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Abstract: Urinary concentrations of several endocrine disrupting chemicals, including phthalate
metabolites, bisphenol A (BPA), and benzophenone (BP)-type ultraviolet (UV) filters, have been asso-
ciated with a longer time-to-pregnancy (TTP). Potential modification of these associations by couple’s
age has not been studied. TTP was defined as the number of prospectively observed menstrual cycles
a couple attempted pregnancy until the occurrence of a human chorionic gonadotropic-detected
pregnancy. Urinary concentrations of two BP-type UV filters and three phthalate metabolites were
measured at baseline. Fecundability odds ratios (FORs) and 95% confidence intervals (CIs) were
estimated for each chemical adjusting for age, body mass index, serum cotinine, creatinine, and
accounting for right censoring and left truncation. Models evaluated effect modification between
EDC concentrations and TTP by partner’s age, dichotomized at 35 years. Separate models were run
for male and female partners. No significant effect modification was observed for any EDC for either
partner, but data were suggestive of a longer TTP among females aged≥35 years, particularly for BP-2
(FOR = 0.61, 95% CI 0.36, 1.05) and 4-hydroxybenzophenone (FOR = 0.71, 95% CI: 0.46, 1.09) reflecting
39% and 29% reductions in fecundability, respectively. We saw no evidence of effect modification by
couples’ age on associations between TTP and urinary phthalate or BPA metabolite concentrations.
Across the EDCs we examined, we found little evidence that age modifies TTP-exposure associations.

Keywords: bisphenol; benzophenone; couples; endocrine disrupting; effect modification; fertility;
phthalate; ultraviolet filter

1. Introduction

Human exposure to endocrine disrupting chemicals (EDCs) is widespread and may
contribute to reproductive health concerns [1]. For example, phthalates are plasticizers used
in a variety of consumer products including personal care products, polyvinyl flooring,
feminine hygiene products, and food packaging [2–5]. Bisphenol A (BPA) is a plasticizer
that is found in cash register receipts, dental sealants, and certain plastics. Benzophenone
(BP)-type ultraviolet (UV) light filters are constituents in cosmetics, plastics, and printing
inks, among other commercial uses [6]. Dermal application is the primary route of exposure
for benzophenones, with high skin penetration [1–3,7–10]. Phthalate exposure commonly
occurs through dermal exposure and via food consumption [4,11]. Human exposure
to phthalates is ascertained by measurement of monoesters in urine, as is exposure to
benzophenones [12,13].

Despite short half-lives for phthalates and the environmental phenols BPA and ben-
zophenone UV filters, populations are exposed through repeated use of personal care
products and other commercial products, and may experience continual exposure [5,12,14].
Mechanistic research indicates both estrogenic and anti-androgenic properties for ben-
zophenone ultra violet (UV) light-type filters [15] and also an ability to bind with the
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estrogen receptors [16]. Phthalates have both estrogenic and anti-androgenic properties
and have been associated with reduced fecundity and changes in reproductive hormones
across the menstrual cycle [17–22]. Similarly, BPA is estrogenic [23]. A number of modifiers
of EDC-health associations have been examined (including stress and race/ethnicity) but
we are unaware of research that has assessed potential modifying effects of couples’ ages.
In particular we examined this potential modification relative to EDC associations with
fecundability, defined as the per cycle probability of pregnancy.

EDCs have been associated with a range of fecundity endpoints in women and men,
including TTP [24–26]. Recent reviews note that there is inconsistent and scant evidence for
phthalates, BPA, and ultraviolet filters in relation to time to pregnancy [26–28], especially
based upon prospective cohort studies designed to capture observed time trying or at
risk for pregnancy such as the LIFE Study. Longer TTP may serve as an indicator of
worse overall health status [29]. Therefore, fecundability reflects a sensitive reproductive
endpoint with important later-in-life health implications. Evidence from prospective
pregnancy cohort studies that included couples recruited from the general population
indicate that diisononyl phthalate [18], monoethyl phthalate [30], and triclosan [31] in
female partners were associated with longer TTP. Among male partners, benzophenone-2
and 4-hydroxybenzophenone were associated with a longer TTP [32]. Among infertile
couples undergoing assisted reproductive technologies, phthalates were associated with
lower oocyte yield, failed clinical pregnancy, and decreased implantation success [19,33].

Age is a known determinant of fecundability [34] and EDC metabolism is affected
by age [35]. The potential modification of associations between EDCs and reproductive
endpoints by age is plausible. While most research to date has adjusted for age, none has
examined the potential modifying effect of age. Therefore, the purpose of this study was to
determine if age modifies the association between EDCs and fecundability as measured
by TTP. Our hypothesis is that at older ages, EDCs will be more strongly associated with a
longer TTP relative to younger ages.

2. Materials and Methods
2.1. Study Population

The Longitudinal Investigation of Fertility and Environment (LIFE) Study comprised
a prospective cohort of 501 couples discontinuing contraception to try for pregnancy,
and who resided in 16 counties in Michigan and Texas between 2005–2009. Population-
based recruitment strategies were implemented as described previously [36]. The inclusion
criteria were: couple in a committed relationship; female partner aged 18–44 years and male
partner aged 18 years and older; fluent in English or Spanish; and the absence of physician-
diagnosed infertility history in either partner. Additional inclusion criteria for women were
menstrual cycles between 21–42 days, no use of injectable hormonal contraceptive within
the prior year, and not currently lactating. Human subjects research approval was obtained
from all institutions and all study participants provided full informed consent prior to
data collection.

2.2. Data Collection

Couples were screened for eligibility and enrolled in the cohort. Baseline interviews
captured covariates such as age (years) followed by measurement of height and weight
to estimate body mass index (BMI, kg/m2), the collection of blood and urine collection
for quantification of serum cotinine (ng/g serum), and non-persistent EDCs (mg/dL),
respectively. Female participants were provided with Clearblue® Easy (Swiss Precision
Diagnostics, Geneva, Switzerland) fertility monitors and instructed on their use per the
manufacturer’s guidelines, which indicate starting monitoring for ovulation on day 6 of
the cycle. The fertility monitors track daily levels of estrone-3-glucuronide and luteinizing
hormone and their ratio corresponds with monitor indications of low, high, and peak
fertility. Home pregnancy tests (Clearblue® Easy) were provided to women at enrollment.
Women were instructed to test each cycle on the day that they expected menses. Cotinine
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concentration (ng/mL) was measured in 1 mL of serum by liquid chromatography-isotope
dilution tandem mass spectrometry. Additionally, urinary creatinine (mg/dL) was mea-
sured to account for urine dilution when quantifying EDCs. Couples completed daily
journals that captured sexual intercourse and menses (for females), which augmented
monitor data to ascertain TTP.

2.3. Chemical Measurement

The Wadsworth Center (Albany, NY, USA) quantified non-persistent chemicals that
were previously studied in relation to TTP in this cohort [17,32]. Urinary concentrations
of bisphenol A (BPA) (ng/mL) were measured by high-performance liquid chromatog-
raphy (HPLC) coupled with API 2000 electrospray triple-quadrupole mass spectrometer
(MS/MS) [37]. The laboratory limit of quantitation (LOQ) was 0.05 ng/mL, which was
twice the lowest valid acceptable calibration standard. Phthalate metabolites were mea-
sured in urine by HPLC-MS/MS as described previously [13]. The following phthalate
metabolites were measured: monobenzyl phthalate (mBzP), mono-n-butyl phthalate (mBP),
mono(2-ethyl-5-carboxylpentyl) phthalate (mCEPP), mono-[(2-carboxymethyl)hexyl] ph-
thalate (mCMHP), mono (3-carboxypropyl) phthalate (mCPP), monoethyl phthalate (mEP),
mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mono(2-ethyl-5-oxohexyl) phthalate
(mEOHP), mono(2-isobutyl phthalate (miBP), monomethyl phthalate (mMP), monocyclo-
hexyl phthalate (mCHP), mono (2-ethylhexyl) phthalate (mEHP), mono-isononyl phthalate
(mNP), and monooctyl phthalate (mOP). Benzophenone (BP)-type ultraviolet (UV) light
filter chemicals included BP-3 and its metabolites, 2,4-dihydroxybenzophenone (2,4-OH-BP)
(also called BP-1), 2,2′-dihydroxy-4-methoxybenzophenone (2,2′-OH-4-MeO-BP or BP-8),
2,2′,4,4′-tetrahydroxybenzophenone (also called BP-2), and 4-hydroxybenzophenone (4OH-
BP). BP-type UV filters were measured with high-performance liquid chromatography–
triple-quadrupole tandem mass spectrometry using established methods [7]. Creatinine
(mg/dL) was measured with a Roche Hitachi 912 Chemistry Analyzer (Roche Diagnos-
tics Corporation, Dallas, TX, USA) with the Creatinine Plus Assay (Roche Diagnostics
Corporation, Indianapolis, IN, USA).

2.4. Statistical Methods

Descriptive statistics were conducted as follows. We first examined the distributions
for all variables. Continuous covariates (age, BMI, cotinine, and creatinine) and right-
skewed chemicals were summarized using their median and interquartile range (IQR).
We calculated the percentage of EDC concentrations below the LOD to determine those
meeting the requirement of <50% below LOD for analysis. The phthalate metabolites mOP,
mNP, mCHP, mMP, and mEHP had >50% values below the LOD and were not included in
the main analysis.

We fitted discrete time Cox proportional hazards models [38], which allow for a cycle-
varying intercept. These models accounted for left truncation given the uncertainty in the
time couples may have been at risk for pregnancy before enrollment in the study. Couples
were censored at study withdrawal or after 12 months of trying to become pregnant. Mod-
els were fitted separately for male and female partners to identify whether age modified
associations between partner-specific EDC concentrations and TTP. All EDC concentra-
tions were log transformed and standardized by their standard deviations to aid in the
interpretation of point and interval estimates, given their small unit of analysis [17].

All models included an interaction term between each age category and study chemi-
cals and effect modification was evaluated by comparing FOR of chemicals between age
strata. Age was categorized as <35 years or ≥35 years to associations in women meeting
the clinically relevant designation of advanced maternal age (≥35 years) [39]. Associations
are reported as fecundability odds ratios (FORs) with associated 95% confidence intervals
(CI). FORs < 1 indicate a reduced probability of cycle-specific pregnancy or diminished
fecundability reflecting in a longer TTP. FORs > 1 indicate enhanced fecundability reflecting
a shorter TTP. To improve interpretability of effect modification results, FORs were reported
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for each chemical by age category (<35 and ≥35 years). Confounders were selected based
on a directed acyclic graph informed by prior relevant studies. Previous work reported that
cigarette smoking was associated with a pronounced (~50%) reduction in fecundability,
resulting in a longer TTP [40]. Cotinine levels are associated with fecundability and are
also associated with levels of EDCs. Models were adjusted for age (years, continuous),
urinary creatinine (mg/dL), serum cotinine (active smoking > 10 ng/mL vs. non-active
smoking ≤ 10 ng/mL), and BMI (weight in kg/height in m2).

2.5. Sensitivity Analyses

To determine whether our results were sensitive to the specific form of our age effect
modification term, we compared our models to those with ages in sex-specific quartiles to
explore potential nonlinearity. We also fit models controlling for both partners’ chemical
concentrations (i.e., models for female partners included adjusting for male partner’s con-
centrations), as well as models with additional adjustment for race/ethnicity and income.

3. Results

Our study cohort includes 403 (80%) female and 386 (77%) male partners with complete
data and available urine for EDC quantification from the original LIFE Study cohort
comprising 501 couples. Missing data for covariates was minimal, ranging from 1% for BMI
to 9% for creatinine. Seventy percent of couples had a detectable pregnancy. Among female
partners, n = 62 (15.4%) were ≥35 years compared to n = 115 (29.8%) of male partners. The
median ages at study entry were 29 years (IQR = 6) for females and 32 years (IQR = 6) for
their male partners and 2.5th and 97.5th percentiles for age was (23, 38) and (24, 42) for
females and males, respectively (Table 1). Median BMI was 25.8 kg/m2 (IQR = 8.6) for
females and 28.8 kg/m2 (IQR = 5.9) for males.

Table 1. Covariate summary statistics [median (interquartile range)] by pregnancy status, age
category, and sex among participants in the Longitudinal Investigation on Fertility and Environment
Study in Michigan and Texas 2005–2009.

Variable
Total <35 Years ≥35 Years

Total Not Pregnant Pregnant Not Pregnant Pregnant Not Pregnant Pregnant

Female partners (n) 403 122 281 94 247 28 34
Age (years) 29 (6) 30 (7) 29 (6) 28 (5) 29 (4) 37 (2) 36 (2)

BMI (kg/m2) 25.8 (8.6) 27.3 (10.4) 25.2 (7.7) 27.4 (9) 24.8 (7.4) 26.6 (11.9) 27.3 (7.6)
Cotinine (ng/mL) 0.02 (0.08) 0.05 (2.24) 0.02 (0.03) 0.05 (1.68) 0.02 (0.03) 0.09 (13.22) 0.02 (0.04)
Male partners (n) 386 114 272 72 199 42 73

Age (years) 32 (6) 32 (7) 31 (6) 29 (5) 30 (4) 38 (5) 37 (3)
BMI (kg/m2) 28.8 (5.9) 29.3 (5.9) 28.6 (5.8) 29.8 (7.2) 28.7 (5.8) 28 (4.3) 28.4 (6.4)

Cotinine (ng/mL) 0.04 (1.36) 0.09 (34.02) 0.03 (0.23) 0.1 (3.26) 0.04 (0.18) 0.08 (153.94) 0.03 (0.71)

Among women ≥35 years (referred to here as older women) the proportion becoming
pregnant during the study period varied by urinary concentration of several phthalate
metabolites. Higher concentration of mBP, mBzP, and BP-3 and lower levels of mEHHP
were seen in older women who did not become pregnant (Table 2). Women < 35 years who
did not become pregnant had higher median levels of mEP and BP-3 compared to similarly
aged women who became pregnant (Table 2). Men≥ 35 years of age, whose partner did not
become pregnant, had higher median levels of mCMHP and mCEPP compared to similarly
aged men whose partners became pregnant (Table 2).

Tests for effect modification showed no significant differences in EDC-TTP associations
by age for either partner (Figure 1, Table 3). FORs for phthalate metabolites and BPA differed
little by age for either men or women. For BP-type UV filters, little differences in FORs
were seen by age for men. However, among women ≥35 years, longer TTP was observed
per one unit increase of BP-2 (FOR = 0.61, 95% CI: 0.36, 1.05), 4OH-BP (FOR = 0.71, 95% CI:
0.46, 1.09), BP-8 (FOR 0.80, 95% CI: 0.54, 1.20), BP-3 (FOR = 0.86, 95% CI: 0.60, 1.23), and
BP-1 (FOR = 0.91, 95% CI: 0.65, 1.29).
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Table 2. Phthalate metabolite and ultraviolet filter concentrations [median (interquartile range)]
(ng/mL) by pregnancy status, age category, and sex among participants in the Longitudinal Investi-
gation on Fertility and Environment Study in Michigan and Texas (2005–2009).

Total <35 Years ≥35 Years

Chemical (ng/mL) %<LOQ Total Not Pregnant Pregnant Not Pregnant Pregnant Not Pregnant Pregnant

Female partners n = 403 n = 122 n = 281 n = 94 n = 247 n = 28 n = 34
mBzP 4 3.7 (7.8) 4.4 (8.3) 3.4 (7.5) 4.4 (7.9) 3.5 (7.4) 4.6 (8.3) 2.9 (7.7)
mBP 1 8.0 (14.5) 9.2 (18.5) 7.8 (14.1) 8.8 (17.4) 7.8 (14.1) 11.6 (24.6) 8.3 (12.8)

mCEPP 2 14.7 (29.5) 15.1 (38.1) 14.7 (27.6) 15.1 (33.8) 14.7 (27.8) 14.2 (43.5) 13.2 (24.6)
mCMHP 1 11.4 (25.5) 11.9 (26.6) 11.2 (22.8) 11.5 (28.2) 11.8 (21.9) 13.1 (20.6) 9.7 (26.8)

mCPP 6 3.9 (8.7) 3.6 (9.8) 4.2 (7.5) 3.6 (9.7) 4.2 (7.4) 3.7 (9.5) 3.7 (8.1)
mEP 2 68.7 (172.0) 89.0 (213.9) 61.7 (156.5) 92.9 (187.9) 62.2 (163.7) 61.9 (264.7) 60.0 (111.7)

mEHHP 2 10.7 (20.9) 10.7 (21.2) 10.5 (20.5) 11.3 (20.9) 10.7 (20.3) 7.0 (20.7) 10.3 (24.8)
mEOHP 4 6.0 (13.2) 5.7 (12.3) 6.0 (13.5) 5.7 (11.0) 6.1 (13.9) 5.5 (19.9) 5.4 (10.9)

mIBP 4 4.0 (7.3) 4.2 (9.1) 3.9 (6.9) 4.0 (8.9) 4.0 (6.9) 4.6 (10.4) 2.1 (6.1)
BPA 2 0.4 (0.8) 0.5 (0.9) 0.4 (0.7) 0.5 (0.9) 0.4 (0.6) 0.4 (0.9) 0.6 (1.5)
BP-1 1 2.5 (12.9) 1.6 (8.4) 2.8 (14.9) 1.2 (6.9) 2.8 (13.7) 5.4 (27.7) 3.3 (19.0)
BP-3 1 5.1 (29.0) 3.6 (27.0) 6.7 (31.8) 2.4 (15.2) 6.8 (30.3) 13.3 (66.7) 5.4 (43.9)
BP-2 28 0.05 (0.15) 0.06 (0.18) 0.05 (0.13) 0.05 (0.15) 0.05 (0.12) 0.11 (0.2) 0.02 (0.16)

4OH-BP 6 0.14 (0.25) 0.14 (0.28) 0.13 (0.24) 0.14 (0.28) 0.13 (0.24) 0.16 (0.58) 0.12 (0.22)
BP-8 29 0.11 (0.65) 0.10 (0.3) 0.12 (0.94) 0.08 (0.26) 0.12 (0.94) 0.16 (0.79) 0.07 (0.87)

Creatinine – 79.8 (103.0) 88.4 (112.0) 77.2 (99.9) 90.1 (109.6) 80.2 (99.7) 82.3 (118.5) 49.2 (72.0)
Male partners n = 386 n = 114 n = 272 n = 72 n = 199 n = 42 n = 73

mBzP 4 3.7 (7.1) 4.1 (7.9) 3.4 (6.9) 4.8 (8.1) 3.2 (7.0) 3.3 (7.9) 4.1 (6.7)
mBP 1 7.5 (12.0) 8.0 (17.3) 7.1 (10.7) 8.3 (15.7) 6.8 (10.0) 7.4 (18.6) 8.9 (11.6)

mCEPP 1 20.5 (37.7) 22.5 (38.8) 19.6 (37.5) 22.5 (34.7) 21.4 (37.6) 22.4 (48.6) 15.0 (36.0)
mCMHP 0 18.6 (40.5) 21.1 (40.5) 17.2 (40.0) 18.9 (38.6) 19.5 (40.5) 26.5 (41.2) 15.9 (27.9)

mCPP 3 5.6 (9.6) 5.6 (9.0) 5.7 (10.4) 6.2 (8.3) 5.6 (10.4) 3.8 (9.0) 5.7 (9.6)
mEHHP 1 15.4 (33.0) 16.9 (37.2) 15 (29.9) 16.9 (32.2) 16.5 (30.5) 17.4 (38) 11.5 (24.6)

mEP 1 97.2 (261.7) 86.9 (239.1) 102.1 (262.4) 95.1 (256.7) 98.6 (263.5) 50.4 (232.5) 111.7 (250.9)
mEOHP 2 7 (15.2) 7.7 (16.7) 6.8 (14.5) 7.7 (14.8) 6.9 (16.2) 8.2 (19.1) 6.1 (10.6)

mIBP 2 4.5 (7.3) 4.8 (7.6) 4.4 (7.1) 4.5 (7.1) 4.3 (7.2) 5.1 (8.0) 5.4 (6.5)
BPA 2 0.5 (0.9) 0.4 (0.8) 0.6 (0.9) 0.4 (0.7) 0.6 (0.9) 0.4 (0.9) 0.6 (1.3)
BP-1 1 1.3 (8.0) 0.6 (2.3) 1.9 (9.9) 0.6 (2.0) 2.2 (10.0) 0.7 (3.6) 1.3 (9.5)
BP-3 2 3.0 (16.2) 1.7 (5.2) 4.0 (21.5) 1.9 (4.4) 4.1 (24.6) 1.4 (5.8) 3.9 (16.0)
BP-2 28 0.05 (0.12) 0.05 (0.15) 0.05 (0.11) 0.05 (0.11) 0.05 (0.11) 0.03 (0.28) 0.03 (0.13)

4OH-BP 4 0.14 (0.25) 0.13 (0.28) 0.14 (0.24) 0.11 (0.26) 0.15 (0.25) 0.14 (0.28) 0.13 (0.24)
BP-8 27 0.08 (0.44) 0.05 (0.23) 0.09 (0.75) 0.04 (0.25) 0.11 (0.58) 0.07 (0.17) 0.07 (0.91)

Creatinine – 139.8 (129.9) 115.2 (139.5) 145.4 (126.7) 114.4 (143.3) 146.4 (120.5) 133.9 (96.4) 140 (123.9)

NOTE: monobenzyl phthalate (mBZP), mono-n-butyl phthalate (mBP), mono(2-ethyl-5-carboxylpentyl) phtha-
late (mCEPP), mono-[(2-carboxymethyl)hexyl] phthalate (mCMHP), mono(3-carboxypropyl) phthalate (mCPP),
monoethyl phthalate(mEP), mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mono(2-ethyl-5-oxohexyl) ph-
thalate (mEOHP), mono(2-isobutyl phthalate (miBP), bisphenol A (BPA), 4-hydroxybenzophenone (4OH-BP),
benzophenone 1 (BP-1), benzophenone 2 (BP-2), benzophenone 3 (BP-3), benzophenone 8 (BP-8).

Table 3. Fecundability odds ratios (FORs) for urinary phthalate metabolites, bisphenol A, and
benzophenone-type ultraviolet filters by age (<35 to age ≥35 years) among participants in the
Longitudinal Investigation on Fertility and Environment Study in Michigan and Texas (2005–2009).

Females Males

Chemical (ng/mL) <35 Years ≥35 Years <35 Years ≥35 Years

mBzP 1.00 (0.82, 1.21) 1.04 (0.70, 1.53) 0.74 (0.60, 0.92) 0.87 (0.67, 1.13)
mBP 0.95 (0.78, 1.16) 0.89 (0.62, 1.28) 0.78 (0.63, 0.97) 0.90 (0.72, 1.12)

mCEPP 1.04 (0.88, 1.23) 0.98 (0.70, 1.37) 0.89 (0.75, 1.06) 0.91 (0.70, 1.20)
mCMHP 1.06 (0.89, 1.26) 1.05 (0.74, 1.50) 0.89 (0.75, 1.06) 0.82 (0.62, 1.07)

mCPP 1.30 (1.07, 1.58) 1.26 (0.85, 1.86) 0.97 (0.81, 1.15) 1.08 (0.84, 1.39)
mEP 0.97 (0.83, 1.13) 0.95 (0.68, 1.32) 1.00 (0.83, 1.22) 1.04 (0.82, 1.32)

mEHHP 1.03 (0.88, 1.21) 1.09 (0.78, 1.51) 0.93 (0.79, 1.09) 0.92 (0.70, 1.22)
mEOHP 1.07 (0.91, 1.27) 0.99 (0.70, 1.41) 0.91 (0.77, 1.08) 0.92 (0.69, 1.23)

mIBP 1.02 (0.85, 1.22) 0.97 (0.66, 1.41) 0.90 (0.73, 1.10) 0.94 (0.74, 1.21)
BPA 1.02 (0.87, 1.20) 1.03 (0.80, 1.34) 1.07 (0.92, 1.23) 1.01 (0.78, 1.32)

BP-1 1.04 (0.90, 1.20) 0.92 (0.65, 1.30) 1.10 (0.96, 1.27) 1.07 (0.85, 1.34)
BP-3 1.06 (0.92, 1.22) 0.86 (0.60, 1.23) 1.10 (0.95, 1.28) 1.07 (0.85, 1.34)
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Table 3. Cont.

Females Males

Chemical (ng/mL) <35 Years ≥35 Years <35 Years ≥35 Years

BP-2 1.01 (0.87, 1.17) 0.61 (0.36, 1.05) 1.02 (0.85, 1.21) 0.97 (0.75, 1.27)
4OH-BP 0.95 (0.82, 1.11) 0.71 (0.46, 1.09) 0.91 (0.77, 1.07) 0.97 (0.78, 1.22)

BP-8 1.12 (0.98, 1.27) 0.80 (0.50, 1.20) 1.11 (0.96, 1.27) 1.14 (0.92, 1.42)
NOTE: monobenzyl phthalate (mBZP), mono-n-butyl phthalate (mBP), mono(2-ethyl-5-carboxylpentyl) phthalate
(mCEPP), mono-[(2-carboxymethyl)hexyl] phthalate (mCMHP), mono(3-carboxypropyl) phthalate (mCPP), mo-
noethyl phthalate(mEP), mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mono(2-ethyl-5-oxohexyl) phthalate
(mEOHP), mono(2-isobutyl phthalate (miBP), bisphenol A (BPA), 4-hydroxybenzophenone (4OH-BP), benzophe-
none 1 (BP-1), benzophenone 2 (BP-2), benzophenone 3 (BP-3), benzophenone 8 (BP-8). Models were adjusted for
age (years), urinary creatinine (mg/dL), serum cotinine (>10 ng/mL vs. ≤10 ng/mL), and BMI (kg/m2).
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Figure 1. Fecundability odds ratios (FORs) for urinary phthalate metabolites, bisphenol A and
benzophenone-type ultraviolet filters by age (<35 to age ≥35 years) among participants in the Longi-
tudinal Investigation on Fertility and Environment Study in Michigan and Texas (2005–2009). NOTE:
monobenzyl phthalate (mBZP), mono-n-butyl phthalate (mBP), mono(2-ethyl-5-carboxylpentyl)
phthalate (mCEPP), mono-[(2-carboxymethyl)hexyl] phthalate (mCMHP), mono(3-carboxypropyl)
phthalate (mCPP), monoethyl phthalate(mEP), mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP),
mono(2-ethyl-5-oxohexyl) phthalate (mEOHP), mono(2-isobutyl phthalate (miBP), bisphenol A (BPA),
4-hydroxybenzophenone (4OH-BP), benzophenone 1 (BP-1), benzophenone 2 (BP-2), benzophenone
3 (BP-3), benzophenone 8 (BP-8). Models were adjusted for age (years), urinary creatinine (mg/dL),
serum cotinine (>10 ng/mL vs. ≤10 ng/mL), and BMI (kg/m2).

Our results were largely consistent in sensitivity analyses that modeled age in partner
specific quartiles, adjusted for the other partner’s chemical concentration, race/ethnicity,
and income in separate models. Associations were not substantially changed when we
modeled age in partner specific quartiles, although there was an indication of diminished
fecundability for the oldest and youngest aged quartiles for females for BP-2, 4OH-BP, and
an indication of reduced fecundability for the youngest age quartile for mCEPP, mCMHP,
mEP, mEHHP, mEOHP and mCPP (Supplementary Materials, Figure S1). There was no
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indication of effect measure modification for males when age was modeled in quartiles.
The results did not change substantially when we adjusted for the other partner’s chemical
concentration (Supplementary Materials, Figure S2) or race/ethnicity and income (results
not shown).

4. Discussion

In this prospective cohort study of couples followed to incident pregnancy or up
to one year of trying, there was not strong evidence of effect modification by age be-
tween TTP and urinary concentrations of phthalate metabolites, BPA, or BP-type filters.
Among women ≥35 years of age, 4OH-BP and BP-2 were associated with a nearly 30%
and 40% reduction in fecundability, respectively, albeit with imprecise confidence intervals.
Other BP-type filters including BP-3, BP-1 and BP-8 were also associated with diminished
fecundability among women aged ≥35 years, although estimates were imprecise.

We did not identify any other studies that examined age modification of associations
between these short-lived EDCs (phthalate metabolites, BPA, and BP-type filters) and
fecundability as measured by TTP. We observed that BP-type filters including BP-2, 4OH-
BP, BP-1, BP-3, and BP-8 were associated with longer TTP for females ≥35 years, but
not for younger women or for men. While BP-type filters have not been fully assessed
mechanistically, there is some evidence that they have endocrine disrupting activity. BP-
type filters, in particular BP-2, exerted estrogenic effects on both fish sperm and ovary in
toxicologic [41]. Biological aging may affect endometrial receptivity and, therefore, could
modify the effect of BP-type filters on fecundability. Epigenetic changes occurred following
BP-type filter exposure [42,43] and they are reported to increase with age [44]. Therefore,
this suggests a possible mechanism by which benzophenones may affect fecundability. In
regard to the of the lack of effect modification by age, studies suggest that nutrients such
as folate may ameliorate the impact of chemical exposures on fertility outcomes [21,45],
which may help explain our findings. In addition, nanoformulation of antioxidants show
promise in potentially mitigating the effects of EDCs [46].

Our findings are strengthened by the prospective cohort study that was recruited
through population-based sampling methods. This is important, as studies of environ-
mental chemicals in relation to reproductive outcomes focused primarily on biomarkers
collected during pregnancy or in populations seeking fertility treatment. Our cohort was
intended to include couples with environmentally-relevant EDCs concentrations amongst
reproductive aged couples at risk for pregnancy. Urine specimens were collected before
couples began trying for pregnancy and use of the fertility monitor increased the validity
of TTP as did the use of digital pregnancy kits to capture hCG-pregnancy. Moreover, we
observed no differences in the pregnancy status of couples with/without remaining urine
samples for EDC quantification. BMI was measured by research assistants and not depen-
dent upon self-reported height and weight, and cigarette smoking status was measured by
serum cotinine concentration. The laboratory methods for measuring phthalate metabolites,
BPA, and BP-type filters was another strength.

The age range of women in the LIFE Study may be a study limitation and too narrow to
capture effect modification, in that women <18 or >40 years were ineligible. While age did
not modify the relationship between urinary phthalate metabolite levels and fecundability,
the median age of female study participants was 29 years (IQR = 6 years). Only 16% of
women in the LIFE Study were aged 35 years or older, which may have decreased precision.
Among women ≥35 years of age, the median age was 36, underscoring this limitation.
Twice as many men were aged ≥35 (29.8%), and 5% exceeded 41.7 years. Therefore, this
study had greater power to address the hypothesis of effect modification by age in men
than women. As such, we are more confident in the absence of such effect modification in
men than women. Yet, the findings for BP-type filters, BP-1, BP-2, BP-3, BP-8, and 4OH-BP
suggested longer TTP among women aged ≥35 years. Although inference among older
women in our study is a challenge given the age distribution, this age distribution reflects
the proportion of women trying for pregnancy within the age range of 18–40 years. Another
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important limitation is reliance on a single spot urine in which EDCs were quantified.
These are short-lived EDCs that are rapidly metabolized [47] and may not reflect actual
exposure during sensitive windows of conception and implantation (both of which can
affect TTP). As such, our working assumption is that there is continual exposure in light of
the ubiquitous environmental sources for reproductive aged couples. Our study considered
effect modification on the multiplicative scale. Future work may explore the possibility of
additive interactions [48–50].

Synthesizing our findings in the context of other research is challenging due to no other
studies examining modification by age in relation to the effects of short-lived chemicals on
fecundability in couple-based studies. A recent review identified no additional epidemio-
logic studies of BP-type filters and fecundability [25], highlighting the need for additional
research on these emerging chemicals. Our findings regarding phthalates and BPA are
supported by other recent reviews indicating modest or no association with fecundability.
Our findings add to the literature in suggesting the absence of strong effect modification by
age for these EDCs and human fecundability as measured by TTP. This question, which
remains of interest, should be addressed in cohorts adequately powered to examine these
risks in women and couples age 40 and older, a demographic that has been increasing.

5. Conclusions

This is the first study to examine whether male and female age modifies the association
between specific EDCs and fecundability as measured by TTP. Overall, age did not modify
the relation between phthalate metabolites, BPA, and BP-type filters and fecundability. For
women ≥35 years, there was some evidence that BP-type filters were associated with a
longer TTP. Given the limited evidence of effect modification by age on EDC exposure and
fecundability, corroboration in sufficiently powered cohorts is needed for a more complete
understanding of the modifying effect of age.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijerph19138074/s1, Figure S1: Fecundability odds ratios for phthalate and
benzophenone filter metabolites with quantiles of age, separately by sex [females: Q1 (19–26.9 years),
Q2 (27–28.9), Q3 (29–32.9), Q4 (33–40), males: Q1 (19–27.9), Q2 (28–30.9), Q3 (31–34.9), Q4 (35–51)].
Models are adjusted for age quantiles, creatinine, cotinine, and BMI; Figure S2: Fecundability odds ratios
for both female and male partners at age <35 and age ≥35, controlling for other partner’s chemical
(AdjustChem) compared to main results (MainResults). Models are also adjusted for categorical age,
creatinine, cotinine, and BMI.
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