy metals.

Cluster 4 (yellow colour), “Renewable Energy, Sustainability and the Environment”,
consists of 8 journals with 1305 citations. These journals include research papers focused on
mineral extraction and processing sustainability in ASM. The top five most-cited journals
are Journal of Cleaner Production (1000 citations, UK), Environmental Science & Policy (65 cita-
tions, The Netherlands), Ecological Economics (57 citations, The Netherlands), Sustainability
(57 citations, Switzerland), and Journal of Sustainable Mining (54 citations, Poland).

4. Discussion

The systematic process applied in this study made it possible to identify the intellec-
tual structure of artisanal and small-scale mining (ASM) in the world. Considering the
performance analysis carried out, it is apparent that the scientific production of ASM began
in 1919, being until 1980 a scarce production (eight articles). Furthermore, the range of
years analysed (distributed in three periods) indicates that the research remained relatively
constant since 1980 (periods I and II). However, as of 2010 (period III), ASM research
increased exponentially worldwide, representing 74.21% of the articles produced (Figure 3).
This marked difference in scientific production could refer to the artisanal mining boom
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that the world experienced in the last decade, mainly due to the increase in poverty within
rural areas. The rise of ASM, characterised by extraction and processing techniques without
technical and environmental considerations, clearly represents a risk to humanity and the
environment. This is why the increase mentioned above in scientific production focuses its
studies on ASM contamination [173,174], mining conflicts [185,186], illegal ASM [187–189],
as well as strategies to solve these types of problems [196,197,200,201].

On the other hand, when analyzing scientific production by country, the United States,
the United Kingdom, and Canada represent the most significant contributions to research
related to ASM (Table 1). Of these countries, the United Kingdom is characterised by its
high number of citations (Table 1) and its extensive collaboration (greater than 70%) in
studies carried out in African countries (e.g., Ghana and Tanzania). Likewise, this country
occupies the number one position with the Resource Policy magazine, contributing the
highest number of ASM publications (116 articles) (Table 2). On the other hand, the United
States and Canada collaborate in studies mainly in South American countries such as Brazil,
Peru, and Colombia, and Africa, mainly in Ghana.

Considering the analysis of the intellectual structure through three scientific maps, the
study of the co-occurrence of author keywords (Figure 6) made it possible to define, through
clusters, four research areas of ASM. Within these areas, “Social conditioning factors of the
ASM” and “Mercury contamination and its implication in health and environment” are the
most studied topics (e.g., [34,192,209,218,240,252]). On the other hand, it is essential to high-
light that cluster 2 (“ASM environmental impacts”) and cluster 3 (“Mercury contamination
and its implication in health and environment”) are strongly related (Figure 6), with studies
focused on the impacts of ASM on the environment (e.g., [249,251,258,309]) and health
(e.g., [261,263,265]). However, considering a specific orientation and significant scientific
production related to mercury, the results reflect the study of mercury as a particular area
in this analysis.

Cluster 4 (ASM as livelihood) is an ASM area with relatively less scientific production,
strongly related to cluster 1. The objective of ASM as a livelihood area includes research in
which ASM is analysed as a means of subsistence and the search for strategies to propose
alternative or complementary activities that benefit the living conditions of people who
depend economically on this type of activity (e.g., [179,194,280]).

To complement the analysis of the co-occurrence of keywords, the co-citation analysis
of authors was carried out, which allowed for the identifying of the relationships between
different authors in the references of the research works carried out ion ASM. The results
obtained reflect the existence of 512 authors grouped into four clusters, representing the
author’s areas or lines of research (Figure 7). These areas are very well defined in specific
topics; however, they are all within a large area called “Effects of ASM and mitigation mea-
sures”. Of the clusters obtained, clusters 2 and 3 are firmly related, presenting studies that
address similar issues regarding the use and effects of mercury in ASM [216,219,297,303].
On the other hand, it is important to highlight an area aimed at research related to the
artisanal extraction of mercury (Cluster 4), in which authors such as Feng, X.B.; Qiu, G.L.; Li,
P.; Wang, J.C.; and Wang, S.F. carried out works that include the contamination generated
by mercury mines in the soil, water, and air [307–309], as well as the risk it represents for
human health [310,313].

Finally, the co-citation analysis of journals was carried out to understand the different
academic areas in which ASM studies are published. The results show us four main
academic areas (clusters) (Figure 8), defined based on the research topics. For example, in
the cluster with the highest number of co-cited journals (cluster 1), the journals Resources
Policy and Extractive Industries stand out with the highest number of co-citations in works
oriented to ASM’s political, economic, social, and environmental aspects. Likewise, it
is essential to highlight that clusters 2 and 3 show related academic areas in which the
journals publish research topics on environmental pollution of ASM and its health risks. In
these clusters, the journals with the highest number of co-citations correspond to Science
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of the Total Environment (cluster 2) and Environmental Research (cluster 3), which add up to
1170 and 322 citations, respectively.

On the other hand, the connection offered by cluster 4 (Renewable Energy, Sustain-
ability, and the Environment) with the other clusters is visible. Being in the centre of
the clusters obtained (Figure 8), despite its limited number of journals (eight), its high
number of co-citations (1305) highlights the importance of its research topics focused on
the socio-environmental aspects of ASM, with the Journal of Cleaner Production as the most
prominent journal.

Specifically, ASM research exposes excellent studies that identify the causes and effects of
the leading social, economic, and environmental problems that compromise environmental and
human wellbeing in the short, medium, and long term (e.g., [9,34,73,157,173,218,223,317]).
These studies lay the groundwork for issues that must be mitigated and eliminated. The
analysed database reflects that, over time, studies developed that focus on solutions to
problems generated by ASM (e.g., [238,239,241,253,256,268,278,294,318,319]). However,
despite the worldwide importance and impact of research aimed at ASM solutions, it is
still scarce (less than 20% of the analysed database). For this reason, the possibility arises
that the different authors in ASM strengthen this type of study to the point that in the best
of cases, it is considered one of the top research areas in ASM.

The analysis made it possible to evaluate the evolution and trends of research in ASM
and propose strengthening innovative studies regarding ASM’s environmental, social,
legal, and economical solutions. Therefore, this type of research can be included by
the representative authors and journals of ASM as a new booming field that represents
sustainable solutions for the effects produced by this type of mining activity.

5. Conclusions

The bibliometric analysis allowed us to evaluate the structure of ASM research field
within the last four decades. Within the performance analysis, the results obtained show a
scientific production with exponential growth in ASM research, with the collaboration of
46 countries, highlighting the United States, United Kingdom, and Canada as the countries
with the highest scientific production that address ASM research in mainly Latin American
and African countries, respectively. Furthermore, the works are the products of 512 authors
published in 468 journals, qualifying ASM as a booming research field.

By analysing the co-occurrence of keywords, four areas of research in ASM were
defined: (i) social conditioning factors of ASM, (ii) environmental impacts generated by
ASM, (iii) mercury contamination and its implication on health and the environment,
and (iv) ASM as a livelihood. Within these areas, a clear trend of studies related to the
implications of ASM from the political, social, economic, and environmental points of
view is apparent. On the other hand, it is essential to highlight the effects of mercury on
the environment and health as topics on the rise, mainly in health risk assessment and
strategies that minimise the impact of mercury on ASM. However, studies aimed at finding
solutions in ASM to date are scarce and need to be strengthened.

Despite limiting the study to only one database (Scopus) and considering only one type
of document (articles) in the English language, the proposed research establishes a global
analysis of the ASM study. This analysis can serve as a reference for future researchers in
the field for the most researched topics, authors, and outstanding journals; and raise the
possibility of forming collaborative networks inside and outside your country.
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