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Abstract: Several epidemiologic and toxicological studies have commonly viewed ambient fine
particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm,
as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory
system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system,
reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of
mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the
most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally
from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease,
cancers, preterm births, and other illnesses. There has been increased worry in recent years about
the negative impacts of this worldwide danger. The causal associations between PM2.5 and human
health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been
described in this review.

Keywords: air pollution; particulate matter; PM2.5; health effects; COVID; H1N1; SARS

1. Introduction

Particulate matter (PM) is made up of solid and liquid particles that are discharged
directly into the air as a result of diesel use, road and agricultural dust, and industrial
activity. The morphological, chemical, physical, and thermodynamic features of PM are
diverse. Because of its size, density, and thermal conditions, as well as wind speed, PM
remains suspended in the air, polluting it [1,2]. The WHO reported that around 7 million
people die every year due to exposure to polluted air, and that ambient air pollution,
especially in low/middle-income countries, caused 4.2 million deaths in 2016 (World
Health Organization, 2016). Air pollution is caused by a mixture of substances such as
gases, particles, and biological components in the earth’s atmosphere. The toxic effects
caused by particle pollution on humans are dependent on their size, superficial area, and
chemical composition [3]. The adverse health effects of gaseous pollutants have been
extensively studied in the past few decades; however, despite differences in air pollutants
and variations in local atmospheres, the basic features of acute and long-term health effects
caused by such pollutants are yet to be explored [4]. Epidemiological studies collecting data
on concentrations of the main gas pollutants, exposure, and dose for the exposed population
have been conducted to determine the specific causes of observed health effects [5]. Air
pollution is the single largest environmental causative agent of various diseases. The
health effects induced by exposure to air pollution mainly manifest in elderly people with
pre-existing cardiopulmonary diseases [6], cerebrovascular diseases [7], neurodegenerative
diseases [8], bronchitis [9], emphysema [10], increased irritation of the eye and respiratory
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system [11], asthma attacks [12], respiratory infections [13], and so on. Air pollution
has also been associated with adverse pregnancy outcomes such as preeclampsia and
hypertensive disorders [14,15]. PM can be classified by its aerodynamic diameter size as
PM10 (particles ≤ 10 µm in diameter); PM2.5 (particles ≤ 2.5 µm in diameter), also called
fine particles; and PM0.1 (particles ≤ 0.1 µm in diameter), called ultrafine particles, which
have different health effects, as the particles are strongly linked to particle size, which
can deposit in the lung and can navigate through bronchioles and escape lung defense
mechanisms [16]. These particles are extensively found in the atmosphere and are released
by various sources such as dust storms, forest fires, and volcanoes, as well as human
activities, including transportation, fuel burning, and industrial processes [17]. The Global
Burden of Disease (GBD) study estimated that 5 million deaths are caused by PM2.5 annually.
PM2.5 is characterized by fine particles that have a large surface area. Due to their size, they
can accumulate more compared to PM10, propagate long distances, become stagnant in the
atmosphere, stay in the air longer, and travel farther [18]. PM2.5 is composed of primary
particles that are emitted directly into the atmosphere and secondary particles produced
by chemical reactions between precursor gases [19,20]. Primary PM2.5 particles which are
directly emitted into the atmosphere can originate from both natural sources, such as dust
storms and forest fires, and anthropogenic sources, such as fossil fuel combustion, cigarette
smoke, and biomass burning. Secondary PM2.5 particles are generated by chemical reactions
between PM from anthropogenic and biogenic sources [21,22]. The exact mechanisms
associated with the impact of PM2.5 on the human body remain unclear. It is hypothesized
that inhaled PM accumulates in the lungs and activates inflammatory cells, leading to the
release of mediators and the stimulation of alveolar receptors, which causes an imbalance
in the autonomic nervous system (ANS) and neuroendocrine pathway [23–25]. The other
mechanism is translocation of PM via the pulmonary epithelium. The primary pollutants
in fine PM enter the blood circulation and affect the whole organism. However, when there
is inflammation in the lungs due to PM2.5, the inflammation leads to oxidative stress and
causes vascular dysfunction [26,27]. Air pollutant particles, such as PM2.5, have a negative
impact on the productivity of agricultural workers, land miners, and sewer employees due
to the particles generated during their work [27]. Mineral dusts, such as those containing
free crystalline silica (e.g., as quartz); organic and vegetable dusts, such as wheat, wood,
cotton, and tea dust; and pollens may be found in the workplace. Dust particles or additives
can enter the airway and impair lung function [28,29]. In this review, we discuss the sources
of PM2.5 and its health effects on humans based on epidemiological, experimental, and
molecular studies.

2. Literature Review

A literature search was carried out in the PubMed database (National Library of
Medicine) and ScienceDirect for the literature published between January 2010–2022 using
the following keywords: particulate matter 2.5, PM2.5, PM2.5 health effects, PM2.5 and
respiratory diseases, PM2.5 and cardiovascular diseases, PM2.5 and cancer, PM2.5 and
cardiovascular diseases, PM2.5 and SARS, H1N1.

We only included studies that involve PM2.5 and health effects, epidemiological
studies that involve health impact of exposure of PM2.5, studies expressing quantitative
exposure-response relationship between PM2.5 and health outcomes; health outcomes were
hospital utilization due to PM2.5 exposure causes such as asthma, COPD, CVD, lung cancer,
neurodegenerative diseases and role of PM2.5 in SARS and H1N1 virus. The database
identified literature was then preselected by following inclusion and exclusion criteria. [A]
Inclusion criteria: (1. Duplicate check, 2. Studies involving health outcomes, 3. Studies
done on cell lines, group of population involving mortality and morbidity, 4. Hospital
outcomes and hospital utilization, 5. Study population involving healthy and non-healthy
individuals.) [B] Exclusion criteria: (1. Unrelated studies such as other pollutants, 2. Studies
that doesn’t involve health outcomes, 3. Studies that are not published in English, 4. Studies
that lacked sufficient information, 5. Studies that were not recently published. An author
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screened the literature based on the inclusion and exclusion criteria its inclusion in the
manuscript. The systematic screening steps are summarized (Figure 1).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 3 of 23 
 

 

individuals.) [B] Exclusion criteria: (1. Unrelated studies such as other pollutants, 2. Stud-
ies that doesn’t involve health outcomes, 3. Studies that are not published in English, 4. 
Studies that lacked sufficient information, 5. Studies that were not recently published. An 
author screened the literature based on the inclusion and exclusion criteria its inclusion in 
the manuscript. The systematic screening steps are summarized (Figure 1).  

 
Figure 1. Systematic screening process of literature review. 

3. Sources of PM2.5 
PM2.5 sources and concentrations may vary significantly across locations due to dis-

tinct climatic conditions, emission sources, and dispersion patterns. The sources can be 
either natural or anthropogenic [30]. Depending on the location, different sources may 
contribute to PM2.5 levels, such as vehicle traffic, dust resuspension, biomass burning, 
power plants, sea salt, industrial emissions, ship emissions, and aircraft emissions. Un-
derstanding the sources and effects of high levels of PM2.5 is essential to developing effec-
tive strategies to control these levels and protect human health [31]. Several source appor-
tionment methods, such as (1) methods based on the evaluation of monitoring data; (2) 
methods based on emission inventories and dispersion models to simulate aerosol emis-
sion, formation, transport, and deposition; and (3) methods based on the statistical evalu-

Figure 1. Systematic screening process of literature review.

3. Sources of PM2.5

PM2.5 sources and concentrations may vary significantly across locations due to dis-
tinct climatic conditions, emission sources, and dispersion patterns. The sources can be
either natural or anthropogenic [30]. Depending on the location, different sources may con-
tribute to PM2.5 levels, such as vehicle traffic, dust resuspension, biomass burning, power
plants, sea salt, industrial emissions, ship emissions, and aircraft emissions. Understanding
the sources and effects of high levels of PM2.5 is essential to developing effective strategies
to control these levels and protect human health [31]. Several source apportionment meth-
ods, such as (1) methods based on the evaluation of monitoring data; (2) methods based on
emission inventories and dispersion models to simulate aerosol emission, formation, trans-
port, and deposition; and (3) methods based on the statistical evaluation of PM chemical
data acquired at receptor sites (receptor models), have been proposed to identify sources of
PM2.5 and their contributions to air quality [32,33]. PM2.5 is mainly composed of various
undetermined fractions. It is primarily produced by combustion and emissions of fuel-
powered vehicles and the wear and tear of auto parts [34]. The major components in PM2.5
are black carbon [35], polycyclic aromatic hydrocarbons [36,37], aryl hydrocarbons [38],
volatile organic hydrocarbons [39], heavy metals [40], organic compounds [41], miner-
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als [42], inorganic ions [43], and biological materials [44], which collectively make up at
least 79–85% of the total mass [45]. PM can be emitted directly from the main sources
or indirectly through the conversion of gaseous emissions in the atmosphere. Studies on
the elemental composition of PM2.5 have revealed elevated levels of elements, including
Al, As, Br, Ca, Cl, Cr, Fr, K, Mg, Mn, Na, Pb, Ti, and Zn, as well as sulfate, nitrate, and
ammonium ions [46]. Various sources of PM2.5 and their chemical components have been
listed (Table 1). Other potential sources of PM2.5 include human activities such as resi-
dential cooking, smoking, social and economic development, meteorological factors, and
secondary generation of air pollution.

Table 1. Various source of PM2.5 and their chemical components.

Source Components

Natural

Biomass Potassium (K)

Sea spray aerosols Sodium (Na)

Coal burning Aluminium (Al), Selenium (Se), Cobalt (Co), Arsenic (As)

Soil and road dust Aluminium (Al), Silicon (Si), Calcium (Ca)

Volcanic dust particles and wild land fire particles Potassium (K), Zinc (Zn), Lead (Pb)

Anthropogenic

Diesel, petrol and coal combustion Elemental carbon (EC), Sulfates (SO4)

Oil burning Vanadium (V), Nickel (Ni), Manganese (Mn), Iron (Fe))
Organic carbon (OC)

Heavy industry—high temperature combustion Iron (Fe), Zinc (Zn), Copper (Cu), Lead (Pb), Nitrates (NO3)

Fertilizer and animal husbandry Ammonium (NH4)

Volatile organic compound (VOC) emissions Benzene, Ethylene glycol, Formaldehyde, Methylene chloride,
Tetrachloroethylene, Toluene, Xylene, and 1,3-Butadiene

Secondary pollutants are generated when primary pollutants react with each other.
Examples of secondary pollutants include ozone (O3) and secondary organic carbon (SOC),
O3, which is formed when hydrocarbons (HC) and nitrogen oxides (NOx) react with each
other in the presence of sunlight. SOC is generated by photochemical reactions of gaseous
precursors from primary organic carbon (POC) [47].

4. Health Complications

The GBD study estimated the attributable levels of PM2.5 in 195 countries and territo-
ries worldwide. Ambient PM2.5 and household PM2.5 ranked among the top ten leading
global risk factors for disease [48]. Exposure to environmental PM2.5 has been associated
with an increase in the incidence and mortality of many diseases. High risk of PM2.5-
related death from stroke, ischemic heart disease, chronic obstructive pulmonary disease
(COPD), lung cancer, and other diseases around the world has been demonstrated in
several studies [49–54]. The lungs, the initial sites of PM2.5 deposition in the airway, are
among the primary targets of PM2.5-induced toxicity, which leads to airway inflammation,
impairing normal immune responses of the lungs and making them susceptible to various
respiratory infections [55]. It’s been hypothesized that PM2.5 impairs the normal immune
responses by various mechanisms. Firstly, PM2.5 can damage the bronchial mucociliary
system, reducing bacterial clearance [56]. Secondly, PM2.5 and PM2.5-induced inflammatory
cytokine net disruption may cause the death of lung epithelial cells and fibroblasts, as well
as the inhibition of gap junctional intercellular communication between these cells, increas-
ing epithelial barrier permeability and impairing their function as physical barriers for
pulmonary innate immunity [57]. Thirdly, alveolar macrophages are essential inflammation
regulators and are required for antibacterial activity in the lower airway [58]. Recently,
increasing evidence has shown that PM2.5 not only inhibits alveolar macrophage phagocy-
tosis by disrupting the normal physical and immunological function of lung surfactants,
such as di-palmitoyl-phosphatidylcholine and amino acids related to opsonin proteins [59],
but they also impair the response of natural killer (NK) cells [60] and inhibit antibacterial
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capabilities through transferrin-mediated Fe3+ transport [61], disrupting the expression
of toll-like receptors (TLRs) and microtubule architecture [62,63]. Recently, increasing
evidence has shown that PM2.5 not only inhibits alveolar macrophages phagocytosis by
disrupting the normal physical and immunological function of lung surfactants, such as
di-palmitoyl-phosphatidylcholine and amino acids related to opsonin proteins [59], which
generally act as opsonins and enhance alveolar macrophages phagocytosis to bacteria,
and impairing the response of natural killer (NK) cells [60], which also enhance alveolar
macrophages phagocytosis, but also directly inhibiting alveolar macrophages antibacterial
capabilities through a variety of methods. These methods include influencing transferrin-
mediated Fe3+ transport to alveolar macrophages [61], affecting the expression of toll-like
receptors (TLRs); disrupting microtubule architecture; and decreasing their phagocytic
activities [62,63]. All of these would lead to reduced pulmonary immunity and facilitate
infectious illnesses. Recently, chronic exposure to PM2.5 was found to be linked with the
development of diabetes mellitus (DM), inducing multiple abnormalities associated with
the development of type 2 diabetes mellitus (T2DM), insulin resistance (IR), adipose in-
flammation, and hepatic endoplasmic reticulum (ER) stress. Alterations in ER stress and
inflammatory pathways have been proposed to be the mechanisms by which PM2.5 induces
IR and T2DM [64]. Furthermore, PM2.5 exposure not only leads to subclinical changes in
cardiovascular function, but also impairs the function of the cardiac autonomic nervous
system (ANS), leading to a decline in heart rate variability, which is inevitably related to
cardiovascular morbidity and mortality [65]. Epidemiological evidence suggests that PM2.5
is a risk factor for chronic kidney disease (CKD). Moreover, PM2.5 leads to a decrease in
glomerular filtration rate (GFR) and is related to the prevalence and incidence of CKD [66].
Protecting the environment and the environmental health of mothers and infants remains
a top global priority. Epidemiological evidence suggests that maternal PM2.5 exposure
during pregnancy is associated with negative birth outcomes, including preterm birth, low
birth weight, and post neonatal infant mortality [67–71]. The health impacts of PM2.5 are
summarized (Table 2). In addition, PM2.5 influences several other adverse health effects
such as bone damage, liver fibrosis, lung cancer, macrosomia, Alzheimer’s disease, ovarian
dysfunction, hormone dysregulation, and compromised antiviral immunity [72–78].

Table 2. Health complications caused by PM2.5.

Exposure System Affected Health Effects References

Short term

Cardiovascular Increased rates of myocardial infarction and ischemia in those at risk
Exacerbation of cardiac failure [79–81]

Respiratory

Increased incidence of arrhythmia
Increased incidence of deep vein thrombosis

Increased incidence of stroke
Increased wheeze

Exacerbation of asthma
Exacerbation of chronic obstructive pulmonary disease

Bronchiolitis and other respiratory infections
Increased incidence of emergency department visits

[82–86]

Long term

Cardiovascular
Increased rates of myocardial infarction

Accelerated development of atherosclerosis
Increased blood coagulability

[87–89]

Respiratory

Increase in systemic inflammatory markers
Increased incidence of pneumonia
Increased incidence of lung cancer

Impaired lung development in children
Development of new asthma

[90–95]

Reproductive Increased incidence of preterm birth
Increased incidence of low birth weight [89,93]

Brain
Increased risk of Alzheimer’s
Increased risk of Parkinson’s

Increased risk of neurodegenerative diseases
[96,97]
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5. PM2.5 and Airway Inflammation

The airways and lungs, the initial sites of PM2.5 entry and deposition, are the primary
targets of its toxicity. After PM2.5 inhalation, the fine particles deposit on the surface of the
airway and pulmonary bronchi and alveoli before being internalized into lung cells such as
epithelial cells and alveolar macrophages [98]. Thereafter, PM2.5 triggers oxidative stress
and impairs the normal function of cells or can even induce apoptosis by different mecha-
nisms, such as autophagy. Furthermore, PM2.5 induces inflammatory responses, which play
a major role in respiratory damage. Epidemiological evidence shows that PM2.5 can regulate
different inflammation-related signaling pathways, as indicated by elevated Th2 cytokine
(interleukin (IL)-4, IL-5, and IL-13) levels in bronchoalveolar lavage fluid (BALF), increased
expression of IL-8, histamines, and leukotriene, and the promotion of eosinophil infiltration,
leading to airway hyperresponsiveness [98]. Moreover, PM2.5 exposure promotes the re-
lease of IL-33, which drives Th2-biased immune responses and upregulates the expression
of IL-6 and IL-1β in human bronchial epithelial cells, inducing the occurrence of lung
injury by regulating the levels of lipid mediators and sphingosine-1-phosphate [99,100].
Similarly, PM2.5 induces oxidative stress-signaling pathways by activating the PI3K/Akt,
NF-κb, Nrf2-KEAP1-ARE, JAK/STAT, and MAPK signaling pathways, elevating ROS and
Nrf2 levels, increasing nitric oxide synthase and NO generation, and upregulating the
expression of IL-6, IL-8, and cyclooxygenase-2 [101–104]. Moreover, PM2.5 exposure may
alter and impair the normal immune system by inducing M1 (through enhanced response
of CD86, CXCL1, CXCL2, IL-1β, IL-6, NOS2, and TNF-α) and M2 macrophage polarization
(by increasing the levels of arginase-1, CD206, and YM-1, and inhibiting histone deacetylase
2) [105–108]. Exposure to PM2.5 also alters immune homeostasis. Epidemiological evidence
confirms that after PM2.5 exposure, the Th1/Th2 response is broken and the balance shifts
toward increased (T cells) Th2 immune responses accompanied by the activation of toll-
like receptors (TLR2 and TLR4) and the MYD88/COX-2 signaling pathway [109]. PM2.5
exposure also promotes the expression of GATA3 and RUNX3, and reduces the expression
of T-bet, inducing a Th2-biased immune response accompanied by increases in the IFN-γ,
IL-4, and IL-13 levels, which leads to immune system imbalances [110,111]. Exposure to
PM2.5 impairs the differentiation of Treg cells and promotes the differentiation of Th17
cells based on the DNA methylation levels of STAT3, STAT5, and RORγt [112]. Inhalation
of PM2.5 is also associated with increased apoptosis. PM2.5 exposure increases necropto-
sis inflammation through the oxidative phosphorylation pathway, which promotes the
production of IL-33 and downregulation of ATP5F, NDUF, COX7A, and UQCR, inducing
phosphatidylserine and the upregulation of RELA and CAPN1, and causing cell apopto-
sis [113]. Furthermore, PM2.5 induces cell autophagy by mediating the AMPK signaling
pathway, oxidative stress-mediated PI3K, AKT, NOS2, and mTOR pathways, and the ATR
serine/threonine kinase (ATR)-checkpoint kinase 1 axis signaling pathway (CHEK1, CHK1)
which all play a major role in airway inflammation. PM2.5 also upregulates the expression
of ATG5, LC3II, Beclin-1, IL-6, and TNF-α, further enhancing autophagy [114–117]. All
these effects lead to a decline in pulmonary function, mediating the development and
facilitating the exacerbation of airway-obstructive diseases through inflammation and ox-
idative stress. Chronic PM2.5 exposure would cause persistent oxidative and inflammatory
damage, which would be responsible for the development and maintenance of chronic
bronchitis, COPD, and asthma. [118,119]. Studies have demonstrated that increase in PM2.5
exposure contributes to a higher prevalence of hospitalization and severity of symptoms
in children and adult patients with COPD and asthma [82]. Periodic exposure to PM has
been confirmed to play a role in the prevalence of COPD and the lifetime prevalence of
asthma [98,118]. The GBD study estimated that 3.1 to 3.3 million people died of COPD,
whereas around 0.4 million people succumbed to asthma, worldwide in 2015. The risk
estimation was based on factors such as smoking, secondhand smoke, household air pollu-
tion, ambient PM2.5, ozone, and occupational particulates. The underlying mechanisms of
PM2.5-induced COPD and asthma involve induction of oxidative stress-mediated pathways
and pulmonary inflammation, as illustrated in Figure 2. PM2.5-induced ROS upregulates
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the expression of the pro-inflammatory cytokines IL-6, IL-8, MCP-1, and TNF-α [120]. In
densely populated regions, urban particulate matter (UPM) differs in its chemical compo-
sition, which leads to a complex mixture that indicates a site-specific variability. Some of
the pollutant particles, after being emitted from the source, can be transported over long
distances through the ambient air. Genes that were influenced by ultra-fine particulate
matter (UFPM) in human monocytes, such as those involved in DNA repair, apoptosis, and
oxidative stress, were upregulated, but interestingly, not in a dose-dependent, but rather
time-dependent manner [121,122].
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6. Cardiovascular Diseases

Epidemiological studies have shown a clear association between PM2.5 and cardiovas-
cular diseases, including arrhythmia [123], cardiac arrest [124], coronary artery disease [125],
heart failure [126,127], venous thromboembolism [128], and cerebrovascular disease [129].
Acute exposure has been linked to such cardiovascular diseases. Individuals presenting
with myocardial infarction were more like to have been in traffic 1–2 h prior [130]. Although
it is difficult to control for confounding variables such as noise and stress, correcting for
activity intensity had no effect on the connection. The confounding relationship between
pollution and cardiovascular health provides a prediction of cardiovascular health, noises,
such as railway and air traffic, are highly connected with cardiovascular health [131]. How-
ever, with respect to considering the health effects of PM2.5, the confounding variables
are not included to determine the PM2.5 effects of cardiovascular diseases. Subsequent
investigations have further corroborated this link, which is independent of the mode of
transportation used [132]. Epidemiological studies have associated air pollution with
various end points underpinning cardiovascular conditions. Atherosclerosis in a variety of
arterial beds has been linked to urban air pollution [133]. Although there is some varia-
tion, PM exposure is linked to a slight but significant increase in blood pressure (typically
5 mmHg for an interquartile increase due to PM2.5) [134]. The constriction or reduced va-
sodilation of resistance arteries, which occurs after exposure to PM, elevates blood pressure.
Although not all studies have identified significant connections, exposure to PM2.5 and
traffic (e.g., distance from major road to residential address) has been related to increased
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arterial stiffness [135–137]. Oxidative stress is the primary hierarchical response to PM
exposure in humans, followed by other variables. Toll-like receptors (TLR2/TLR4) and
nucleotide binding receptors are involved in this response and may be directly or indirectly
activated by secondary mediators, including ROS [138–140]. The induction of ROS may
lead to the activation of MAPK pathways, NF-κb, and AP1, which increases the synthesis
of inflammatory proteins and brings about alterations in membrane permeability and
mitochondrial dysfunction [141,142]. Inflammatory markers induced by PM2.5 directly
act on the heart and induce cardiac tissue remodeling and function alteration, leading to
the development of cardiac diseases. Current evidence suggests that translocated PM2.5
causes both systemic inflammation and sympathetic activation in the cardiovascular system.
PM2.5 causes systemic inflammation and elevates catecholamines, leading to an acute or
chronic phase response of hypercoagulable state (suppression of fibrinolysis and activa-
tion of coagulation), vasoconstriction, increase in blood pressure, endothelial dysfunction,
cardiac electrical changes, imbalance of cardiac ANS [143]. Sympathetic activation in-
creases catecholamine production, leading to endothelial dysfunction, increase in heart rate,
and promotes vasoconstriction and hypertension [144]. The combined effects of systemic
inflammation and sympathetic activation on their molecular targets lead to ischemic or
thrombotic events, cardiac arrhythmia, and heart failure [145]. The biological pathways
whereby PM2.5 promotes cardiovascular impairments are illustrated (Figure 3). The effects
of PM2.5 exposure on catecholamine levels show that PM2.5 exposure is a major disruptor
of the cardiac autonomic nervous system (ANS). Little is known about how PM2.5 exposure
affects the cardiovascular system, thus further study is needed to discover the negative
health consequences linked with PM2.5 exposure [145].Changes in inflammatory pathways
and ER stress have been identified as the key mechanisms by which PM2.5 promotes IR and
T2DM and activates their pathophysiological responses [143–145]. Modulation of visceral
adipose inflammation, hepatic lipid metabolism, glucose utilization in skeletal muscle, and
CC-chemokine receptor 2-dependent pathways were discovered to play a significant role
in PM2.5-mediated IR. Furthermore, PM2.5 has been shown to activate unfolded protein
response (UPR), an intracellular ER stress signal that governs cell metabolism and survival
in vivo, by phosphorylating inositol-requiring enzyme 1 alpha in hepatic cells [144]. Addi-
tionally, UPR or UPR-mediated ER stress has been linked to inflammatory pathways and
has been shown to contribute to the generation of inflammatory mediators. Inflammatory
mediators might activate or spread intracellular UPR [145]. As a result of the combination
between inflammation and ER stress, a positive feedback loop may form, amplifying the
effects of PM2.5 on DM.
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7. Cancers

The International Agency for Research on Cancer has categorized outdoor air pollution
as carcinogenic to humans based on evidence from epidemiologic and animal studies, as
well as mechanistic research [146]. Studies have found a link between PM2.5 and the
risk of lung cancer [147]. Furthermore, NO2 and ozone (O3) levels have been linked
to cellular alterations associated with neoplasia: altered telomere length, expression of
genes involved in DNA damage and repair, inflammation, immunological and oxidative
stress response, and epigenetic effects such as DNA methylation [148]. The WHO has
classified diesel engine exhaust as a carcinogen based on evidence of a relation to lung
cancer. Excessive exposure to diesel exhaust or traffic pollution PM2.5 has also been linked
to benign and malignant lung tumors in laboratory animals, colorectal cancer, and gastric
cancer [147,149,150]. PM2.5 has been linked to both the occurrence and mortality of bladder
cancer [151]. A Spanish study found a link between polycyclic aromatic hydrocarbons and
diesel exhaust pollutants and bladder cancer in long-term inhabitants of an industrially
polluted region [152]. Taiwanese research has linked an elevated risk of bladder cancer
fatalities to ambient benzene and other hydrocarbons emitted by evaporative losses of
petroleum products and motor vehicle emissions [153]. A study in Sao Paulo, Brazil,
discovered a link between PM10 exposure and the risk of bladder cancer but not the risk of
bladder cancer death [154]. The American Cancer Society’s prospective Cancer Prevention
Study II, which monitored 623,048 individuals for 22 years (1982–2004), discovered that
PM2.5 was associated with mortality from kidney and bladder cancers, and that NO2
levels were related to colorectal cancer mortality [155]. Benzene exposure from vehicle
exhaust, particularly during pregnancy and the early years of children, has been linked
to an increased risk of pediatric leukemia [156]. Prenatal exposure to PM2.5 may raise a
child′s chance of contracting leukemia and astrocytoma [157].

Yang et al. investigated the impact of PM2.5 on lung cancer initiation, development,
and progression in A549 and H1299 tumor cell lines [158]. They stimulated PM2.5-related
conditions in A549 and H1299 non-small cell lung cancer cells using a PM2.5-exposed
population (geographically based on a city with the worst air quality index compared to a
control city in China). They discovered that PM2.5 effectively induces proliferation in H1292
tumor cells in vitro via a mechanism involving cytokines, matrix metalloprotease 1 (MMP1),
and IL-1ß. They also found that MMP1 was the most upregulated gene, and a study of
the epiregulin or EREG-induced signaling pathways revealed that EREG increases cell
survival by modulating MMP1 expression. MMP1 has been related to cell survival and has
a significant propensity to induce cancer invasion and metastasis. MMP1 and IL-1ß have
been demonstrated to have roles in angiogenesis, cell invasion, and metastasis [158–160].
In vivo studies have shown that individuals exposed to air pollution as a result of their
occupation or residential address have a higher frequency of chromosome aberrations,
micronuclei in lymphocytes, and differential expression of genes involved in oxidative
stress, inflammation, and DNA damage and repair [148,161,162]. However, in vivo and/or
animal studies in air pollution-related lung cancer research are scarce, as are in vitro studies.
Chronic exposure to traffic-related outdoor air pollution increases the incidence of lung
cancer. Another study found that the chemokine CXCL13 was overexpressed in 90% of
lung malignancies in highly polluted areas as compared to control areas. High CXCL13
expression was linked to advanced cancer and a bad prognosis. Furthermore, CXCL13
serum concentrations increased in mice prior to the appearance of a lung tumor detectable
by microCT [163,164]. Potential molecular pathways in air pollution-related lung cancer
are illustrated (Figure 4).
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8. Neurodegenerative Diseases

Epidemiological human and animal studies support the notion that air pollution can
affect the central nervous system (CNS) and lead to CNS disorders [165–167]. PM2.5 and
UFPM are of special concern as they can enter the systemic circulation and spread to the
brain and other organs, as well as obtain direct access to the brain via the nasal olfactory
mucosa [168–170]. Decreased cognitive performance, olfactory problems, auditory impair-
ments, depression symptoms, and other negative neuropsychological consequences have
been reported in humans in highly polluted areas [171,172]. Controlled acute diesel exhaust
(300 g/m3) exposure has been demonstrated to cause electroencephalogram (EEG) alter-
ations [173]. Post-mortem examinations of highly exposed people have indicated elevations
in the levels of indicators of oxidative stress and neuroinflammation [174]. Furthermore,
research suggests that young people may be especially vulnerable to air pollution-induced
neurotoxicity [175]. Studies in Mexico City have found heightened levels of neuroinflam-
matory markers in the brains of children exposed to high levels of air pollution, as well
as cognitive impairments and hyperactivity in 7-year-old children linked with early life
exposure to traffic-related air pollution [176]. A retrospective cohort study in Catalonia,
Spain, discovered a link between air pollution (defined as residing 300 m from a highway)
and the prevalence of attention deficit hyperactivity disorder (ADHD) [177]. In contrast, a
major study including eight European population-based birth/child cohorts found no link
between air pollution exposure and ADHD, similar to a Swedish investigation [178,179].
Experimental studies support the hypothesis that air pollution is a developmental neuro-
toxicant. A study by Ema, Naya, and Kato [180] indicated that developmental exposure
to diesel exhaust may produce toxicity and neurotoxicity. In male mice, in utero expo-
sure to high doses of diesel exhaust (1.0 mg/m3) resulted in changes in motor activity
and coordination, and impulsive behavior [181]. Further research in mice revealed that
postnatal injection (PND 4–7 and 10–13, for 4 h/day) of diesel exhaust particulate matter
(DE-PM) (100 g/m3) induced alterations in GFAP expression in numerous brain areas,
whereas UFPM (45 g/m3) caused male-specific learning and memory dysfunctions [182].
Subsequent research has revealed that embryonic DE exposure in mice impacts motor
activity, spatial learning and memory, and new object recognition abilities, and alters gene
expression, causing neuroinflammation and oxidative damage [183]. The effects of air
pollution on the nervous system and its possible role in neurodegenerative disorders are
illustrated in Figure 5.
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Altogether, findings in humans and many animal models suggest that air pollution
may harm the developing brain and perhaps lead to neurodevelopmental problems. Autism
spectrum disorder is a prominent neurodevelopmental condition, and data from both
epidemiology and controlled animal research show that PM2.5 may be associated with
neurodevelopmental and neurodegenerative diseases [184].

9. Role of PM2.5 in Viral Infections
9.1. H1N1 and SARS

Epidemiological and experimental studies have revealed connections between air
pollution exposure and respiratory viral infections. The H1N1 flu is a subtype of influenza
A, and was first detected in the spring of 2009 in the USA; it then spread rapidly throughout
the world. The H1N1 virus includes a novel mix of influenza genes that have not been
detected before in either animals or humans. It was named the influenza A (H1N1) pdm09
virus because it was very distinct from the viruses that were circulating throughout the pan-
demic [185]. This virus, which caused a global flu pandemic in 2009–2010, was popularly
known as “swine flu.” Despite the large number of studies that have been conducted to
analyze the many parameters that influence susceptibility to viral infections, the processes
by which inhaled oxidants might change viral pathogenesis are extremely complicated. It
has been demonstrated that oxidative stress worsens the severity of viral infections. One of
the most common air contaminants in cities is ozone, an elemental form of oxygen. It is a
strong inducer of oxidative stress, which can lead to airway inflammation and increased
respiratory morbidity [186,187]. Environmentally persistent free radicals (EPFRs) were
found in PM samples taken from several cities in the United States [188]. In this regard, Lee
et al. found that EPFRs associated with combustion-derived PM were crucial in increasing
the severity and mortality of respiratory tract viral infections [189]. A study by Hirota et al.
found that in vitro scratch injury and H1N1 influenza A exposure boosted IL-1 production
in human airway epithelial cells. Several studies have been conducted with the goal of
documenting the worldwide mortality effect of influenza A (H1N1) pdm09 and finding
variables that explain mortality variances reported across populations [190]. Some research
has concentrated on risk factors such as environmental exposure. In Brisbane, Australia,
Xu et al. (2013) discovered substantial interaction impacts of PM and mean temperature on
pediatric influenza [191]. When searching for possible explanations as to why some coun-
tries were harder hit by the H1N1 virus pandemic in 2009, Morales et al. (2017) highlighted
the importance of monitoring environmental exposure to air pollution, which is a burden
on the respiratory system and immune-compromising chronic infections [192].

In an ecologic study on air pollution conducted in China, Cui et al. (2003) discovered
that patients with SARS from locations with an intermediate air pollution index (API)
exhibited higher mortality compared to those with a lower API [193]. Kan et al. (2005)
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found similar results when they evaluated the relationship between air pollution and daily
SARS mortality in the Beijing (China) population. They discovered that each 10 g/m3 rise in
PM10, SO2, and NO2 levels over a 5-day moving average was associated with a relative risk
of daily SARS death of 1.06, 0.74, and 1.22, respectively [194]. Cai et al. (2007) conducted
ecological research in mainland China to examine the possible link between the SARS
outbreak and climatic conditions and air pollution [195]. In contrast to the findings of Cui
et al. (2003), they found no link between air pollution and the SARS outbreak. Although
air pollution should not influence SARS-CoV survival in vitro, it may exert an effect by
altering the host’s local resistance. The authors suggested that more research should be
conducted on this subject [193,195].

9.2. Air Pollution and SARS-CoV-2 (COVID-19)

Coronavirus disease 2019 (COVID-19) is caused by a coronavirus that causes severe
acute respiratory illness (SARS-CoV-2). Although a unique coronavirus illness epidemic
was detected in Wuhan (China) in December 2019, the outbreak was formally confirmed as
a pandemic only on 11 February 2020 [196]. A significant number of studies on SARS-CoV-2
and COVID-19 have been published in recent weeks/months. The connection between
severe viral respiratory illnesses, which afflict 10–20% of the population, and air pollution
is widely known [197]. Pollutants in the air, such as PM2.5, PM10, sulfur dioxide, nitrogen
dioxide, carbon monoxide, and ozone, can alter airways upon inhalation, increasing suscep-
tibility to respiratory viral infections and the severity of these illnesses [198]. In this regard,
Frontera et al. (2020) recently hypothesized that an atmosphere with a high concentration of
air pollutants, together with meteorological circumstances, would promote the persistence
of virus particles in the air for a longer period of time, favoring indirect transmission of
SARS-CoV-2 in addition to direct transmission from person to person [199]. Martelletti and
Martelletti (2020) discovered that the northern regions of Italy most impacted by COVID-19
also have the greatest concentrations of PM10 and PM2.5 [200]. According to these authors,
SARS-CoV-2 might find appropriate transporters in air pollution particles. Furthermore, in
a linear connection, the viruses would live longer and grow more aggressive in an immune
system already weakened by air pollution [200]. Individuals who live in areas with high
concentrations of air pollution are more likely to acquire respiratory disorders and are more
susceptible to viral infections [201,202]. Pollution wreaks havoc on the upper airway’s
first line of defense, the cilia. Based on this, Conticini et al. (2020) explored whether
communities living in polluted areas, such as Lombardy and Emilia Romagna, were more
likely to die of COVID-19 because of their poorer previous health state induced by air
pollution. The normally high concentrations of air pollution in Northern Italy have been
determined to be an additional co-factor of the high level of lethality documented in that
location [203]. Zhu et al. (2020) studied the connection between six air pollutant concentra-
tions (PM2.5, PM10, CO, NO2, and O3) and daily verified COVID-19 cases in 120 Chinese
cities. These contaminants were shown to have significant positive relationships with
COVID-19-verified cases. However, SO2 levels were shown to be inversely related to the
number of daily confirmed cases. Nevertheless, the findings of this study support the
notion that air pollution may play a role in SARS-CoV-2 infections [204]. The findings
of this study, which has been replicated in Italy (Conticini et al., 2020) and in the United
States (Wu et al., 2020), suggest that PM2.5 leads to a large increase in COVID death rate,
suggesting that persistent exposure to air pollution hinders recovery and leads to more
severe and deadly types of illness [203,205]. Coccia (2020) investigated the mechanisms of
COVID-19 transmission dynamics in the environment to determine a feasible approach
for dealing with future epidemics comparable to coronavirus infections. Their research
focused on a case study of Italy, which has one of the highest rates of mortality in the
world. The findings demonstrated that increased COVID-19 transmission dynamics in
certain situations were caused by two mechanisms: air pollution-to-human transmission
and human-to-human transmission in a context of high population density. The two
main findings were as follows: (1) the acceleration of COVID-19 transmission dynamics
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in North Italy was highly associated with city air pollution, and (2) cities with more than
100 days of air pollution (exceeding the limits set for PM10, PM2.5) had a very high average
number of infected individuals (about 3340 infected individuals), whereas cities with less
than 100 days of air pollution had a lower average number of infected individuals (about
1450 infected individuals) on April 2020 [206]. Finally, as a scientific curiosity, it is worth
noting that, given the significant reduction in air pollution following the quarantine, the
COVID-19 pandemic may have paradoxically reduced the total number of deaths during
this period by drastically reducing the number of deaths caused by air pollution [207].

10. Conclusions

Molecular epidemiological research is expanding; however, studies are only being
conducted in specific localities with high levels of ambient and indoor air pollution, which
appear to be emphasized in the literature. This complicates the interpretation of general
and local influences of air pollutants with the potential to cause significant health problems;
hence, the conclusions from these studies have been deemed questionable in terms of their
generalizability to other parts of the world. Furthermore, due to intrinsic and extrinsic
confounders that make the generated high-throughput data difficult to interpret, such
research is difficult to conduct. Laboratory experiments in air pollution research are
difficult to replicate and have received little validation. Future multi-layered studies on
PM2.5–related lung inflammation will ultimately be necessary due to the rising problem
of air pollution and the increasing incidence of lung cancers, particularly in non-smokers,
as well as the histopathological shift to adenocarcinoma being the predominant cancer
type and cardiovascular diseases. Future research must overcome the identified challenges
to enable a better understanding of the mechanisms of carcinogenicity in air pollution–
related lung cancers, independent of confounding variables to determine the cardiovascular
diseases. Air pollutants typically do not exist in isolation, but rather as part of a complicated
network of elements that includes other environmental contaminants and exposures. These
various exposures offer distinct and perhaps cumulative health concerns that have yet
to be completely recognized. Finally, the inevitable climate catastrophe may provide the
highest and most severe mandate to achieve both the immediate health benefits of reducing
pollution exposure and the more complicated, long-term rewards of mitigating climate
change in order to achieve climate change goals.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: P.T., Y.-C.L. and D.P.; data collection: P.T.; analysis and interpretation of results: P.T. and
Y.-C.L.; draft manuscript; preparation: P.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Basic Science Research Capacity Enhancement Project
through a Korea Basic Science Institute (National Research Facilities and equipment Center) grant
funded by the Ministry of Education (2019R1A6C1010016), a grant from the Subway Fine Dust
Reduction Technology Development Project of the Ministry of Land Infrastructure and Trans-
port, Republic of Korea (21QPPW-B152306-03), and the Gachon University research fund of 2021
(GCU-202106620001).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, X.; Feng, L.; Zhang, Y.; Hu, H.; Shi, Y.; Liang, S.; Zhao, T.; Fu, Y.; Duan, J.; Sun, Z. Cytotoxicity induced by fine particulate

matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol. Environ. Saf. 2018,
161, 198–207. [CrossRef]

2. Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate
matter air pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [CrossRef]

3. Philip, S.; Martin, R.V.; Snider, G.; Weagle, C.L.; Van Donkelaar, A.; Brauer, M.; Henze, D.K.; Klimont, Z.; Venkataraman, C.;
Guttikunda, S.; et al. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate
matter source in global atmospheric models. Environ. Res. Lett. 2017, 12, 044018. [CrossRef]

http://doi.org/10.1016/j.ecoenv.2018.05.092
http://doi.org/10.1007/s11356-020-10574-w
http://doi.org/10.1088/1748-9326/aa65a4


Int. J. Environ. Res. Public Health 2022, 19, 7511 14 of 22
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