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Abstract: The integrated use of remote sensing technology and machine learning models to evaluate
cultivated land quality (CLQ) quickly and efficiently is vital for protecting these lands. The effective-
ness of machine-learning methods can be profoundly influenced by training samples. However, in the
existing research, samples have mainly been constructed by random point (RPO). Little attention has
been devoted to the optimization of sample construction, which may affect the accuracy of evaluation
results. In this study, we present two optimization methods for sample construction of random patch
(RPA) and area sequence patch (ASP). Differing from RPO samples, it aims to include cultivated land
area and its size into sample construction. Based on landsat-8 Operational Land Manager images
and agricultural land grading data, the proposed sample construction methods were applied to the
machine learning model to predict the CLQ in Dongtai City, Jiangsu Province, China. Four machine
learning models (the backpropagation neural network, decision tree, random forest (RF), and support
vector machine) were compared based on RPO samples to determine the accurate evaluation model.
The best machine learning model was selected to compare RPA and ASP samples with RPO samples.
Results determined that the RF model generated the highest accuracy. Meanwhile, a high correlation
was noted between the cultivated land area and CLQ. Thus, incorporating cultivated land area in the
sample construction attributes can improve the prediction accuracy of the model. Among the three
sample construction methods, the ASP yielded the highest prediction accuracy, indicating that the
use of a large, cultivated land patch as the sample unit can further elevate the model performance.
This study provides a new sample construction method for predicting CLQ using a machine learning
model, as well as providing a reference for related research.

Keywords: cultivated land quality; sample construction; machine learning; NDVI; Dongtai

1. Introduction

As the most important means of agricultural production, cultivated land plays a
critical role in human survival and development [1–4]. However, cultivated land quality
(CLQ) is degrading rapidly in many regions of the world, especially in China [5]. Since
economic reforms and liberalization were introduced in China, cultivated lands have been
fragmented, changed to non-food croplands, and transformed to non-agricultural lands
due to increasing industrialization and urbanization [6]. Furthermore, the discharge of
industrial waste into cultivated lands and the excessive use of pesticides and fertilizers
has also aggravated the deterioration of CLQ in China [7]. Therefore, rapid and effective
methods for the evaluation of CLQ are essential to improve cultivated land resources,
ensure food security, and maintain social stability [8–10].

Traditional methods of CLQ evaluation are based on field measurements [11], which
are time-consuming and expensive. However, over the past 20 years, new CLQ evaluation
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techniques have been developed. In particular, remote sensing technology possesses the
characteristics of wide coverage, large information acquisition, strong timeliness, rapid
speed, and timely production of data to assess agricultural resources, crop growth, agri-
cultural disasters and other information [12]. Today, remote sensing has become the main
method for the rapid evaluation of CLQ, with two main avenues of study: the acquisition of
relevant evaluation indices by interpreting remote sensing images [13,14] and the creation
of an inversion model using remote sensing images [15,16]. The evaluation of CLQ is also
conducted extensively using machine learning techniques [17,18]. This data mining ap-
proach mainly involves the establishment of relationships between the CLQ and evaluation
factors based on training samples. In this approach, the subjectivity of assigning weights
to evaluation indices is eliminated [19], substantially improving the efficiency of the CLQ
evaluation. Many machine learning models are available, but those most frequently used
for CLQ evaluation include backpropagation neural network (BPNN) [20,21], decision tree
(DT) [22,23], random forest (RF) [18,24], and support vector machine (SVM) [25,26].

In recent years, remote sensing technology and machine learning models have been
combined to rapidly and efficiently evaluate CLQ. Li et al. (2020) extracted spectral informa-
tion on cultivated land from Landsat-Thematic Mapper (TM) images and used the extreme
learning machine model to evaluate CLQ in hilly areas of central-south Shandong Province,
China [27]. Liu et al. (2019) extracted and screened the vegetation index using GF-1 remote
sensing imagery to produce a cultivated land fertility index and used the BPNN model
to evaluate the CLQ in the Conghua District of Guangzhou City, Guangdong Province,
China [28]. Even though these studies have demonstrated the process of rapid evaluation
of CLQ, they use only one sample construction method for evaluation. The evaluation
accuracy of a machine learning method depends on the training samples [29,30]. Thus,
the quality of the sample data profoundly influences the learning ability of these models.
The construction of samples has predominantly been based on spatial points [15,28,31],
while cultivated land area has been neglected, despite previous studies demonstrating that
CLQ is correlated with cultivated land area [32,33]. Therefore, studies aimed at optimizing
the construction of samples for the evaluation of CLQ using machine learning models
are required.

The objectives of this study were as follows: (1) to select the machine learning model
with the best prediction potential based on the random point (RPO) sample construction
method; (2) to optimize the sample construction approach and determine whether the
prediction accuracy of a model can be improved by incorporating the cultivated land area;
and (3) to determine the sample construction method with the highest prediction accuracy.
The results of this study provide a guide for the rapid and efficient prediction of regional
CLQ and for the enhancement of cultivated land protection.

2. Materials and Methods
2.1. Study Area

Dongtai City is in the center of the coastal area in Jiangsu Province, China (Figure 1),
extending from longitudes 120◦07′ to 120◦53′ E and latitudes 32◦33′ to 32◦57′ N. The city has
a subtropical monsoon maritime climate, with an average annual temperature of 14.6 ◦C
and an average annual precipitation of 1061.2 mm. As a typical agricultural city in the
eastern coastal plain of China, Dongtai is mostly flat and rich in cultivated lands. In 2020,
cultivated lands occupied approximately 136,900 ha, accounting for nearly 43.1% of the
total land area covered by the city. Therefore, the protection of CLQ has been considered in
policies during the development of the city. To formulate an adequate protection plan, fast
and efficient methods for the evaluation of CLQ are required.
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Figure 1. Map showing the location of the study area.

2.2. Data Collection and Processing

The CLQ data of field verification points were obtained from the 2018 CLQ grading
achievement database of Dongtai City, provided by the Bureau of Natural Resources and
Planning. This achievement was based on using the cultivated land patch of Dongtai
City 2018 1:5000 land use status map as the evaluation unit, and the evaluation method
and parameter system adopted were determined according to the cultivated land quality
evaluation regulation “Agricultural Land Quality Grading Regulation” (GB/T 28407-2012)
issued by the Ministry of Land and Resources of China. Nine evaluation factors were
considered: soil organic matter, PH value, soil salinization degree, irrigation guarantee
rate, drainage condition, barrier layer depth from the surface, soil erosion degree, surface
soil texture, and effective soil layer thickness. The data for the nine factors were obtained
through laboratory measurements or field surveys. This result is a relatively complete
background data of CLQ in Dongtai City, and the CLQ in Dongtai City is divided into
levels 1–4.

The normalized difference vegetation index (NDVI) accurately highlights the extent
of vegetation cover and the fertility of cultivated lands in a given region [16,34]. For the
prediction of CLQ in the study, we used 2018 Landsat 8 Collection 1 Tier 1 8-day NDVI
Composite data with a resolution of 30 m; the data were obtained from the United States
Geological Survey (USGS; https://www.usgs.gov/land-resources/nli/landsat/landsat-
data-access, accessed on 10 March 2021).

To improve the accuracy of the CLQ level prediction, the annual image was divided
into 12 months, and 12 images were synthesized. The study area has a high level of cloud
cover, and so the NDVI values were split into groups representing 2 months, generating
six images (Figure 2) to minimize the effect of cloudy conditions and ensure accuracy. The
cultivated land type and cultivated patch area were also selected as independent variables
for the models. These data were obtained from the 2018 CLQ grading achievement database
for Dongtai City. In the present study, the mean NDVI values for January to February,
March to April, May to June, July to August, September to October, and November to
December, as well as the type and area of cultivated land were independent variables for
the models [9,33,35,36].

https://www.usgs.gov/land-resources/nli/landsat/landsat-data-access
https://www.usgs.gov/land-resources/nli/landsat/landsat-data-access
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Figure 2. Diagrams showing the 2−month average NDVI images for the study area in 2018, including
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October, and (f) November to December.

2.3. Machine Learning Models

CLQ levels in the study area were simulated and predicted using four machine learning
models (BPNN, DT, RF, and SVM) that are commonly employed in CLQ evaluation. These
models were constructed using the model function construction package in the SPSS
Modeler 18.0 (IBM) software. The following is a brief introduction to the four models.

(1) Backpropagation neural network model

The BPNN is a general supervised machine learning model, which consists of three
layers: the input layer, hidden layer, and the output layer [37]. It learns by signal forward
propagation and error backpropagation, adjusting the weights in each successive layer to
reduce the errors at each level, and finally outputs prediction or classification results [38].
In this study, a BPNN model was constructed by using the BPNN construction function
package in SPSS Modeler 18.0 software (Chicago, IL, USA).

(2) Decision Tree model

The DT is a common classification and regression algorithm, and the operation process
involves dividing into the root, intermediate, and leaf nodes [39]. The root node is the sum
of all datasets predicted by the model, while the intermediate node represents the division
of the selected dataset based on defined rules, and the leaf node is the output of the result
of the model. In this study, a DT model was constructed by the DT construction function
package in SPSS Modeler 18.0 software.
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(3) Random Forest model

The RF model is an ensemble-learning algorithm proposed by Breiman [40]. The prin-
ciple involves the gathering of decision trees via “bagging”, generating prediction results,
and building a prediction model based on the binary splitting of prediction variables [41].
This model can then be used for classification, clustering, and regression. In the RF model,
the bootstrap sampling method is used for the selection of samples, and a DT model based
on data from each sample is then constructed. The prediction results of multiple DT models
are then combined, and the prediction result is obtained through the voting evaluation.
In this study, an RF model was constructed by employing the RF construction function
package in SPSS Modeler 18.0 software.

(4) Support Vector Machine model

The SVM is a classical nonparametric machine learning model, which was originally
limited to the binary classification problem [42]. Based on a hyperplane, the unclassified
dataset is divided into discrete categories that are consistent with the training set, such that
the distance between blank areas of the two categories is maximized when the accuracy
is maximized. At present, the kernel function associated with the SVM model has been
extended to accommodate multiple classifications. In this study, an SVM model was
constructed by using the SVM construction function package in SPSS Modeler 18.0 software,
with the radial basis function selected as the kernel function.

2.4. Sample Construction

To improve the accuracy of CLQ prediction using machine learning models, we
optimized the sample construction method. Sample construction was performed using the
random patch (RPA) and area sequence patch (ASP) methods, and these were compared
with the construction based on the commonly used random point (RPO) method. The
sampling methods are described briefly further.

(1) Random point sampling

RPO sampling is the most common sample construction method used for CLQ eval-
uation. In the CLQ level map of Dongtai City, 2000 points were randomly generated to
produce the RPO samples (Figure 3a). Each point contains information on cultivated land
type and the average 2-month NDVI value of the cultivated land.

(2) Random patch sampling

Cultivated land is actually a polygon, not a point. It has area, which is highly correlated
with CLQ [32,33,36]. Therefore, considering a cultivated land patch as the unit, in the CLQ
level map of Dongtai City, 2000 cultivated land patches were randomly selected to generate
the RPA samples (Figure 3b). Each patch contains information on cultivated land type,
cultivated land area, and the 2-month average NDVI value of cultivated land.

(3) Area sequence patch sampling

In general, agricultural production tends to take place on large and concentrated
cultivated land. It is important to further highlight the influence of the cultivated land
area on the CLQ. In the CLQ level map of Dongtai City, a large, cultivated land patch was
considered as the unit. A total of 2000 cultivated land patches were selected according to
the area sequence from large to small to create the ASP samples (Figure 3c). As with the
RPA samples, each patch contains the information of cultivated land type, cultivated land
area, and the 2-month average NDVI value of the cultivated land.
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2.5. Model Validation and Evaluation
2.5.1. Training Set and Test Set

The algorithm flow was established according to the characteristics of the SPSS Mod-
eler 18.0 software, which included an input node, type node, partition node and model
node. After the entire input dataset was classified, the whole dataset was divided according
to random seeds by partition nodes. In this study, 80% of each sample were training sets for
establishing evaluation models and 20% were test sets used to validate the model [43,44]. To
ensure the repeatability of model prediction, the data were randomly classified according
to random seeds.

2.5.2. Model Evaluation Index

A confusion matrix is often used to visualize the performance of a classification model.
Table 1 summarizes the content of a confusion matrix, and a true positive (TP) indicates that
the machine learning model predicts a positive class and that the actual class is a positive
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class too. A false negative (FN) shows that the machine learning model predicts a negative
class, but the actual class is positive. A false positive (FP) shows that the machine learning
model predicts a positive class, but the actual class is negative. Finally, a true negative (TN)
demonstrates that the machine learning model predicts a negative class, and the actual
class is negative too. Based on these four parameters, the following performance evaluation
indicators of a model can be obtained:

Table 1. Confusion matrix for the binary classification.

Actual

Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Accuracy: This metric represents the percentage of samples that predict correctly.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision: This indicator denotes the proportion of samples correctly predicted for a
given category to the total number of samples predicted for that category.

Precision =
TP

TP + FP
(2)

Recall: This indicator represents the proportion of samples that are correctly predicted
for a given category.

Recall =
TP

TP + FN
(3)

F1-score: This metric is the harmonic mean of the recall and precision and helps to
determine the accuracy and robustness of a classification model.

F1− score =
2∗Recall ∗ Precision
Recall + Precision

(4)

Based on the test set, the accuracy of machine learning model prediction results
was evaluated by using the 2018 CLQ grading achievement database of Dongtai City.
The classification performance of the model was evaluated by comparing the accuracy,
precision, recall, and F1-score of the model. The value range of accuracy, precision, recall,
and F1-score were 0–1. The higher the accuracy, precision, recall, and F1-score, the better
the classification effect and prediction ability of the model [43]. In the prediction of multi-
classification problems, the precision, recall, and F1-score are calculated separately for
each category, and the averages are then denoted as the macro-precision, macro-recall and
macro-F1 score.

2.6. Establishment of Research Program

In this study, we present two optimization methods for sample construction of RPA
and ASP and compared with commonly used RPO samples. In addition, different ma-
chine learning models were compared to improve the prediction accuracy. The overview
framework of this study is shown in Figure 4.
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The specific steps were as follows:

(1) Four machine learning models (BPNN, DT, RF, SVM) commonly used in cultivated
land quality evaluation were selected.

(2) The training set of RPO samples was used to train the model. Training the model
was stopped when the simulation accuracy of the model training set was no longer
improved, and the optimal model was formed. The test set of RPO samples was used
to verify the model.

(3) The accuracy, precision, recall and F1-score of different models were calculated, and
the model with the best classification effect was selected.

(4) RPA samples and ASP samples were applied to the machine learning model with the
best performance and compared with RPO samples.

(5) The model was trained with the training set of RPA samples and ASP samples,
respectively. Then, the model was validated using the test sets of RPA samples and
ASP samples, respectively.

(6) The accuracy, precision, recall and F1-score of the model under different sample
construction methods were calculated, and the sample construction method with the
highest prediction accuracy was selected.

3. Results
3.1. Model Screening Based on the RPO Samples

Following preprocessing of the RPO sample dataset in the SPSS Modeler 18.0 software,
the machine learning models BPNN, RF, DT, and SVM, were used to simulate and predict
the CLQ levels in the study area. The overall accuracy of data associated with the models
is presented in Table 2. Regarding the training dataset, the highest accuracy (79.5%) was
obtained from the RF model, while the lowest (64.4%) was linked to the DT model. For
the test dataset, the SVM model showed the highest accuracy (63.0%), while the RF model
produced the lowest accuracy (57.7%). The RF model displayed the highest difference in
accuracy between the training and test datasets, indicating overfitting.

Table 2. Accuracy data for the training and test sets for four models.

Machine Learning Model The Accuracy of Training Dataset The Accuracy of Test Dataset

BPNN 66.4% 60.6%
RF 79.5% 57.7%
DT 64.4% 60.9%

SVM 65.0% 63.0%
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The simulation and prediction results associated with the four models for different
levels of cultivated land were generated, and the corresponding confusion matrices were
created. According to the data shown in Figure 5, excluding the RF model, the other models
inadequately extracted the data required for classifying Level 1 cultivated land during
training. Therefore, an accurate prediction of Level 1 cultivated land was impossible using
these models, with both the training and test datasets producing accuracy values of 0.
Regarding Level 2 cultivated land, the accuracy values of the training and test datasets
for the RF model were the highest (79.2% and 61.0%, respectively), while those of the DT
model were the lowest (41.2% and 45.1%, respectively). For Level 3 cultivated land, all four
models produced high accuracy values for both the training and test datasets. The BPNN
model produced the highest accuracy values for the training and test datasets (82.8% and
77.3%), while the RF model yielded the lowest (78.0% and 63.5%, respectively). In contrast,
for Level 4 cultivated land, all four models generated low accuracy values.
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Figure 6 displays the prediction accuracies of the four models when compared based
on the precision, recall, and F1-score of the predicted results. Based on the F1-score
for all cultivated land levels, the macro-F1 scores for the four models follow the order
RF (48.7%) > SVM (44.3%) > DT (41.9%) > BPNN (40.5%), with the highest prediction
ability being attributed to the RF model. These are consistent with the results from the
macro-precision and macro-recall.

According to the performance evaluation indices of the machine learning models, the
SVM model displayed the highest prediction accuracy, while the RF model had the highest
prediction F1-score. Although the RF model exhibits overfitting, the model can learn the
data of cultivated land levels for a small number of samples. Therefore, loss of cultivated
land level data was prevented; as such, the applicability of the RF model is better than that
of the other three models.
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3.2. Optimization of the Sample Construction

In Section 3.1, the RF model was shown to produce the best prediction. However,
the prediction accuracy associated with the RPO samples was low, and optimization of
the sample construction was required. Herein, the cultivated land area was added to
the sample attributes to generate RPA and ASP samples. The RF model was then used
to simulate and predict CLQ levels; the accuracy values associated with the two-sample
datasets are presented in Table 3. The accuracy of the training set for the RPA-RF model
was 79.0%, whereas that for the test set was 63.5%. The significant difference between these
accuracy values indicates that the model involves overfitting. In contrast, the training and
test datasets for the ASP-RF model produced values of 90.1% and 86.1%, respectively. The
small difference between the accuracy values indicates that the model is associated with
good fitting.

Table 3. Accuracy data for the training and test datasets of the RPA-RF and ASP-RF models.

Samples The Accuracy of Training Dataset The Accuracy of Test Dataset

RPA-RF 79.0% 63.5%
ASP-RF 90.1% 86.1%

The simulation and prediction results of the RPA-RF and ASP-RF models were ob-
tained, and the corresponding confusion matrices were created. Figure 7 shows that the
RPA-RF model adequately simulated all levels of cultivated land, and the associated accu-
racy values for the training datasets exceeded 70%. However, the prediction performance of
the RPA-RF model varied significantly for different levels of cultivated land. The accuracy
values from the test datasets for Level 1 and Level 4 cultivated lands were 33.3% and 45.3%,
while those for Level 2 and Level 3 were 67.9% and 66.1%, respectively. The RPA-RF model
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was characterized by overfitting during learning of levels 1, 2, and 4 cultivated lands. In
contrast, the ASP-RF model produced adequate simulations and predictions for all levels
of cultivated land. The accuracy values of the simulation and prediction for different levels
of cultivated land were high, and the fitting effect was good.
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The performances of the RPA-RF and ASP-RF models were further evaluated based
on the precision, recall, and F1-score of the predicted results (Table 4). Using the F1-score as
an example, the RPA-RF model produced the highest prediction accuracy (72.0%) for Level
3 cultivated land and the lowest prediction accuracy (40.0%) for Level 1 cultivated land,
with the prediction accuracy of the macro-F1 score being 53.2%. In contrast, the ASP-RF
model produced high F1-score for all levels of cultivated land, and the prediction accuracy
of the macro-F1 score was 85.9%.

Table 4. Prediction accuracy data for the RPA-RF and ASP-RF models.

CLQ Level Sample Construction Method Precision Recall F1-Score

Level 1
RPA-RF 50.5% 33.3% 40.0%
ASP-RF 100% 90.3% 94.9%

Level 2
RPA-RF 54.5% 67.9% 60.5%
ASP-RF 85.6% 92.2% 88.8%

Level 3
RPA-RF 79.2% 66.1% 72.0%
ASP-RF 75.2% 82.9% 78.9%

Level 4
RPA-RF 36.4% 45.3% 40.3%
ASP-RF 85.1% 76.8% 80.8%

Macro Average RPA-RF 55.2% 53.2% 53.2%
ASP-RF 86.5% 85.6% 85.9%
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3.3. Optimal Sample Construction

The performance evaluation indices of the RPO-RF, RPA-RF, and ASP-RF models
were compared to highlight the best sample construction method for predicting CLQ level.
Figure 8 shows that the prediction results of the RPO-RF and RPA-RF models were similar.
However, compared with the RPO-RF model, the prediction accuracy, macro-precision,
macro-recall, and macro-F1 score of the prediction results for the RPA-RF model increased
by 5.8%, 7.9%, 1.6%, and 4.5%, respectively. These values indicate that the prediction results
associated with the RPA samples are more accurate than those obtained using the RPO
samples, and the performance of the model was improved. The ASP-RF model performed
better for all indicators. Compared with the RPO-RF model, the prediction accuracy, macro-
precision, macro-recall, and macro-F1 score of the model increased by 28.4%, 39.2%, 34.0%,
and 37.2%, respectively. These values demonstrate that ASP sampling further improves the
performance of the model and is the best sample construction method for the prediction of
the CLQ level.
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4. Discussion
4.1. Selection of CLQ Evaluation Methods

The rapid and efficient evaluation of CLQ is currently considered a requirement for
cultivated land resource management [45]. Several studies on CLQ evaluations based on
NDVI have produced good results. Guan et al. used NDVI data extracted from Landsat 8
multispectral images to produce a CLQ inversion model, with an accuracy of 93.6% [16].
Previous studies have demonstrated the feasibility of predicting the CLQ level based on
the NDVI. However, most studies only select remote sensing images of a single month to
obtain NDVI [28], which may have accidental factors and affect the accuracy of the CLQ
evaluation. In the present study, images of the study area for a whole year were used
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to generate NDVI data according to the month in order to improve the accuracy of the
evaluation results.

Machine learning techniques can substantially enhance CLQ evaluation efficiency, but
the prediction effect will be different with different models. In this study, the BPNN, DT, RF,
and SVM models were compared for the prediction of CLQ levels. The RF model produced
the highest prediction accuracy and the best classification. This finding is consistent with
many similar studies. Zhang et al. compared the performances of the multinomial logistic
regression, k-nearest neighbor (KNN), and RF models in the prediction of soil category and
reported that the RF model produced superior results [30]. Ge et al. evaluated the accuracy
of different machine learning models for the classification of land cover in arid regions of
China and noted that the RF model generated more accurate classification compared with
the KNN, SVM, and artificial neural network models [46]. Studies using other machine
learning models to predict CLQ have also achieved satisfactory results [47]. The reason
could be related to the type of variable used in the study. In general, the performance of a
machine learning model depends on the sample data. Certain machine learning models
perform better than others, owing to the relationships between variables and outputs [43].
Linear models such as SVM provide better results if there is a linear relationship between
the variables and the output [48]. For complex and nonlinear relationships, DT-based
models (e.g., RF) may perform better than linear models [49]. In the current study, RF
performed better than SVM, indicating that the relationships between the different variables
and CLQ levels were nonlinear and complex.

RF performs better than other nonlinear models (e.g., DT and BPNN) when dealing
with complex nonlinear relations. The reasons for this performance difference are as follows.
RF models improve consistency by aggregating multiple models to minimize the instability
of a single tree model [50]. In contrast, the DT model only uses a single tree to learn complex
relationships among CLQ levels and variables. A low prediction accuracy implies that
the DT model cannot handle such complex relationships. The DT model is very unstable,
and small changes in the learning sample can produce completely different trees [44]. The
BPNN model is based on a gradient descent algorithm, which randomly initializes the
connection weights and thresholds of each layer into 0–1 values before starting training. In
the face of complex nonlinear relationships, such unoptimized random initial values tend
to slow the convergence speed of the BPNN model and make the final result easily non-
optimal [51]. Furthermore, our results also show that the BPNN, DT, and SVM models are
characterized by information loss during the simulation and prediction of Level 1 cultivated
land. This limitation may be attributed to the low proportion of Level 1 cultivated land
in the RPO samples. If the training data set is small, the model cannot learn the general
principles, and so the performance will be unsatisfactory [52]. However, due to the high
data use rate, the RF model is suitable for mining the information required for simulation
and prediction using limited samples [44]. Therefore, the applicability of this model is
better than that of the other three.

4.2. Effect of the Sample Construction Method on the Model Prediction Accuracy

The quality of the sample dataset profoundly affects the performance of machine
learning models. Therefore, optimizing the sample construction method is an effective
way to improve the prediction accuracy of these models [53]. Herein, the cultivated land
area was included in the sample attributes, and a cultivated land patch was the sample
unit during the construction of the RPA samples. The macro-precision, macro-recall and
macro-F1 score of the RPA-RF model were higher than those of RPO-RF model. This
result indicates a high correlation between the cultivated land area and CLQ level and that
including the cultivated land area into the sample attribute can improve the performance
of the model. Zeng et al. analyzed the degree of correlation between the CLQ and its
influencing factors in Xiangyang City, Hubei Province, China, by using the grey correlation
degree analysis method and found that the CLQ was significantly correlated with the
cultivated land area, with a correlation degree of 0.74 [36]. However, Lin et al. analyzed
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the influencing factors of CLQ in Wulan County, Qinghai Province, China, and found no
significant correlation between cultivated land area and CLQ [54]. This discrepancy may
be caused by the difference in natural and social environments between the two regions.
The CLQ in the eastern Plain of China may be more sensitive to area factors than that in the
western plateau of China.

To further evaluate the influence of the cultivated land area on the CLQ, a large,
cultivated land patch was used as the sample unit to construct the ASP samples. The
macro-precision, macro-recall, and macro-F1 score of the ASP-RF model were higher than
those of the RPA-RF and RPO-RF models. This result indicates that model performance
can be further improved by building samples with large, cultivated land patches as units.
Sheng et al. evaluated the quality of cultivated land on the alluvial fan in Jimusar County,
Xinjiang, China, based on different cultivated land evaluation units and found that when
large areas of cultivated land were used as the evaluation units for CLQ, the evaluation
result was accurate [31]. The reason may be that a large area of cultivated land is more
representative of the characteristics of CLQ. This representativeness enhances the training
of the model and improves performance.

The differences in macro-precision, macro-recall, and macro-F1 score of the four
models were small. Taking the macro-F1 score as an example, the values of the four models
ranged from 40.5% to 48.7%. This finding is consistent with that of many similar studies.
Chagas et al. predicted soil types on the tropical slopes of Brazil: the overall accuracy
of the RF model was 78.8%, while the overall accuracy of the DT model was 70.2% [55].
Du et al. predicted the soil type of Heshan Farm in Heilongjiang Province, China, and
found that the overall accuracy of the DT model was 56.4%, that of the logistic regression
model was 50.4%, and that of the SVM model was 50.5% [29]. However, the macro-F1
score differences between the three sample construction methods were large, ranging from
48.7% to 85.7%, suggesting that the quality of the sample dataset is more important than
the model itself [55,56].

4.3. Implications for Policy and Decision Making

China’s state policy is to protect food security and safeguard the red line of 1.8 billion
mu cultivated land, and the quality of cultivated land plays a fundamental role [57].
Cultivated land resources possess characteristics of wide distribution and large area, and
the quantity and quality of cultivated land greatly changes with time [28]. Therefore,
to strengthen the control and construction of cultivated land, it is necessary to timely
and accurately understand the quality and spatial distribution of cultivated land. In this
study, the proposed ASP sample construction method further improved the accuracy of
predicting CLQ using machine learning. A rapid and efficient CLQ evaluation method can
provide a timely and accurate basis for orderly demarcation of permanent basic farmland,
occupation or protection compensation of cultivated land, and calculation of compensation
for expropriation of land [31]. Furthermore, land use planning and land reclamation
planning can manage cultivated land differently, according to the spatial distribution
of CLQ grade [58]. In addition, farmers and farms can timely and effectively adjust
agricultural input according to the quality of cultivated land, improving agricultural
production efficiency.

4.4. Research Limitations and Prospects

In the present study, a sample construction method for evaluating CLQ using a
machine learning model was optimized. The proposed ASP sample construction method
can improve the prediction accuracy of machine learning models. In our future research,
examining how to determine the cultivated land area threshold in sample construction,
instead of the area sequence, will be an important research issue. It has to be pointed out
that to quickly and efficiently evaluate the quality of cultivated land, this study selected
fewer variables. In the future, we will introduce other variables that are closely linked to
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the CLQ, to further optimize the sample construction method to achieve a prediction that
is more accurate.

5. Conclusions

The combination of remote sensing technology and machine learning models enables
rapid and effective prediction of CLQ levels, while the optimization of the sample construc-
tion can enhance the accuracy of the prediction results. In this study, the prediction accuracy
of three sample generation methods was compared using machine learning model. The
conclusions are as follows: (1) Based on the RPO sampling method, the RF model produced
the highest overall accuracy relative to the BPNN, DT, and SVM models, and exhibited the
best application effect. (2) The prediction accuracy of the RPA-RF model surpassed that
of the RPO-RF model, which indicated that inclusion of the cultivated land area into the
sample construction attributes improved the prediction potential of the model. (3) Among
the three sample types, the ASP-RF model yielded the highest prediction accuracy, which
suggests that the use of a larger cultivated land patch as the sample unit can further en-
hance the prediction of the model. This study provided a new sample construction method
for evaluating CLQ using a machine learning model, as well as providing a reference for
related research.
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