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Abstract: In recent years, the problem of heavy metal pollution in agriculture caused by industrial
development has been particularly prominent, directly affecting food and ecological environmental
safety. Hyperspectral remote sensing technology has the advantages of high spectral resolution and
nondestructive monitoring. The physiological and biochemical parameters of crops undergo similar
changes under different heavy metal stresses. Therefore, it is a great challenge to explore the use
of hyperspectral technology to distinguish the types of the heavy metal copper (Cu) and lead (Pb)
elements. This is also a hot topic in the current research. In this study, several models are proposed
to distinguish copper and lead elements by combining multivariate empirical mode decomposition
(MEMD) transformation and machine learning. First, MEMD is introduced to decompose the original
spectrum, which effectively removes the noise and highlights and magnifies the weak information of
the spectrum. The successive projections algorithm (SPA), competitive adaptive reweighted sampling
(CARS), and iteratively retaining informative variables (IRIV) were used to screen the characteristic
bands and were combined with extreme learning machine (ELM), support vector machine (SVM), and
general regression neural network (GRNN) algorithms to build models to distinguish the types of Cu
and Pb elements. The quality of the model was evaluated using accuracy (A), precision (P), recall (R),
and F-score. The results showed that the MEMD-SPA-SVM, MEMD-CARS-SVM, MEMD-SPA-ELM,
MEMD-CARS-ELM, and MEMD-IRIV-ELM models intuitively and effectively distinguished the
types of Cu and Pb elements. Their accuracy and F-scores were all greater than 0.8. To verify the
superiority of these models, the same model was constructed based on first derivative (FD) and
second derivative (SD) transformations, and the obtained classification and recognition accuracy
(A) and F-score were both lower than 0.8, which further confirmed the superiority of the model
established after MEMD transformation. The model proposed in this study has great potential for
applying hyperspectral technology to distinguish the types of elements contaminated by Cu and Pb
in crops.

Keywords: spectral analysis; environmental heavy metal pollution; corn leaves; machine learning;
multivariate empirical mode decomposition

1. Introduction

In this era, with the continuous acceleration of industrialization and urbanization [1],
the scale of the development of production activities, such as mining, smelting, and various
processing and manufacturing industries, has been at a relatively high level. Heavy metal
pollution is a serious environmental problem. Among the many heavy metal pollutants,
copper (Cu) and lead (Pb) pollution has attracted significant attention [2]. Copper is an
essential element for plant growth. When plants contain a small amount of copper, it can
promote plant growth, whereas excess copper can be harmful to plant growth, affecting
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plant photosynthesis, causing loss of green color, growth retardation and, in serious cases,
leading to plant death [3]. Lead is harmful to plants, mainly by affecting photosynthesis
and respiration. People in an environment with more serious lead pollution will experience
damage to the human nervous system and blood circulatory system, which can lead to
other diseases [4]. Therefore, heavy metal pollution monitoring and control technologies
have become a popular research topic in the field of environmental protection. Heavy metal
pollution in agriculture has attracted considerable attention [5]. Heavy metals migrate
slowly in agricultural soils and accumulate mainly in areas where they are not easily
decomposed. Heavy metals are transferred into the food chain through crops grown in
polluted soil, which harm people or other organisms that feed on them. In serious cases,
they endanger food safety and public health [6–8]. To achieve accurate crop management
and environmental protection, it is necessary to monitor and distinguish the types of heavy
metal pollutants in a timely and effective manner.

Traditional techniques for the investigation of heavy metal pollution, such as field
sampling, indoor chemical analysis, and geostatistical interpolation, require large areas,
extensive field sampling, and experimental analysis, which are time consuming, labor
intensive, and costly [9]. Currently, gradually emerging hyperspectral remote sensing
technology can achieve rapid, nondestructive, and large-area monitoring and is widely used
in the exploration of agricultural heavy metal pollution screening and detection [10–12].
Early spectral analyses of the interaction between vegetation and heavy metals can be
traced back to the 1970s and the 1980s. For example, Milton et al. [13] and Horler et al. [14]
defined the position of the red edge, which proved that the red edge of the vegetation
spectrum curve would be blue-shifted under heavy metal stress. Many researchers have
used hyperspectral techniques to monitor heavy metal pollution in vegetation leaves [15]
and whole plants [16]. The arsenic (As) concentration in soil can be estimated successfully
by combining spectral preprocessing methods, such as Savitzky Golay smoothing (SG),
first derivative (FD), and mean-centering (MC), and constructing an optimal model by
measuring the spectra of growing rice plants [17]. Wavelet analysis has been applied
to hyperspectral data processing and a monitoring model for heavy metal pollution in
rice [18]. Zhang et al. [19] predicted the Cu content in corn leaves under Cu stress by
developing a hyperspectral analysis model. The As content of ferns can be predicted
by pot experiments using the first derivative (FD) of spectral reflectance [20]. The near-
infrared (NIR) bands in spinach leaves under arsenic stress had a significant correlation
with arsenic content [21]. Zhou et al. [22] used hyperspectral technology to detect Pb
content in lettuce leaves and achieved good results. The wavelet transform of the spectrum
combined with least squares support vector machine regression (WT-LSSVR) can effectively
detect cadmium residues in tomato leaves [23]. Spectral reflectance of plant leaves changes
under heavy metal stress. Several studies have found that relative chlorophyll content is
significantly correlated with the content of heavy metals in leaves. It can be seen that the
combination of hyperspectral and chlorophyll content detection can also be used for the
diagnosis of heavy metal pollution [24]. Establishing a correlation model between spectral
indices and Cd content in crop tissues can also achieve rapid quantitative analysis of Cd
pollution, thereby rapidly determining vegetable quality [25,26]. A new hyperspectral
vegetation index (CSVI) was found to be satisfactorily correlated with Cd content in
plant leaves [27].

In summary, previous studies on the inversion of heavy metal pollution using hyper-
spectral techniques have focused on the prediction of heavy metal content. In contrast,
there are few studies on the identification of heavy metal elements, which are relatively
rare. Given this deficiency, the identification of heavy metal elements was performed in
this study. The analysis of spectral data using the spectral analysis of signals is a new
method that can decompose spectral data into multiple layers to fully explore the spectral
features at different frequencies. Multivariate empirical mode decomposition (MEMD)
is a time–frequency analysis method commonly used in signal processing and fault di-
agnosis [28]. The MEMD technique is used for multichannel signal fusion and detects
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automatic transmission system faults based on vibration monitoring [29]. Currently, ex-
treme learning machines (ELM), support vector machines (SVM), and general regression
neural networks (GRNN) are common machine learning classification methods. The SVM
was used in the fault diagnosis of high-voltage circuit devices, and the fault diagnosis
model exhibited good accuracy and efficiency [30]. An ELM was used in a three-group
rolling bearing fault diagnosis experiment, and could accurately identify the location of the
fault distribution [31].

The innovation of this study is the application of MEMD to hyperspectral data process-
ing to explore the formation of the intrinsic mode function (IMF) with spectral information.
More characteristic bands were mined from several IMFs and combined with machine
learning classification algorithms, ELM, SVM, and GRNN, to establish models to identify
the types of Cu and Pb pollution elements.

As one of the main crops in China and worldwide, maize has been affected by heavy
metal pollution in some areas [32]. During the growth cycle of corn, leaves are highly
sensitive to heavy metal stress [33]. The higher the residual amounts of heavy metals in
the leaves, the higher the content of heavy metals in the fruit. Leaves are the main organs
involved in plant photosynthesis. Therefore, it is necessary to detect and analyze heavy
metal content in maize leaves under different concentrations of Cu and Pb stress during
the plant growth stage [34].

Therefore, in this study, starting at the leaf scale and taking copper and lead pollution
elements as examples, the objectives of this study were to (1) acquire hyperspectral data of
corn leaves; (2) expand and highlight the spectral characteristics of spectrum processed
using MEMD; (3) fully exploit the spectral information of the vegetation with the successive
projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and itera-
tively retaining informative variables (IRIV) used to screen sensitive bands; (4) establish an
effective hyperspectral model for distinguishing copper and lead elements by combining
the machine learning classification algorithms: SVM, ELM, and GRNN.

This study provides a new idea and method for further exploring the monitoring and
identification of heavy metal contaminated elements in large-scale environmental soils
under vegetation coverage.

2. Materials and Methods
2.1. Experimental Design and Data Acquisition
2.1.1. Experimental Design

The experiment used pot cultivation to raise corn plants and was conducted at the
China University of Mining and Technology-Beijing. To avoid the effect of varietal changes
on the spectrum, all corn seeds were selected from “Minuo-8”. The selected seeds were
close in size and full of particles, and they were placed in a 150A digital display biochemi-
cal incubator for germination treatment in advance. Analytical grade CuSO4·5H2O and
Pb(NO3)2 with higher purity and fewer interfering impurities were used as heavy metal
Cu2+ and Pb2+ coercion reagents, respectively. During the growth of corn plants, the same
concentrations of NH4NO3, KH2PO4, and KNO3 nutrient solutions were added to make
the concentrations of N, P, and K in the soil 100, 30, and 150 mg/kg, respectively. In the
process of corn cultivation, to maintain sufficient soil moisture, watering occurred once a
day, 200 mL each time, with uninterrupted ventilation throughout the day, which was con-
ducive to the growth environment. In addition, the contents of N, P, and K; pH value, soil
moisture; soil particle size were the same in the experiment. Maize plants were maintained
in a normal environment to avoid external factors affecting the experiment. According to
GB15618-2018: Soil Environmental Quality Soil Contamination Risk Control Standards for
Agricultural Land (Trial) [35], seven copper and lead stress gradients were randomly set
in the cultivation experiment, and the stress concentrations were set at 50, 100, 150, 400,
600, 800, and 1000 µg/g, labeled as Cu(50), Cu(100), Cu(150), Cu(400), Cu(600), Cu(800),
Cu(1000), Pb(50), Pb(100), Pb(150), Pb(400), Pb(600), Pb(800), and Pb(1000). Three pots of
corn were planted for each stress concentration for a total of forty-two pots.
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2.1.2. Spectral Data Acquisition

The spectral data of corn leaves were measured indoors using an SVC HR-1024i
spectrometer produced by Spectrum Vista Corporation in the United States. In the process
of spectrum collection, the indoor light source was provided by a 50 W halogen lamp with
an illumination angle of 45◦ and fixed on a bracket. The field of view of the fiber optic probe
was set to 25◦, the probe was perpendicular to the blade surface, and the vertical distance
was less than 5 cm. To prevent the influence of other background factors on the corn leaf
spectra, the corn leaves were cut and measured on an experimental bench covered with a
black cloth. The spectrum of corn leaves was collected from 10:00–14:00 on 19 July 2017.
Because of the long collection time of the leaf spectrum, to eliminate the noise generated by
the spectrometer during the collection process, a standard whiteboard was used to calibrate
the spectrum before and after the collection of each maize leaf spectrum to ensure the
stability of the measurement. A standard Teflon whiteboard was used as the background
for whiteboard calibration. Because old leaves grow for a long time and the accumulation
of heavy metals is more serious, old leaves were selected for this study. Therefore, during
spectrum collection, the spectrum of old maize leaves under each stress concentration in
each parallel group was measured 3 times, and 9 sets of data were obtained for each stress
concentration, totaling 135 sets of spectral data.

2.1.3. Chemical Detection of Heavy Metal Content

Chemical analysis of the Cu and Pb content in the leaves was performed immediately
after leaf spectral data acquisition. In this study, a wet chemical method was used to
determine heavy metal content. The specific steps were as follows: (1) The corn leaves
were washed with distilled water three times and dried on clean absorbent paper. After the
moisture was absorbed, the leaves were dried in an oven at 80 ◦C for 24 h. (2) The leaves
were removed and cooled to a constant weight for later use. The dried corn leaves were
crushed using a high-speed pulverizer, produced by Jinhua, Zhejiang, China, and the larger
blade fragments were removed using a 120-mesh nylon sieve. (3) One gram of the sieved
sample particles was weighed and placed in a 150 mL high beaker, 20 mL of nitric acid was
added, and then it was covered with a watch glass and left overnight. Twenty microliters
of nitric acid was added to the high beaker, and then it was placed on an electric furnace
for heating at a low temperature until the sample dissolved and then cooled down slightly.
Then, 5 mL perchloric acid was added, the heating temperature gradually increased, and
then 5 mL nitric acid was added and then heated until the solution changed from reddish-
brown to colorless. The temperature was increased, and heating was continued until a
large amount of thick white smoke emerged. The white smoke was driven out, and light
yellow flocs appeared, after which the heating was stopped, and the solution cooled to
room temperature. Two microliters of nitric acid solution was added to warm slightly,
and then cooled to room temperature. The sample digestion solution was transferred to a
25 mL volumetric flask to a constant volume and shaken well. Then, the content of copper
ions and lead ions was measured with an inductively coupled plasma optical emission
spectrometer (ICP-OES). The analysis conditions of the ICP-OES: emission power was
1200 W; the cooling gas flow was 12 L/min; the auxiliary gas flow was 0.5 L/min; the
normal injection time was 15 s; the number of measurements was 3 times.

2.2. Theory and Method
2.2.1. Multivariate Empirical Mode Decomposition (MEMD)

Mode decomposition is a signal decomposition method that can obtain more stable time
series signals. Empirical mode decomposition (EMD) was proposed by Huang et al. [36], in
1998, for nonstationary signal processing. The disadvantage of EMD is that for multi-input
signals, each channel signal must be solved separately. Thus, the number and frequency
scale of the intrinsic mode function (IMF) decomposed by different channel signals are
different. To address this shortcoming, Rehman et al. [37] proposed a multivariate empirical
mode decomposition (MEMD) suitable for multichannel signal data analysis by improving
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the EMD. The MEMD can decompose multiple signals into the same number of IMFs. This
theory effectively guarantees simultaneous joint analysis of multi-input channel signals.
The MEMD solves the problems of modal mixing and scale misalignment of the layers in
the EMD transformation and is adaptive.

In this study, MEMD was applied to hyperspectral data processing, and the obtained
spectral data of corn leaves were processed by MEMD transformation to explore the
formation of MEMD processing technology with spectral information. The formula for
the MEMD transformation is briefly described here. The decomposition and construction
processes of MEMD have been described in detail in the literature [37]. The steps for the
MEMD calculation are as follows:

(1) Let the n-dimensional input sequence vector be v(t)T
i=1 = {v1(t), v2(t), . . . , vn(t)},

where vn(t) represents the input time series vector; T is the length of the input sequence.
The angle obtained by sampling the input sequence is θk =

{
θk

1, θk
2, . . . , θk

n−1

}
, where

θk
n−1 represents the angle of the sampling sequence, and the set of direction vectors is

xθk =
{

xk
1, xk

2, . . . , xk
n−1

}
. K indicates that there are K directional vectors on the sphere;

xk
n−1 represents the direction vector;

(2) The Hammersley sequence sampling method is used to uniformly sample the
(n − 1)-dimensional hypersphere to obtain K sets of direction vectors;

(3) Compute the set
{

pθk (t)
}K

k=1 of projections of multiple input sequences {v(t)}T
i=1

on the K-group direction vector xθk ;
(4) Calculate the instantaneous moments tθk

h corresponding to all extreme value points

in the projection set
{

pθk (t)
}K

k=1;

(5) Interpolation calculation tθk
h , v

(
tθk
h

)
to obtain the multivariate envelope curve

eθk (t)K
k=1;

(6) The mean value m(t) of the entire set of direction vector envelope curves is calculated:

m(t) =
1
k ∑K

k=1 eθt(t) (1)

(7) d(t) is obtained according to the equation d(t) = v(t) − m(t). If d(t) satisfies the
iteration termination condition, it is considered to be the current IMF component; otherwise,
it goes to step three to continue the decomposition.

The stopping criteria for multiple IMFs are as follows: (i) the difference between
the sum of the maximum and minimum points in the IMF sequence and the number of
zero-crossing points is 0 or 1; (ii) the mean value of the upper and lower envelopes of the
IMF sequence is zero at any time.

The MEMD is used to decompose the input spectral signal v(t) to obtain several
different IMFs. As shown in Equation (2):

v(t) =
M

∑
m−1

cm(t) + r(t) (2)

In Formula (2), cm(t) represents the mth IMF, and r(t) represents the decomposition residual.
Compared to the traditional EMD algorithm, the MEMD algorithm is more robust.

Several IMFs obtained using the MEMD transform can be used to effectively analyze the
characteristics of the input signal.

2.2.2. Successive Projections Algorithm (SPA)

The successive projection algorithm (SPA) is a forward-cycling method for wavelength
selection [38]. The principle of the algorithm is that in the first iteration, starting from
any wavelength, each cycle calculates the projection of that wavelength on all unselected
wavelengths, compares the size, selects the largest projection vector corresponding to the
variable to be selected, and finally iterates until the best number of wavelength variables is
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selected [39]. This method has been increasingly used in screening and extracting sensitive
variables and can effectively eliminate the problem of spectral information covariance.

2.2.3. Iteratively Retaining Informative Variables (IRIV)

Iteratively retaining informative variables (IRIV) is a new variable selection algorithm
proposed by Yun et al. [40]. It uses a new sampling algorithm to obtain a series of random
combinations of variables, conducts a modeling analysis on each of these combinations, and
observes the changes in the prediction error of interactive verification when a variable exists
and does not exist in the model. Based on this change, and according to the idea of model
population analysis (MPA), the variables are divided into four categories: interference-
informative variables (IIV), noninformative variables (NIV), weakly informative variables
(WIV), and strong-informative variables (SIV). Each variable is analyzed in turn, and
the final selected variables are all WIVs and SIVs to obtain the optimal characteristic
wavelength variable [41].

2.2.4. Competitive Adaptive Reweighted Sampling (CARS)

Competitive adaptive reweighted sampling (CARS) is a method for variable selection
and elimination that was established based on the survival of the fittest law of organisms
in nature [42]. CARS selects the wavelength points with a large absolute value of the
regression coefficient in the partial least squares (PLS) model through adaptive reweighted
sampling (ARS) technology, removes the wavelength points with small weights, and selects
N by cross-validation. The subset with the smallest RMSECV in the PLS subset model and
the variables contained in this subset are the optimal variable combinations. Using this
method, the optimal band combination can be selected effectively [43].

2.2.5. Extreme Learning Machines (ELM)

The extreme learning machine (ELM) algorithm was proposed by Huang et al. [44].
As a new, fast, and efficient machine learning algorithm, the algorithm is a supervised clas-
sification algorithm based on a single hidden layer feedforward neural network. Compared
with traditional machine learning algorithms, in the ELM algorithm, the weight parameters
between the input and implicit layers and the bias parameters of the implicit layer need
not be adjusted repeatedly by constant iterative computations. Therefore, the number of
calculations of the algorithm is reduced, the training time is shortened, and the calculation
efficiency is improved. Moreover, the algorithm has a better generalization performance
and can better meet the dual requirements of accuracy and computational speed of the
classification algorithm.

2.2.6. Support Vector Machines (SVM)

As an efficient machine learning algorithm, the support vector machine (SVM) algo-
rithm is often used in regression analysis, target classification, etc. [45]. The SVM focuses
on machine learning laws in the case of limited samples. The basic idea is to transform a
vector of n-dimensional inputs into a high-dimensional feature space. Then, the optimal
hyperplane is found in the high-dimensional eigenspace such that the invisible test pattern
prediction classification error is minimized, and the two types of data are separated as
accurately as possible.

2.2.7. General Regression Neural Network (GRNN)

The general regression neural network (GRNN) algorithm was proposed by American
scholar Donald F. Specht in 1991 [46]. The algorithm is a local approximation network
that is based on mathematical statistics. The algorithm is theoretically based on nonlinear
regression analysis and is a radial neural network with a high degree of parallelism at the
same time. In the training calculation, only a small number of weights and thresholds need
to be modified. Therefore, the GRNN algorithm is simple, highly accurate, and has a strong



Int. J. Environ. Res. Public Health 2022, 19, 7755 7 of 26

nonlinear convergence and operational speed. The GRNN algorithm has been widely used
for prediction, classification, and recognition.

2.2.8. Accuracy Evaluation Method

The accuracy of the model constructed by the classification method used in this study
was evaluated by accuracy (A), precision (P), recall (R), and a comprehensive evaluation
F-score [47]. The calculation formulas are Equations (3)–(6):

A =
NTP + NTN

NTP + NTN + NFP + NFN
(3)

P =
NTP

NTP + NFP
(4)

R =
NTP

NTP + NFN
(5)

F =
2P× R
P + R

(6)

where NTP represents the number of correctly classified positive examples; NFP represents
the number of misclassified positive examples; NTN represents the number of correctly clas-
sified negative examples; NFN represents the number of misclassified negative examples.

2.2.9. Workflow

The workflow of this study is illustrated in Figure 1. (1) Maize was planted in pots,
simulating maize growth experiments under heavy metal Cu and Pb stress, and maize
leaves were collected at the heading stage. (2) The spectral data of the maize leaves were
measured using an SVC HR-1024i spectrometer (Spectra Vista Corporation, Poughkeepsie,
NY, USA). The Cu and Pb ion contents in the leaves were determined using an inductively
coupled plasma optical emission spectrometer (ICP-OES, PerkinElmer, Waltham, MA,
USA). (3) The MEMD algorithm was introduced to transform the spectral data, while
the first derivative (FD) and second derivative (SD) transforms were used to preprocess
the spectral data. (4) Characteristic bands were selected using the SPA, CARS, and IRIV
algorithms. (5) Three machine learning algorithms, SVM, ELM, and GRNN, were used
to distinguish the categories of Cu and Pb. The best discriminative model was evaluated
using A, P, R, and F-score.
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3. Results and Discussion
3.1. Data Preprocessing and Analysis
3.1.1. Heavy Metal Content of Corn Leaves

The Cu2+ and Pb2+ content in corn leaves under different concentrations of Cu and Pb
stress are shown in Figure 2. As shown in Figure 2a, with an increase in the copper stress
concentration, the overall trend of Cu2+ content in maize leaves gradually increased. As
shown in Figure 2b, the Pb2+ content in maize leaves increased faster with increasing lead
stress concentration. This shows that the absorption and enrichment of Pb2+ in the leaves
were significant.
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Figure 2. Relationship between the Cu2+ and Pb2+ stress gradient in the soil and its content in corn
leaves: (a) changes in the Cu2+ content in maize leaves under Cu stress; (b) changes in the Pb2+

content in maize leaves under Pb stress.

3.1.2. Spectral Data Preprocessing and Analysis

The final spectrum data were obtained by removing outliers and averaging, as shown
in Figure 3. The spectral features of vegetation in the visible (VIS: 350–700 nm) portion of
the spectrum are typically driven by leaf pigments [48]. The increased reflectance of leaves
in the near and mid-infrared regions is because leaves absorb less light [49]. In conclusion,
the overall spectral curves of maize leaves under Cu and Pb stress showed basically the
same overall trend, with high similarity and no significant differences [50]. Therefore, the
types of Cu and Pb pollution elements could not be accurately identified by calculating
the average value of the spectral curve. It is well known that spectral transformations play
an important role in hyperspectral modeling, and the preprocessing of spectral data can
effectively improve the effectiveness of classification.
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Figure 3. The average spectral curve of corn leaves under different concentrations of Cu2+ and
Pb2+. Notes: Cu pollution represents the spectrum of leaves under copper stress, and Pb pollution
represents the spectrum of leaves under lead stress.

As is known, spectral transformation plays an important role in hyperspectral model-
ing, and preprocessing spectral data can effectively improve the classification effect [51]. In
this study, multivariate empirical mode decomposition (MEMD), first derivative (FD), and
second derivative (SD) technologies were used to preprocess spectral data. The spectral
data were decomposed by MEMD into ten IMF components and one trend component
(r). Each component contained rich spectral information, which was convenient for fully
mining the hidden spectral curve information. As shown in Figure 4, taking the MEMD
transformation of the leaf spectrum of Cu(100)-1 as an example, the results of the MEMD
transformation are shown. As the scale of MEMD increased, the spectral response gradually
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decreased. Among them, IMF1-IMF4 were noisy and did not exhibit good mode separa-
tion. The IMF8-IMF10 components tended to be smooth, the fluctuations were small, the
useful information contained gradually decreased, and the last component r was the trend
component. The IMF5-IMF7 components were well decomposed, smooth, and prominent,
further highlighting some inconspicuous characteristic peaks in the spectral curve. It is
difficult to obtain useful spectral information at both low and high decomposition scales.
Therefore, in this study, the IMF5-IMF7 components were selected for further research.
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Figure 5. First−order differential transformation of spectrum. 

Figure 4. Results of MEMD processing of old leaves of Cu(100) − 1.

The FD and SD transformations of the spectrum can solve the overlapping peaks of
the spectrum curve, enhance the difference between the spectra, and effectively enhance
and highlight subtle changes in the spectrum. The results of the FD and SD transformations
of the spectra are shown in Figures 5 and 6. For the meaning of the legend in the figure,
refer to the notes in Figure 3.
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The results of this study demonstrate that the MEMD transform can effectively high-
light characteristic spectra. A possible reason for this is that MEMD, as a time-scale
decomposition algorithm of signals, can decompose the spectrum in the time domain, and
related studies have also proved similar conclusions [52]. Relevant research also proves
that signal decomposition in the frequency and time domains can effectively highlight
spectral information and obtain spectral characteristics [53,54].

3.2. Characteristic Band Acquisition Using SPA, CARS, and IRIV

Determining the best characteristic band to monitor plant parameters from a large
amount of hyperspectral band data is the most critical step in spectroscopy [55]. To ef-
fectively reduce the dimensions of the spectral data and improve the performance of
the classification model, the successive projections algorithm (SPA), competitive adap-
tive reweighted sampling (CARS), and iteratively retaining informative variables (IRIV)
were used to screen the optimal characteristic bands [56]. The characteristic wavelength
bands were selected for the components IMF5, IMF6, and IMF7 obtained after MEMD
transformation and the spectrum after FD and SD transformation, and the obtained char-
acteristic wavelength distribution is shown in Figure 7. It can be seen from Figure 7a–c
that for the IMF components obtained by MEMD transformation, most of the characteristic
bands selected by SPA, CARS, and IRIV were concentrated in the VIS (380–780 nm) region.
The 670–760 nm region, where the reflectance changes rapidly, is called the “red edge”
of vegetation [57].

It can be seen from Figure 7d,e that after the FD and SD transformations of the
spectrum, only a small number of bands could be screened by SPA and CARS, whereas a
large number of characteristic bands may be extracted by IRIV. In the following classification
model, we used the spectral value of each feature band as the input data for the model.

3.3. Identification of Copper and Lead Elements

In this study, all leaf samples (n = 42) collected were randomly divided into three
datasets according to the stress gradient, and the number of samples in each dataset was
the same. Two sets of data were randomly selected as the calibration group (n = 28), and
the remaining data (n = 14) were used to verify the accuracy of the classification model.
After screening the optimal characteristic bands by SPA, CARS, and IRIV combined with
the ELM, SVM, and GRNN classification methods to construct a differentiation model, it
was used to distinguish the categories of heavy metals Cu and Pb. The final discrimination
results were evaluated using accuracy (A), precision (P), recall (R), and F-score.
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and filter the characteristic bands; (d) Perform FD transformation on the spectrum to filter charac-
teristic bands. (e) Perform SD transformation on the spectrum to filter characteristic bands. 
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MEMD-SPA-SVM, MEMD-CARS-SVM, and MEMD-IRIV-SVM models were established to 
distinguish between Cu and Pb types. Meanwhile, the common spectral preprocessing 
methods, FD and SD, were used instead of MEMD in the three previous models to construct 
the same models for comparative analysis. The results are presented in Figures 8–13. The 
abscissa represents the sample size, the ordinate represents the type of copper and lead 
elements, the squares represent the correct element category, and the circles represent the 
classification results of the copper and lead elements calculated by the model. When a circle 
falls into a square, this means that the classification was correct; otherwise, it means that the 

Figure 7. The position of the characteristic wavelengths of leaf spectrum. (a) Perform MEMD
transformation on the spectrum to obtain the IMF5 component, and filter the characteristic bands;
(b) Perform MEMD transformation on the spectrum to obtain the IMF6 component, and filter
the characteristic bands; (c) Perform MEMD transformation on the spectrum to obtain the IMF7
component, and filter the characteristic bands; (d) Perform FD transformation on the spectrum to filter
characteristic bands. (e) Perform SD transformation on the spectrum to filter characteristic bands.

3.3.1. SVM Classification and Discrimination Model Based on the Optimal Wavelength

The practical role of the characteristic bands selected by the three band screening
methods was evaluated in this step. Based on the above characteristic wavelengths, the
MEMD-SPA-SVM, MEMD-CARS-SVM, and MEMD-IRIV-SVM models were established
to distinguish between Cu and Pb types. Meanwhile, the common spectral preprocessing
methods, FD and SD, were used instead of MEMD in the three previous models to construct
the same models for comparative analysis. The results are presented in Figures 8–13. The
abscissa represents the sample size, the ordinate represents the type of copper and lead
elements, the squares represent the correct element category, and the circles represent the
classification results of the copper and lead elements calculated by the model. When a
circle falls into a square, this means that the classification was correct; otherwise, it means
that the classification was wrong. The yellow band indicates the corresponding spectral
transformation. Line charts show the accuracy evaluations of the various models.
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Figure 11. Evaluation of the discrimination accuracy of Cu and Pb by CARS-SVM. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 
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(1) MEMD-SPA-SVM

The spectral data were preprocessed by MEMD transformation, the characteristic
bands were screened by SPA, and the model established by combining with SVM had a
better ability to distinguish between the Cu and Pb categories (Figure 8). The accuracy
(R) and F-score of the modeling and validation sets were both greater than 0.8, and the
precision (P) and recall (R) of the Cu and Pb categories were approximately 0.8 (Figure 9).
Compared with the model established by FD and SD transformation, when distinguishing
between Cu and Pb species, although the accuracy of the calibration group was higher, the
accuracy of the validation group was less than 0.8, and the differentiation effect was poor.

(2) MEMD-CARS-SVM

The spectral data were preprocessed by MEMD transformation, the characteristic
bands were screened by CARS, and the model established by combining with SVM had
a better ability to distinguish between the Cu and Pb categories (Figure 10). For both the
modeling set and the validation set, the copper and lead elements could fall into the exact
category. The accuracy (R) and F-score of the modeling and validation sets were both
greater than 0.8, and the precision (P) and recall (R) of the Cu and Pb categories were
also approximately 0.8 (Figure 11). Compared with the model established by FD and SD
transformation, when distinguishing between Cu and Pb species, although the accuracy of
the calibration group was higher, the accuracy of the validation group was less than 0.8, and
the differentiation effect was poor. Differential transformation of the spectrum could not
distinguish the categories of copper and lead elements well.

(3) MEMD-IRIV-SVM

In contrast, in the model established by IRIV screening of the characteristic bands, only
the IMF7 component had a better effect in distinguishing Cu and Pb species (Figure 12).
The accuracy (R) and F-score of the modeling and validation sets were both greater than 0.8,
and the precision (P) and recall (R) of the Cu and Pb categories were also approximately 0.8
(Figure 13). Compared with the model established by FD and SD transformation, although
the accuracy of the calibration group was higher, the accuracy of the validation group was
also less than 0.8, and the differentiation effect was poor.

This may mean that the feature bands extracted after FD and SD transformations
were suitable for modeling samples but not for verification samples, and they could not
accurately distinguish the categories of Cu and Pb. Therefore, the MEMD-SPA-SVM and
MEMD-CARS-SVM models had better accuracy and advantages in distinguishing Cu and
Pb species. Different spectral data preprocessing methods result in different classification
accuracies. Compared to the commonly used FD and SD spectral preprocessing methods,
the model established from the data processed by the MEMD transform provided better
classification and recognition results. This improvement was due to the advantages of
MEMD. The sensitive bands extracted after MEMD transformation of the spectrum not only
revealed the correlation between the leaf spectrum and the intrinsic mode function (IMF)
but also revealed subtle changes in the leaf spectrum under heavy metal stress. The MEMD
transformation of the spectrum was combined with SPA, CARS, and IRIV to improve the
performance of the SVM method in distinguishing Cu and Pb species. This may be because
the IMF5-7 components selected by the MEMD transform removed interference such as
baseline shift and artificial noise.

3.3.2. ELM Classification and Discrimination Model Based on the Optimal Wavelength

In this step, three models were established based on the aforementioned characteristic
wavelengths to distinguish Cu and Pb types: the MEMD-SPA-ELM, MEMD-CARS-ELM,
and MEMD-IRIV-ELM models. The FD and SD methods were used instead of the MEMD
in the three previous models to construct the same models for comparative analysis. The
results of this distinction are shown in Figures 14–19, and the coordinates in the figure are
shown in Section 3.3.1.
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of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score of 
the model. 
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Figure 17. Evaluation of the discrimination accuracy of Cu and Pb by CARS-ELM. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 

(3) MEMD-IRIV-ELM 
After the MEMD transformation of the spectrum, IRIV were used to screen the char-

acteristic bands, and the model established by combining with ELM could distinguish Cu 
and Pb elements (Figure 18). The accuracy (A) and F-score of its calibration group and val-
idation group were both greater than 0.8 (Figure 19). The classification precision (P) and 
recall (R) of Cu and Pb were also above 0.8, which is considered a good result. It is worth 
noting that for the model established by FD and SD transformation, when distinguishing 
Cu and Pb species, although the calibration group accuracy was higher, the validation 
group accuracy was less than 0.8; therefore, it was not successful enough to distinguish 
Cu and Pb species. 

Figure 16. Discrimination results of Cu and Pb by CARS-ELM.
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Figure 19. Evaluation of the discrimination accuracy of Cu and Pb by IRIV-ELM. (a) The accuracy 
of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score of 
the model. 

Therefore, the MEMD-SPA-ELM, MEMD-CARS-ELM, and MEMD-IRIV-ELM mod-
els had better advantages in distinguishing Cu and Pb species. This also shows that the 
components obtained after spectral preprocessing with MEMD can screen out bands that 
are sensitive to heavy metals, and they had the best overall performance in the differenti-
ation of Cu and Pb species. For FD and SD transforms, it was not as good, and some could 
filter out only a few characteristic bands (Figure 7d,e). The lower performance of the re-
sulting model may have been caused by differences in the characteristic band data. 

3.3.3. GRNN Classification and Discrimination Model Based on the Optimal Wavelength 
In this step, MEMD-SPA-GRNN, MEMD-CARS-GRNN, and MEMD-IRIV-GRNN 

models were established based on the above characteristic wavelengths to distinguish Cu 
and Pb types. Figures 20–25 show the results of two-dimensional visual distinction and 
recognition of the Cu and Pb categories. The meanings of the symbols in the figures are 
presented in Section 3.3.1. 
(1) MEMD-SPA-GRNN 

After MEMD transformation of the spectrum, SPA was used to screen the character-
istic bands, and the model that was established with GRNN could not distinguish Cu and 
Pb categories well (Figure 20). The accuracy (A) and F-score were low, both less than 0.8 
(Figure 21). Moreover, many of the precision and recall rates for the identification of Cu 
and Pb species in the modeling and calibration group were lower than 0.6 (Figure 21), 
which we did not want to observe. It can be seen that the use of the GRNN algorithm to 
distinguish Cu and Pb categories was unsuccessful. However, compared with the model 
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the model. 
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Figure 19. Evaluation of the discrimination accuracy of Cu and Pb by IRIV-ELM. (a) The accuracy
of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score of
the model.

(1) MEMD-SPA-ELM

After the MEMD transformation of the spectrum, SPA was used to screen the charac-
teristic bands, and the model established by combining with ELM could distinguish Cu and
Pb elements (Figure 14). The accuracy (A) and F-score of its calibration group and validation
group were both greater than 0.8 (Figure 15). The classification precision (P) and recall (R)
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of Cu and Pb were also above 0.8, which is considered a good result. It is worth noting that
for the model established by FD and SD transformations, when distinguishing Cu and Pb
species, although the calibration group accuracy was higher, the validation group accuracy
was less than 0.8; therefore, it was not successful enough to distinguish Cu and Pb species.

(2) MEMD-CARS-ELM

After the MEMD transformation of the spectrum, CARS was used to screen the char-
acteristic bands, and the model established by combining with ELM could also distinguish
Cu and Pb elements well (Figure 16). Almost all copper and lead elements were accurately
classified. The accuracy (A) and F-score of its calibration group and validation group were
both greater than 0.8 (Figure 17). The classification precision (P) and recall (R) of Cu and
Pb were also above 0.8, which is considered a good result. It is worth noting that for the
model established by FD and SD transformation, when distinguishing Cu and Pb species,
although the calibration group accuracy was higher, the validation group accuracy was
less than 0.8; therefore, it was not successful enough to distinguish Cu and Pb species.

(3) MEMD-IRIV-ELM

After the MEMD transformation of the spectrum, IRIV were used to screen the charac-
teristic bands, and the model established by combining with ELM could distinguish Cu and
Pb elements (Figure 18). The accuracy (A) and F-score of its calibration group and validation
group were both greater than 0.8 (Figure 19). The classification precision (P) and recall (R)
of Cu and Pb were also above 0.8, which is considered a good result. It is worth noting that
for the model established by FD and SD transformation, when distinguishing Cu and Pb
species, although the calibration group accuracy was higher, the validation group accuracy
was less than 0.8; therefore, it was not successful enough to distinguish Cu and Pb species.

Therefore, the MEMD-SPA-ELM, MEMD-CARS-ELM, and MEMD-IRIV-ELM models
had better advantages in distinguishing Cu and Pb species. This also shows that the
components obtained after spectral preprocessing with MEMD can screen out bands that are
sensitive to heavy metals, and they had the best overall performance in the differentiation
of Cu and Pb species. For FD and SD transforms, it was not as good, and some could filter
out only a few characteristic bands (Figure 7d,e). The lower performance of the resulting
model may have been caused by differences in the characteristic band data.

3.3.3. GRNN Classification and Discrimination Model Based on the Optimal Wavelength

In this step, MEMD-SPA-GRNN, MEMD-CARS-GRNN, and MEMD-IRIV-GRNN
models were established based on the above characteristic wavelengths to distinguish Cu
and Pb types. Figures 20–25 show the results of two-dimensional visual distinction and
recognition of the Cu and Pb categories. The meanings of the symbols in the figures are
presented in Section 3.3.1.
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Figure 23. Evaluation of the discrimination accuracy of Cu and Pb by CARS-GRNN. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 
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Figure 23. Evaluation of the discrimination accuracy of Cu and Pb by CARS-GRNN. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 
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Figure 25. Evaluation of the discrimination accuracy of Cu and Pb by IRIV-GRNN. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 
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ing Cu and Pb species was poor and not as good as that of the SVM and ELM. 
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For the GRNN algorithm, there was no such good effect, and the types of Cu and Pb could 
not be accurately distinguished. Therefore, the performance of the GRNN algorithm was 
poor, which suggests that further spectral preprocessing may be required to achieve high 
classification accuracy. At the same time, the same classification algorithm based on FD 
and SD spectral transformation could not accurately distinguish the categories of Cu and 
Pb, or the classification and recognition effect of the calibration group was good, but the 
classification effect of the validation group was poor. There are two possible reasons for 
this. On the one hand, although the FD and SD transformations of the spectrum enhanced 
the correlation and highlighted the spectral features of the leaves, other details were ig-
nored [58]. However, it also introduced noise, which reduced the signal-to-noise ratio [59]. 
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Figure 25. Evaluation of the discrimination accuracy of Cu and Pb by IRIV-GRNN. (a) The accu-
racy of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score 
of the model. 
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Figure 25. Evaluation of the discrimination accuracy of Cu and Pb by IRIV-GRNN. (a) The accuracy
of the model; (b) The precision and recall of the model; (c) Comprehensive evaluation F-score of
the model.

(1) MEMD-SPA-GRNN

After MEMD transformation of the spectrum, SPA was used to screen the characteristic
bands, and the model that was established with GRNN could not distinguish Cu and Pb
categories well (Figure 20). The accuracy (A) and F-score were low, both less than 0.8
(Figure 21). Moreover, many of the precision and recall rates for the identification of Cu and
Pb species in the modeling and calibration group were lower than 0.6 (Figure 21), which we
did not want to observe. It can be seen that the use of the GRNN algorithm to distinguish
Cu and Pb categories was unsuccessful. However, compared with the model established by
FD and SD transformations, the Cu and Pb species could not be accurately distinguished.

(2) MEMD-CARS-GRNN

After MEMD transformation of the spectrum, CARS was used to screen the charac-
teristic bands, and the model that was established with GRNN could not distinguish Cu
and Pb categories well (Figure 22). The accuracy (A) and F-score were low, both less than
0.8 (Figure 23). Moreover, many of the precision and recall rates for the identification of
Cu and Pb species in the modeling and calibration group were lower than 0.6 (Figure 23),
which we did not want to observe. It can be seen that the use of the GRNN algorithm to
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distinguish Cu and Pb categories was unsuccessful. However, compared with the model
established by FD and SD transformations, the Cu and Pb species could not be accurately
distinguished.

(3) MEMD-IRIV-GRNN

After MEMD transformation of the spectrum, IRIV were used to screen the character-
istic bands, and the model that was established with GRNN could not distinguish Cu and
Pb categories well (Figure 24). The accuracy (A) and F-score were low, both less than 0.8
(Figure 25). Moreover, many of the precision and recall rates for the identification of Cu and
Pb species in the modeling and calibration group were lower than 0.6 (Figure 25), which we
did not want to observe. It can be seen that the use of the GRNN algorithm to distinguish
Cu and Pb categories was unsuccessful. However, compared with the model established by
FD and SD transformations, the Cu and Pb species could not be accurately distinguished.

It must be noted that the overall performance of the GRNN algorithm in distinguishing
Cu and Pb species was poor and not as good as that of the SVM and ELM.

3.3.4. Performance of the Method

The performances of the SVM and ELM algorithms were very similar for the distinc-
tion of Cu and Pb element types. The spectra were decomposed using MEMD, and the
characteristic bands were screened using SPA, CARS, and IRIV. Finally, the categories of
Cu and Pb were effectively identified and distinguished by the SVM and ELM algorithms.
For the GRNN algorithm, there was no such good effect, and the types of Cu and Pb could
not be accurately distinguished. Therefore, the performance of the GRNN algorithm was
poor, which suggests that further spectral preprocessing may be required to achieve high
classification accuracy. At the same time, the same classification algorithm based on FD
and SD spectral transformation could not accurately distinguish the categories of Cu and
Pb, or the classification and recognition effect of the calibration group was good, but the
classification effect of the validation group was poor. There are two possible reasons for
this. On the one hand, although the FD and SD transformations of the spectrum enhanced
the correlation and highlighted the spectral features of the leaves, other details were ig-
nored [58]. However, it also introduced noise, which reduced the signal-to-noise ratio [59].
This further proves the superiority of the model based on MEMD spectral transformation
for distinguishing Cu and Pb element types.

3.4. Discussion

This study also provides a method that can visually distinguish and identify types of
Cu and Pb elements, which further proves the model’s performance in determining Cu and
Pb. In the above analysis, copper and lead pollution elements were used as representatives,
combined with the machine learning algorithms, SVM, ELM, and GRNN, to build a model
to distinguish the types of copper and lead elements. We drew a two-dimensional identifica-
tion map to distinguish the types of Cu and Pb (Figures 8, 10, 12, 14, 16, 18, 20, 22 and 24).
There were specific differences in the spectral responses of vegetation to different heavy
metal stresses. However, this difference was sometimes very weak, which also lays the
foundation of the model for effectively distinguishing and identifying copper and lead [60].
To fully exploit the weak differences in the leaf spectrum under heavy metal stress, signal
spectrum analysis is considered to be a reliable method, which is also the reason for the
introduction of MEMD transformation in this study [61].

The spectrum was decomposed into several IMF components by MEMD transforma-
tion, and components with better modal separation and feature retention were selected
for research. Combined with the corresponding heavy metal content, SPA, CARS, and
IRIV were used to screen the bands sensitive to the heavy metal copper and lead pollution.
Finally, SVM, ELM, and GRNN were combined to build a model to distinguish the types
of Cu and Pb. It can be seen from the results that by using the MEMD-SPA-SVM, MEMD-
CARS-SVM, MEMD-SPA-ELM, MEMD-CARS-ELM, and MEMD-IRIV-ELM models, they
could intuitively and effectively distinguish the spectra of maize leaves under copper and
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lead stress. The results obtained were reasonable. These satisfactory results indicate that it
is feasible to use leaf spectra to distinguish the Cu and Pb elemental classes. Compared with
other inversion models, these models have more advantages and no explicit requirements
or restrictions on the data of the calibration and validation groups [62]. Among these three
classification methods, SVM and ELM outperformed GRNN, partly because SVM and
ELM are good at classification recognition of spectral data. In addition, compared with
the FD and SD transformations of the spectrum, the components obtained after MEMD of
the range can screen out more sensitive bands (Figure 7). This is mainly because MEMD
decomposes the spectrum at the time and frequency scales, which can continuously de-
compose the spectrum to make it correspond to the original spectral data; thus, subtle
spectral information can be more effectively identified from the original spectrum [63,64].
The MEMD spectral preprocessing method achieved satisfactory accuracy, except that the
accuracy and F-score of the GRNN classification method in the identification of Cu and Pb
was less than 0.8, and the classification and identification accuracy of SVM and ELM were
both above 0.8. Therefore, when distinguishing the element types of Cu and Pb, the MEMD
spectral transformation and combined SVM and ELM algorithms should be given prior-
ity. Screening the characteristic bands from the components obtained by MEMD spectral
transformation can be used as an indicator to quickly distinguish the Cu and Pb element
types, which helps to apply hyperspectral remote sensing technology to the detection and
identification of large-scale environmental heavy metal pollution elements. Compared with
traditional detection methods, the hyperspectral model proposed in this study had higher
accuracy in distinguishing Cu and Pb pollution categories. Simultaneously, hyperspectral
technology has a faster detection speed, lower cost, and avoids secondary environmental
pollution. It is suitable for scientific research and production practices under certain precise
conditions. Owing to the limitations of spectral data, increasing spectral diversity should
be considered in future studies to identify various heavy metal pollution element species.

This study also demonstrated that spectral transformation for spectral data processing
combined with machine learning is the most suitable method for distinguishing heavy
metal types. At the same time, this conclusion also lays a foundation for identifying and
monitoring heavy metal pollution element types in large-scale ecological environments in
the wild. This study further revealed that maize leaves are more sensitive to heavy metal
stress and can effectively monitor environmental heavy metal pollution [65]. The ultimate
goal of this study is to move from indoor experiments to field monitoring and combine
them with hyperspectral remote sensing images to achieve extensive area monitoring of
environmental heavy metal pollution.

4. Conclusions

In general, we explored the identification of Cu and Pb element types. This is an
effective method to detect and distinguish the types of Cu and Pb elements by using the
spectral changes in the maize leaves under the stress of the heavy metals Cu and Pb. In
this study, MEMD was introduced into hyperspectral data processing, and fundamental
transformations of FD, SD, and MEMD were performed on the spectrum. SPA, CARS,
and IRIV were used to filter the characteristic bands, reduce redundant data, and identify
crucial spectral information. Finally, combined with SVM, ELM, and GRNN, models were
built to distinguish the types of Cu and Pb. The results of this study demonstrated the
following:

(1) Under Cu and Pb stress, the content of heavy metals in maize leaves increased with
an increase in stress concentration, showing a significant positive correlation;

(2) MEMD of the spectrum can fully tap the weak information hidden in the spectral data;
(3) Three model precision indicators (i.e., accuracy (A), precision (P), recall (R)) and the

total evaluation value F-score were used to evaluate model accuracy. The results showed
that the MEMD-SPA-SVM, MEMD-CARS-SVM, MEMD-SPA-ELM, MEMD-CARS-ELM,
and MEMD-IRIV-ELM models were the most accurate in distinguishing Cu and Pb species.
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These values were above 0.8, indicating a promising model. The MEMD-IRIV-SVM model
was more suitable for determining Cu and Pb species;

In conclusion, the research results fully demonstrate the potential of MEMD transfor-
mation combined with the machine learning algorithms, SVM and ELM, in identifying the
heavy metals copper and lead. Hyperspectral technology can rapidly and nondestructively
detect and distinguish heavy metal pollution categories. This study provides a new method
for identifying and differentiating heavy metal pollution elements in soil under vegetation
cover in the wild.

This study was a preliminary exploration of the use of hyperspectral remote sensing
technology to identify the types of heavy metal elements in maize leaves. Although
this study achieved encouraging results in classifying heavy metal element species, the
proposed method has limitations and requires improvement in future studies. This study
was conducted only in an indoor pot experiment, and the variables were strictly controlled.
In future research, in terms of experimental design, we will move from laboratory research
to field planting, monitor the situation of heavy metal pollution during crop growth, and
further explore the universality and stability of the proposed model.
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