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Abstract: Climate change and human activities significantly affect vegetation growth in terrestrial
ecosystems. Here, data reconstruction was performed to obtain a time series of the normalized
difference vegetation index (NDVI) for China (1982–2018) based on Savitzky–Golay filtered GIMMS
NDVI3g and MOD13A2 datasets. Combining surface temperature and precipitation observations
from more than 2000 meteorological stations in China, Theil–Sen trend analysis, Mann–Kendall
significance tests, Pearson correlation analysis, and residual trend analysis were used to quantitatively
analyze the long-term trends of vegetation changes and their sources of uncertainty. Significant
spatial and temporal heterogeneity was observed in vegetation changes in the study area. From 1982
to 2018, the vegetation showed a gradually increasing trend, at a rate of 0.5%·10 a−1, significantly
improving (37.15%, p < 0.05) more than the significant degradation (7.46%, p < 0.05). Broadleaf
(0.66) and coniferous forests (0.62) had higher NDVI, and farmland had the fastest rate of increase
(1.02%/10 a−1). Temperature significantly affected the vegetation growth in spring (R > 0; p < 0.05);
however, the increase in summer temperatures significantly inhibited (R < 0; p < 0.05) the growth in
North China (RNDVI-tem = −0.379) and the Qinghai–Tibetan Plateau (RNDVI-tem = −0.051). Climate
change has highly promoted the growth of vegetation in the plain region of the Changjiang (Yangtze)
River (3.24%), Northwest China (1.07%). Affected by human activities only, 49.89% of the vegetation
showed an increasing trend, of which 22.91% increased significantly (p < 0.05) and 9.97% decreased
significantly (p < 0.05). Emergency mitigation actions are required in Northeast China, Xinjiang,
Northwest China, and the Qinghai–Tibetan Plateau. Therefore, monitoring vegetation changes is
important for ecological environment construction and promoting regional ecological protection.

Keywords: GIMMS NDVI3g; MOD13A2; climate change; human activity; normalized difference
vegetation index

1. Introduction

The recent sixth assessment report of the United Nations Intergovernmental Panel on
Climate Change (IPCC) revealed that climate change and anthropogenic activities have
significantly shaped the fundamental system processes of the planet [1]. Accordingly,
monitoring vegetation change and attribution analyses have become an important part of
environmental research [2,3]. Vegetation plays an essential role in the global hydrological
and carbon cycles, as well as overall energy exchange [4–6]; therefore, the impact of global
climate change on vegetation growth has received increasing attention over recent decades.

Under modern climate change, quantitative studies of the relationship with vegetation
become critical at regional and global scales [7,8]. Vegetation growth is affected by various
factors, among which precipitation and temperature are generally considered the most
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influential climatic variables [9]. Conventionally, vegetation thrives in areas with ample
water and heat, growing sparsely in drier areas with limited rainfall [10–13]. Chu et al.
analyzed the response of vegetation to climate in the Amur–Heilongjiang River Basin
from 1982 to 2015, and found that NDVI in the growing season was mainly affected by
precipitation, and temperature was the dominant factor affecting vegetation growth in
spring [14]. Gao et al. found that precipitation was the most important factor affecting
the variation of NDVI in the Three-River Headwater Region [15]. Yao et al. found that
annual precipitation was the first dominant factor affecting vegetation growth in Inner
Mongolia [16]. Chen et al. studied the impact of climate change and human activities
on grasslands in Central Asia, and found that precipitation was the main climatic factor
affecting grassland dynamics in Central Asia, and overgrazing accelerated grassland degra-
dation [17]. Moreover, anthropogenic activities exert both promoting and inhibiting effects
on vegetation cover change. For instance, rapid urbanization has led to the encroachment
of construction into tremendous amounts of farmland and forest, thereby significantly re-
ducing the vegetation cover [14]. In contrast, the implementation of vegetation construction
projects, such as afforestation or restoring farmland to forests and grasslands, increases
coverage [18,19]. Therefore, both human activity and climate change influence vegetation
cover, yielding significant regional differences around the globe. Therefore, large-scale and
long-term vegetation change monitoring and attribution analyses can serve as a reference
for formulating reasonable land use and ecological protection protocols.

The normalized difference vegetation index (NDVI) is an effective method for reflect-
ing vegetation growth in the field of remote sensing [4]. The index is widely used for
detecting the interactions between vegetation and climate change [19,20], land use [21],
crop classification [22], and forest monitoring [23]. SPOT-VGT, AVHRR (Advanced Very
High-Resolution Radiometer), and MODIS (Moderate Resolution Imaging Spectroradiome-
ter) from different sensors form where NDVI can be derived, although their precise spectral
response functions, calibration and data processing methods, synthesis time, and spa-
tiotemporal resolutions vary [24,25]. It is difficult to effectively capture long time series of
surface processes by relying solely upon certain satellite products, although multisource
data fusion algorithms can make this possible [21]. The AVHRR GIMMS NDVI3g dataset
is reportedly the best data source to represent vegetation, as it comprises a long time
series with global coverage and a strong ability to represent vegetation change dynamic
changes [26]. However, the time resolution of GIMMS is 1982 to 2015, and the research
duration is greatly limited, making it difficult to carry out new research [27]. Thus, supple-
menting it with other remote sensing data sources can greatly extend its lifetime. As the
spatiotemporal resolutions of MOD13A2 are superior to that of GIMMS, MOD13A2 can be
readily combined with GIMMS image data [28,29]. Due to the large-signal noise present in
the GIMMS NDVI3g data, Savitzky–Golay (S-G) filtering is used to reconstruct the time
series by effectively removing outliers, better preserving the continuity of vegetational
changes [30]. Therefore, merged GIMMS and MODIS data can generate NDVI datasets
more capable of exploring long-term vegetation evolution characteristics [31,32].

Due to the limited time range of GIMMS data, the spatiotemporal patterns of long-
term vegetation responses and feedback to climatic factors across different regions of China
remain unclear. Accordingly, this study extended the GIMMS-derived NDVI time series by
merging it with MODIS datasets. Moreover, the dynamic evolution of vegetation and its
coupled relationship with influencing factors were quantitatively analyzed across different
spatiotemporal scales throughout the country. It is intended that the findings presented here
will serve as a reference for China’s environmental protection and sustainable development.

2. Materials and Methods
2.1. Study Area

China spans a vast area of ~9.6 million km2, spread over 34 provincial administrative
regions. China has the most extensive monsoon climate region, ranging from a temperate
continental climate to the extreme north to a temperate monsoon climate in the northeast,
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a subtropical monsoon climate in the extreme south, and a highland mountain climate in
the Tibetan Plateau [32]. The annual precipitation in China increases gradually from the
northwest to the southeast. The southeast of China is primarily semihumid and humid,
whereas the northwest is mainly arid and semiarid [20]. This study divides China into
eight subregions based on elevation, precipitation, and so on (Figure 1).

               
 

 

    
   

              
             

              
              

             
             

              
           

 
              

             
              

   
   

   
           

         
           

               
                  

            
      
   

         
            

                   
            

            
             

               

Figure 1. Eight subregions of the study area and their elevation: Xinjiang (XJ), Qinghai–Tibetan
Plateau (QZ), Northwest China (NW), Northeast China (NE), North China (NN), southwest Yungui
Plateau (YG), the plains region of Changjiang (Yangtze) River (CJ), and Southeast China (SE).

2.2. Data Source
2.2.1. NDVI Dataset

(1) GIMMS NDVI3g
This study used the most recent (third) generation NOAA/AVHRR GIMMS data from

the NASA Global Monitoring and Modeling Research Group (https://nex.nasa.gov/nex,
accessed on 10 June 2021). The spatiotemporal resolution of the GIMMS NDVI3g dataset is
15 d and 8 km (0.08333◦). The GIMMS NDVI3g dataset covers the world in space, with a
time span from 1982 to 2015, and is currently the NDVI data product with the longest time
range. Specifically, the GIMMS NDVI3g dataset was designed to improve data quality [33].

(2) MODIS NDVI
The MODIS NDVI dataset, derived from the Terra satellite (https://earthdata.nasa.

gov/, accessed on 10 June 2021), was used here to bolster the integrity of the time series
from 2001 to 2018. It maintains a temporal resolution of 16 d and a spatial resolution
of 1 × 1 km. Image extraction, projection conversion, mosaicking, cropping, and other
preprocessing steps were performed using the image-based on Python script. To ensure
consistent spatial resolution, the MOD13A2 dataset was resampled to 8 × 8 km. The
maximum value composite method (MVC) was used to synthesize the remote sensing
data into monthly values, and mean values were used to synthesize monthly vegetation
coverage into annual estimates. The GIMMS and MODIS NDVI after Savitzky–Golay
filtering are respectively defined as GIMMSS-G and MODISS-G.

2.2.2. Meteorology

The China Meteorological Data Sharing Network (http://data.cma.cn/, accessed on
1 July 2021) provides daily temperature and precipitation data from more than

https://nex.nasa.gov/nex
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2000 meteorological stations. These data were used to construct a raster dataset of monthly
values across China from 1982 to 2018 via local thin-plate spline interpolation. Daily tem-
perature and precipitation data were averaged and synthesized into annual data before
resampling to 8 × 8 km for further analysis with the NDVI time series.

Due to the use of meteorological data of more than 2000 stations provided by the
China Meteorological Administration, the current data can only be collected and obtained
in the latest year from 1961 to 2018. Limited by data availability, the data source time from
1982 to 2018 should be selected given that GIMMS NDVI data can only be obtained from
1982 at the earliest.

2.3. Data Postprocessing and Methodology
2.3.1. NDVI Data Postprocessing

Due to inherent differences in the spatiotemporal resolutions of satellite sensors, it
was necessary to examine correlations before and after Savitzky–Golay filtering prior to
merging the two datasets. Based on the MATLAB platform, this study carries out pixel-by-
pixel correlation analysis and regression analysis on GIMMS and MODIS. The correlation
coefficient can be calculated according to Equation (1):

R =
cov(G, M)√

var(G)var(M)
, (1)

where R is the correlation coefficient, G and M are GIMMS and MOD13A2 monthly NDVI
from 2001–2015, and var is the variance function. The covariance between G and M is
denoted by cov(G, M).

Next, pixelwise linear regression was performed on GIMMS and MOD13A2 NDVI
monthly data, and the 2016–2018 NDVI data were extended using the pixel-by-pixel linear
regression equation (Equations (2)–(4)):

k =
n ∑n

i=1 MODISiGIMMSi −∑n
i=1 MODISi ∑n

i=1 GIMMSi

n ∑n
i=1 MODIS2

i − (∑n
i=1 MODISi)

2 , (2)

b = GIMMS− k×MODIS (3)

GIMMSi = k×MODISi + b + εi, (4)

where GIMMSi and MODISi represent the corresponding GIMMS and MOD13A2 NDVI
values in the ith month, respectively; n is the total number of months; εi represents ran-
dom error; and GIMMS and MODIS are the mean values of the monthly NDVI for the
corresponding pixels from 2001 to 2015. The 2016–2018 GIMMS NDVI fitted by MODIS is
represented by GIMMSMOD data (2016–2018). In this way, a new NDVI was constructed
to provide data support for further research.

2.3.2. Trend Analysis and Significance Tests

The Theil–Sen median method (capable of reflecting trend changes) and the Mann–
Kendall (M–K) method (which assesses the significance of trend changes) were used for
vegetation trend analysis over long time series [16,34]. Compared with the common linear
regression method for assessing interannual variations in vegetation changes, the methods
proposed here have a stronger ability to avoid data error and reduce the influence of outliers
while increasing the accuracy and reliability of the analytical test results. The Theil–Sen
median method was calculated according to Equation (5):

β = median
(NDVIi − NDVIj

i− j

)
, ∀ i < j, (5)

where β is the NDVI time series. When β > 0, it reflects the increasing trend, whereas β < 0
indicates a decreasing trend.
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The M–K significance tests used to identify significant time series trends have been
successfully employed in other similar studies of hydrology and meteorology, proving
themselves advantageous in that samples are not required to follow a normal distribution
and are not overly influenced by outliers. The appropriate formula for calculating M–K is
presented in Equations (6)–(9):

Zc =


S−1√
var(S)

S > 0

0 S = 0
S+1√

var S < 0
(6)

where
S = ∑n−1

i=1 ∑n
k=i+1 sign(NDVIk − NDVIi), (7)

var(S) =
n(n− 1)(2n + 5)−∑n

i=1 ti(ti − 1)(2ti + 5)
18

, (8)

sign(NDVIk − NDVIi) =


1 NDVIk − NDVIi > 0
0 NDVIk − NDVIi = 0
−1 NDVIk − NDVIi < 0

(9)

where NDVIk and NDVIi are the NDVI datasets in the kth and ith years, respectively, and
the length of the study object is n. Here, the M–K significance tests were performed as
follows: The null hypothesis H0 was β = 0 at a given significance level of α = 0.05, and
|Zc| > 1.96 was the threshold for satisfying the significance test.

2.3.3. Pearson Correlation Analysis

The Pearson correlation analysis method was performed to calculate the correlation
coefficient (CC) between NDVI, temperature, and precipitation over the analysis period
(1982–2018), in accordance with Equation (10):

Rab =
∑n

i=1(ai − a)
(

bi − b
)

√
∑n

i=1(ai − a)2
√

∑n
i=1

(
bi − b

)2
, (10)

where Rab is the CC; n is the number of samples; ai and bi denote the values of variables a and
b in the year i, respectively; a and b represent the average of variables a and b, respectively.

2.3.4. Residual Trend Analysis

Although long-term observational data regarding the effects of anthropogenic activ-
ities on vegetation (i.e., NDVI) are severely lacking, the effects related to human factors
and climate change can be distinguished via residual analysis methods [35]. Here, the
independent variables are temperature and precipitation, with vegetation status as the
dependent variable, and multiple linear regressions (MLRs) were used to fit the predicted
NDVI (NDVIpre) [36]. Residuals were obtained by calculating the differences between
satellite sensor-derived NDVI and NDVIpre [36], where positive (negative) trends indicated
that human activities play a positive (deleterious) role [27].

3. Results
3.1. Precision Validation

The GIMMS and MOD13A2 remote sensing data sensors notably differ in terms of
band number, wavelength, and spatiotemporal resolution, each of which requires assess-
ment for consistency (Table 1). Correlation analysis and linear fitting of MODIS data
were performed before and after resample, and found that the data were highly consis-
tent (R = 0.9512, p < 0.01) (Figure 2). Here, GIMMSMOD data (2016–2018) and GIMMSS−G
(1982–2015) were selected to construct a raster dataset of vegetation cover in China from
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1982 to 2018. From 2001 to 2015, the CC between GIMMS and MOD13A2 was 0.941, fol-
lowed by GIMMSS-G and MOD13A2 (0.929). The CC between GIMMS and MODISS-G was
notably higher (0.962); however, that between GIMMSS-G and MOD13A2S-G reached a max-
imum of 0.966 (p < 0.01, n = 180), indicating that S–G filtering helped to remove or reduce
noise and outliers contained in data, thereby effectively improving image quality. When
calculating the correlation between the numerical simulation GIMMSMOD (2001–2015) and
the same period GIMMSS−G, the results showed that monthly and pixelwise correlations
from 2001 to 2015 between GIMMSS−G and GIMMSMOD were 0.98 (p < 0.01) and 0.91,
respectively, among which 91% of the pixels were significant at the α = 0.05 level, thus
confirming the quality of remote sensing fusion data. Product accuracy reliability was
thus deemed suitable for the dynamic study of vegetation cover in China. The verification
results showed that the reconstruction models employed here could effectively reduce the
deviation between AVHRR and MODIS NDVI data; therefore, the reconstructed MODIS
data can supplement the temporal limitations of the AVHRR NDVI data time series.

Table 1. Precision validation of GIMMS NDVI3g and MOD13A2 NDVI data before and after S–G
filter reconstruction, 2001–2015.

GIMMS GIMMSS-G MOD13A2 MOD13A2S-G

GIMMS 1 0.994 ** 0.941 ** 0.962 **
GIMMSS-G 1 0.929 ** 0.966 **
MOD13A2 1 0.961 **

MOD13A2S-G 1
Note: **, p < 0.01.

               
 

 

  
   

             
          
              

               
            

                
               

            
           

                  
           

           
            

              
                

             
             

            
           

             

               
   

     
        
       
      
     

     

 
                

 

  

Figure 2. Correlation analysis and linear fitting of MODIS data before and after resample (p < 0.01).

3.2. Spatiotemporal Variations
3.2.1. Temporal Trends of Vegetation, 1982–2018

Figure 3 shows the annual variation of NDVI over the study area from 1982 to 2018, as
well as by season. The largest average NDVI value was in 2013 (0.354), whereas the mini-
mum was in 1984 (0.327), with an overall average of 0.342. NDVI values were significantly
higher in summer (0.49), followed by autumn (0.44), spring (0.37), and winter (0.28). The
NDVI showed an increasing trend of the analysis period, with growth rates ranking in the
following order: spring (0.8% × 10 a−1) > annual (0.5% × 10 a−1) > winter (0.4% × 10 a−1)
> autumn (0.3% × 10 a−1) > summer (0.06% × 10 a−1).
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Figure 3. Variation of NDVI, temperature, and precipitation over the analysis period, 1982–2018.

With reference to the main vegetation composition in China [14], Figure 4a shows the
map of vegetation types in the study area, whereas Figure 4b shows the multiyear mean
NDVI values and the corresponding slopes of change for each vegetation type. From the
NDVI values of different vegetation types (Figure 4b), broadleaf and coniferous forests had
the highest NDVI (0.66 and 0.62, respectively), followed by mixed forests and woodlands
(both 0.57), farmlands (0.49), grasslands (0.43), and shrublands (0.13). In terms of the slope
of change in NDVI by vegetation type (Figure 4b), all showed an increasing trend, with
farmland NDVI increasing the fastest (1.02%·10 a−1), followed by grassland (0.78%·10 a−1),
coniferous forests (0.48%·10 a−1), broadleaved forests (0.36%·10 a−1), and shrublands
(0.24%·10 a−1).

               
 

 

   
      

                
                

              
             

              
               

         

 
             

              
               

              
            

             
             

               
            

           
   

 
                

  

  

Figure 4. (a) Spatial distribution of vegetation types. (b) NDVI and interannual rate of change for
vegetation types.

3.2.2. Vegetation Spatial Change Trend

The spatial distribution of average NDVI showed significant spatial heterogeneity
across China from 1982 to 2018 (Figure 5a). Overall, NDVI gradually increased from
the northwest to the southeast, with peak values mostly distributed in NN, YG, CJ, SE,
southeast QZ, Daxing’anling, and NE. Conversely, lower NDVIs were mainly concentrated
in XJ, NW, and northwest QZ. The results of the Theil–Sen median trend analysis showed
that vegetation gradually increased at a rate of 0.5%·10 a−1 across China, with trends
increasing most rapidly (slope ≥ 1.3 × 10−3 a−1) mostly distributed in NN, CJ, NW Loess
Plateau, and central YG and SE (Figure 5b). Alternatively, decreasing trends were strongest
in XJ, the surrounding areas of NE, parts of QZ, and economically developed large urban
agglomerations, largely due to slow decreases, as the slope trend rates mostly ranged from
−9.3 × 10−3 to approximately 0 a−1.
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Figure 5. Vegetation interannual variation trend: (a) mean NDVI; (b) NDVI variation trend.

Combining ground observations of the study area with research on arid and semiarid
areas, the NDVI values across China were divided into seven grades (Table 2). NDVI > 0.1
accounted for 78.58% of the total study area; however, the overall vegetation coverage of the
study area was low, with an average NDVI of only 0.34. NDVI > 0.4 accounted for 42.79%
of the total area, with the vegetation type under this grade being dominated by forested
land. A total of 16.5% of the total area was occupied by areas with NDVI > 0.6, and the
vegetation types under this class were mainly grassland and cropland. The nonvegetated
area (NDVI < 0.1) accounted for 21.72% of the total area, mainly composed of construction
land and lakes, as well as the Gobi and other deserts.

Table 2. Area NDVI statistics for each grade.

Level NDVI < 0.1 0.1 < NDVI < 0.2 0.2 < NDVI < 0.3 0.3 < NDVI < 0.4 0.4 < NDVI < 0.5 0.5 < NDVI < 0.6 NDVI > 0.6

Area 21.42% 15.64% 10.22% 10.13% 12.43% 13.67% 16.5%

3.2.3. Spatial Patterns of Vegetation

Combining the classification results from the Theil–Sen median analysis (Figure 6b)
and the M–K trend test (Figure 6a), pixel-level NDVI trend data were obtained (Figure 6b),
and the results were classified into five types: severely degraded, slightly degraded, stable,
slightly improved, and significantly improved (Table 3). Table 3 and Figure 6b collectively
indicate that the area of increasing vegetation in China from 1982 to 2018 was larger
than that of degradation. Indeed, 40.15% showed an improved trend, with significantly
improved NDVI (p < 0.05) accounting for 37.15% of this region, primarily distributed in NN,
YG, CJ, SE, and south NW, notable areas with abundant water resources. Conversely, areas
with degraded vegetation accounted for 9.34% of the study area, with severely degraded
NDVI (p < 0.05) accounting for 7.46% of this region, and mostly distributed in NE, the
Greater Khingan Range of NW, north XJ, and parts of southeast QZ, notably sparsely
populated and water-scarce regions. The stable area (i.e., no significant change) is 50.52%,
mostly located in south XJ, west QZ, and the Inner Mongolian Plateau in NW, largely
representing the Gobi or other desert areas, as well as bare land.

Table 3. NDVI trends in China.

SNDVI Z NDVI Trend Annual Spring Summer Autumn Winter

≥0.0005 ≥1.96 Significantly improved 37.15 34.59 21.85 22.73 25.02
≥0.0005 −1.96–1.96 Slightly improved 3.00 12.93 12.12 13.42 8.16

−0.0005–0.0005 −1.96–1.96 Stable 50.52 41.63 43.43 44.34 42.88
<−0.0005 −1.96–1.96 Slightly degraded 1.88 4.86 10.96 10.57 6.52
<−0.0005 ≤−1.96 Severely degraded 7.46 5.98 11.64 8.94 17.42

Note: Stable means SNDVI (−0.0005, 0.0005) and Z (−1.91, 1.96).
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Figure 6. Spatial distribution of (a) M–K trend tests and (b) variation trend of the interannual NDVI
in China from 1982–2018.

Figure 7 shows the seasonal changes in vegetation from 1982 to 2018, where, again,
the improved area of vegetation coverage was greater than the degraded area, and the
spring vegetation growth was significantly larger than that of other seasons. The overall
trend in spring was similar to that of the annual variation (Figure 6b). Indeed, the area
with significantly improved NDVI values in spring accounted for 34.59% of the study
region, primarily distributed in the central part of China. Notably, 5.98% of the total
area was significantly degraded, mainly in NE and north XJ. The overall distribution of
trends in summer and autumn were relatively similar, with significantly improved areas
accounting for 21.85% and 22.73% and severely degraded areas accounting for 11.64%
and 8.94%, respectively. Southeastern QZ showed a degradation trend in summer and
autumn, whereas the southern part of NW showed a significant improvement. The trend
of vegetation degradation is obvious in winter, with the significantly degraded region
accounting for 17.42%, mostly distributed in NE, north XJ, and the Xiaoxing’an Mountains.

               
 

 

 
            

        
    

             
               

             
           

             
             

           
             

 
            

            
             

               
           

             
             
               

           
            

 
  

Figure 7. Seasonal variation trend in vegetation characteristics from 1982 to 2018.
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3.3. Analyses of Spatiotemporal Changes in Climate, 1982–2018
3.3.1. Temporal Variation Characteristics

Figure 3 shows the temporal changes in temperature and precipitation from 1982 to
2018. The average annual temperature across China was 6.69 ◦C, peaking in 2007 (7.51 ◦C)
and reaching its minimum in 1984 (5.57 ◦C). Average summer temperatures (18.55 ◦C) were
significantly higher than those of other seasons, whereas winter temperatures represented
the minimum (−6.53 ◦C). There were slight differences in spring, autumn, and average
annual temperatures (7.62, 7.10, and 6.69 ◦C, respectively). From 1982 to 2018, temperatures
showed an upward trend, where, yearly, spring, summer, autumn, and winter temperatures
warmed at rates of 0.0395, 0.0535, 0.0369, 0.0339, and 0.0336◦ C·a−1, respectively.

From 1982 to 2018, the annual average precipitation was significantly higher than that
of the four seasons; summer precipitation increased significantly, with the least precipitation
being recorded in winter. The average annual precipitation in China was 591.02 mm,
with the maximum observed in 2016 (678.54 mm) and the minimum recorded in 2011
(537.49 mm). Average seasonal precipitation varied greatly between spring (134.50 mm),
summer (303.27 mm), autumn (113.71 mm), and winter (40.00 mm). Over the study
period, an average increasing trend of annual precipitation of 0.805 mm·a−1 was observed,
with those of spring, summer, autumn, and winter increasing at rates of 0.226, 0.340,
0.206, and 0.032 mm·a−1, respectively. Overall, with their more concentrated precipitation
levels, spring and summer more remarkably contributed to the significant increase in
annual precipitation.

3.3.2. Spatial Variation of Temperature and Precipitation

Figure 8 shows the spatial distribution of average temperature and precipitation from
1982 to 2018, revealing patterns of strong spatial heterogeneity. Over the study period,
China has warmed at a rate of 0.38 ◦C·10 a−1, and the temperature has gradually increased
from the northwest to the southeast. Among them, the average temperatures of NN, YG,
CJ, and SE were significantly higher than those of XJ, QZ, NW, and NE. SE had the highest
average annual temperature (19.43 ◦C), and QZ the lowest (−1.93 ◦C), with a local peak
in temperature in the Tarim Basin of southern XJ. The annual precipitation in southeast
China was significantly higher than in the northwest, whereas the annual precipitation
decreased from the southeast to the northwest in the study area. SE (1557.35 mm) and
CJ (1320.43 mm) witnessed the maximum average annual precipitation levels, while NN
(665.38 mm) and NE (575.27 mm) displayed relatively lower levels, and the averages of XJ
(151.69 mm), QZ (414.90 mm), and NW (332.53 mm) were the lowest.

               
 

 

       
            

             
                

              
                  

                
             

            
                

           
               
            

 
              

    

             
             

             
               

                
               

            
            

        
            

            
                

             
            

               
             

                
               

              
              

      

Figure 8. Spatial distribution of average annual temperature and precipitation from 1982 to 2018:
(a) temperature; (b) precipitation.
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Figure 9 shows the seasonal spatial distribution of temperature trends from 1982 to
2018. Overall temperatures of the study area increased, with temperatures of spring and
summer showing a significant upward trend (rates of 0.05 and 0.04 ◦C·a−1, respectively).
The change rate in summer ranged from −0.17 to 0.1 ◦C·a−1, with increasing trends
being most apparent in east XJ, NW, and QZ. The autumn and winter rates of change
spanned from −0.28 to 0.14 ◦C·a−1 and −0.40 to 0.32 ◦C·a−1, respectively, with a relatively
similar spatial distribution between them. The temperature of the Taklamakan Desert in XJ
decreased slightly, and western QZ showed a warming trend. Seasonally, the temperatures
in different regions increased, albeit to variable degrees.

The spatial distribution of precipitation trends across the seasons was also variable
(Figure 10), with SE precipitation levels displaying the greatest levels of seasonal het-
erogeneity. The rate of change in SE during spring ranged from −5.88 to 5.31 mm·a−1,
showing an overall decreasing trend. The highest average summer variation rate was
0.31 mm·a−1, with significantly increased precipitation rates recorded in portions of XJ
(0.496 mm·a−1), QZ (1.223 mm·a−1), SE (3.150 mm·a−1), and south CJ (0.307 mm·a−1). The
autumn rate of change ranged from −6.48 to 4.55 mm·a−1, with an apparent decreasing
trend in southeastern YG and a significant increase in NW. The average change rate was
0.16 mm·a−1 in winter, with the precipitation in XJ, NW, and NE showing an increasing
trend while that of YG, SE, and south CJ decreased. Therefore, northern China was less
rainy, southern China was rainier, and precipitation in the western part of the study area
increased significantly over the entire study period.

               
 

 

 
              

 
              

Figure 9. Spatial distribution of seasonal variation trend of temperature from 1982 to 2018.
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              Figure 10. Spatial distribution of seasonal variation trend of precipitation from 1982 to 2018.

3.4. Correlation between NDVI Dynamics and Climatic Variations

By calculating the correlation coefficient between NDVI, precipitation, and tem-
perature, the relationship between vegetation and these climatic factors is shown in
Figures 11 and 12 and Table 4. Seasonally, a significant positive correlation (R > 0; p < 0.05)
was shown in spring between NDVI and temperature, which account for 35.75% of total
pixels, implying that the promotion effect of temperature on vegetation growth in spring
was significantly higher than that of the other three seasons. The percentage of the study
area with a significant negative correlation between NDVI and temperature in summer
(11.20%) was higher than that with a significant positive correlation (10.62%). The area
with a significant negative correlation (R < 0; p < 0.05) was mainly distributed between
NN (RNDVI-tem = −0.379), northern QZ (RNDVI-tem = −0.051), YG (RNDVI-tem = −0.162), and
some areas of NW (RNDVI-tem = −0.078), where increasing temperatures and evapotranspi-
ration levels seemed to have indirectly inhibited the growth of vegetation. The significant
correlation between NDVI and temperature in autumn was weak, while the pixels with a
significant positive correlation between NDVI and temperature in winter (R > 0; p < 0.05)
accounted for 14.29%, particularly in QZ (RNDVI-tem = 0.339), YG (RNDVI-tem = 0.328), and
CJ (RNDVI-tem = 0.402).
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            Figure 11. Seasonal correlation analyses (α = 0.05) between vegetation and temperature.

From the correlation analysis results of NDVI and precipitation (Figure 12), it can be
concluded that the pixels with a significant positive correlation (R > 0; p < 0.05) between
NDVI and precipitation in spring, which accounted for 10.13% across China, were mainly
concentrated in NW (RNDVI-pre = 0.429) and NN (RNDVI-pre = 0.394). The pixels with a
significant negative correlation (R < 0; p < 0.05) accounted for 5.32% across China and were
mainly distributed in CJ, SE, and some areas of QZ. The count of positive correlation be-
tween NDVI and precipitation (R > 0; p < 0.05) pixels in summer (13.51%) was significantly
higher than that of significant negative correlation (3.71%), with the former mainly dis-
tributed in NW (RNDVI-pre = 0.460), XJ (RNDVI-pre = 0.347), NN (RNDVI-pre = 0.343), and QZ
(RNDVI-pre = 0.258). The western part of the study area experienced high temperatures and
little rainfall year-round, and the observed increase in summer precipitation promoted vege-
tation growth in these areas with less precipitation. In winter, NDVI significantly negatively
correlated with precipitation (R < 0; p < 0.05), accounting for 8.59% across China and mainly
distributed in NE (RNDVI-pre = −0.410), NW (RNDVI-pre = −0.256), XJ (RNDVI-pre = −0.027),
CJ (RNDVI-pre = −0.241), and YG (RNDVI-pre = −0.365), thus indicating that the increase in
precipitation in winter inhibited vegetation growth in some areas.

Correlation analyses were performed on NDVI, temperature, and precipitation across
each season (Table 4). A notably positive correlation between NDVI and temperature
was revealed (R = 0.815, p < 0.01), although that between NDVI and precipitation was
comparatively weak (R = 0.299). A significant correlation between NDVI and temperature
was shown in spring (p < 0.01), while that with precipitation was weak; therefore, it was
determined that the recovery of temperature in spring was beneficial to vegetation growth.
In summer and autumn, NDVI positively correlated with temperature and inversely
correlated with precipitation. Summer precipitation levels were higher, although they
fluctuated greatly, indicating that the increase in precipitation inhibited vegetation growth.
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In winter, NDVI significantly positively correlated with average temperatures (p < 0.01)
and precipitation (p < 0.05), while it negatively correlated with average winter precipitation.
Winter temperatures were lower, and precipitation appeared to indirectly inhibit the growth
of vegetation. To sum up, the vegetation growth in China responded more strongly to
temperature than precipitation.
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Table 4. CC of NDVI with temperature and precipitation.

Spring NDVI Summer NDVI Autumn NDVI Winter NDVI Annual NDVI

Spring average temperature 0.707 ** −0.068 0.116 0.438 ** 0.733 **
Summer average temperature 0.655 ** 0.033 0.155 0.471 ** 0.720 **
Autumn average temperature 0.522 ** 0.233 0.279 0.234 0.593 **
Winter average temperature 0.529 ** 0.007 0.021 0.264 0.540 **
Annual average temperature 0.766 ** 0.054 0.164 0.437 ** 0.815 **
Spring average precipitation 0.273 −0.033 −0.003 0.246 0.266

Summer average precipitation 0.312 −0.195 −0.017 0.354 * 0.287
Autumn average precipitation −0.137 −0.323 −0.176 0.254 0.004
Winter average precipitation 0.159 0.025 0.113 −0.043 0.129
Annual average precipitation 0.261 −0.258 −0.060 0.395 * 0.299

Note: *, p < 0.05; **, p < 0.01.

3.5. Residual Trend Analysis

Figure 13 shows the trend patterns and significance of NDVIres under the impacts of
climate change and human activities from 1982 to 2018. Considering the impact of climate
factors, 67.72% of the areas showed an increasing trend in NDVI, of which 56.20% showed a
significant upward trend (p < 0.05). The areas with significant increases in NDVIpre values
were mainly concentrated in NW, NN, YG, CJ, and SE. NDVIpre decreased in 32.28% of
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the areas, with this decrease being significant in 16.4% (p < 0.05), particularly in the east
of XJ. Over the study area, 49.89% of NDVIres showed an increasing trend, of which a
significant increase (p < 0.05) was recorded across 22.91% of the total area (mean increase
rate, 0.17%·10 a−1). The areas with significant increases in NDVIres affected by human
activities were mainly concentrated in the southwest of NE, NW, NN, YG, northwest CJ, SE,
and south XJ. Alternatively, NDVIres decreased in 50.11% of the regions, with this decrease
being significant (p < 0.05) in 9.97% of this area, particularly in northern XJ, southern QZ,
Daxing’anling, and NE.

               
 

 

 
                
      

 
                

 

  
       

           
              

              
               

            
             

              

Figure 13. Sen trend analysis and M–K significance test of NDVI under the impacts of climate
change (a,b) and human activities (c,d).

According to the impact degree of climate change and human activities, eight subareas
were classified and counted (Figure 14). Climate change has highly promoted the growth of
vegetation in CJ (3.24%), YG (1.50%), and NW (1.07%) and lowly promoted the growth of
vegetation in QZ (15.67%) and NW (11.20%). Human activities have highly promoted the
growth of vegetation in NN (1.11%) and lowly promoted the growth of vegetation in QZ
(11.85%) and NW (10.68%) but highly inhibited the growth of vegetation in NE (1.78%), XJ
(0.37%), NW (0.23%), and QZ (0.21%). Therefore, emergency mitigation actions are required
in areas (NE, XJ, NW, and QZ) where vegetation growth is highly inhibited.
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Figure 14. Classified statistics of impacts of climate change (a) and human activities (b) in
eight subregions.

4. Discussion
4.1. Vegetation and Climate Change Dynamics, 1982–2018

Novel long-term NDVI time series were generated by reconstructing datasets of
GIMMS and MODIS following S-G filtering to eliminate noise and reduce error in the
remote sensing data in this study. Results revealed that the vegetation growth rate in China
has shown a trend of gradual improvement (0.5%·10 a−1) over the past 37 years (1982–2018),
notably consistent with NDVI trends obtained in other global arid regions and Central
Asia [24,37]. Therefore, it was concluded that the intensity of photosynthesis is increasing
under the backdrop of climate change, as the vegetation displayed a marked greening trend.
The significantly improved areas of vegetation cover in China were greater than those of the
significantly degraded coverage from 1982 to 2018, with Central and Eastern China showing
the most remarkable significant trends of improvement. Research has shown that global
vegetation greenness has been increasing under long-term vegetation monitoring [37,38].
Data from various NASA Earth satellites have shown that certain anthropogenic activities,
such as afforestation and agriculture in China and India, dominate the global greening
process, supporting the gradual improvement of vegetation coverage observed here across
China [38]. Moreover, temperature trends have played a key role in ecological protection,
biodiversity, and climate change [38,39]. Over the study period, China has been warming
at a rate of 0.38 ◦C·10 a−1, confirming that the patterns observed over the study area are
consistent with the general global trends. Notably, 37 years of decreased rain in the north,
increased rain in the south, and significantly increased in precipitation to the west of China
were also observed. Based on the study of Li et al., this paper extended the GIMMS time
series, analyzed the dynamic changes of vegetation and its correlation with climate from
different regional units and finer time scales (seasons), and clarified the characteristics of
seasonal changes of vegetation in China and its seasonal response to climate. This study
found that the vegetation in QZ and the Greater Hinggan Mountains in the northeastern
part of Inner Mongolia shows a significant downward trend, and the results were consistent
with the trend observed by Li et al. The eastern part of Inner Mongolia shows a significant
downward trend, and the results were consistent with the trend observed by Li et al. [27].

4.2. Influences of Climate Change and Human Activities on Vegetation Growth

Vegetation growth is jointly influenced by climate change and human activity [40,41].
A significant positive correlation (R > 0; p < 0.05) was found between 35.75% of vege-
tated areas and temperature in spring, with these being significantly higher than those
observed in the other three seasons, likely due to the optimization of spring atmospheric
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and ground temperatures, as well as the transpiration levels for plant growth [42,43].
Summers were hot and rainy, and although the increase in temperature significantly in-
hibited vegetation growth (R > 0; p < 0.05) in NN, southern QZ, YG, and parts of NW,
the increase in precipitation significantly promoted vegetation growth (R > 0; p < 0.05)
in areas with less precipitation, such as NW, XJ, NN, and QZ. Due to the rising summer
temperatures, photosynthesis is weakened, respiration is enhanced, the plant water balance
is disrupted, transpiration is promoted, and more infrared rays are reflected in summer
than in winter. When temperatures exceeded the upper limits of suitable temperature
zones for vegetation, injurious effects were imparted on plants, hindering their growth
and development, especially during the flowering and fruiting period, when they are most
vulnerable. Thus, the higher are the temperatures, the greater is the injurious effect on the
plants. An increase in summer precipitation can promote vegetation growth in areas with
high temperatures and limited rainfall year-round, as optimal water and heat conditions
benefit vegetative growth. When coupled with increased efforts to protect and restore
ecosystems, such as afforestation, these factors have strongly contributed to promoting the
good ecological quality of vegetation [14,44]. Conversely, the vegetation in NE, northern
XJ, and the NW Xiaoxing’anling areas has significantly degraded in winter. Under the
influence of global climate change, winter precipitation significantly suppressed vegetation
growth (R > 0; p < 0.05) in NE (RNDVI-pre = −0.410), XJ (RNDVI-pre = −0.027), and NW
(RNDVI-pre = −0.256). In winter, lower temperatures and increased precipitation seemed to
have inhibited vegetation growth in western China.

Climate change and human activities exert two-way moderating effects on vegeta-
tion [44]. A previous study showed that human activities and overexploitation can degrade
vegetation in Xinjiang [45]. The present study shows that 22.91% of the total area witnessed
a significant increase in vegetation coverage (p < 0.05) under the effects of human activities
from 1982 to 2018, whereas 9.97% of the area experienced significantly decreased vegetation
cover (p < 0.05), thereby indicating a positive effect of human activities on vegetation
changes. Ecological projects, such as afforestation, construction of the Three-North Shel-
terbelt, wildlife protection policies, conversion of farmland to forests, and nature reserve
development projects, thus appear to have yielded a net positive impact on vegetation
growth [46–48]. Notably, the vegetation coverage in northern XJ, NE, and NW semiarid
regions showed a downward trend, likely a result of climate change, in addition to the
destruction of vegetation by human activities, such as overgrazing and cultivation, leading
to such effects as the desertification of grasslands, degradation of vegetation, decline of
productivity, enhanced wind erosion of land, and aggravation of soil erosion [49,50]. Hu-
man activities highly inhibited the growth of vegetation in NE (1.78%), XJ (0.37%), NW
(0.23%), and QZ (0.21%). Overexploitation of resources and rapid urban development
under the disturbance of human activities have also contributed to the severe degradation
of vegetation [14,41]. Therefore, emergency mitigation actions are required in NE, XJ, NW,
and QZ.

4.3. Study Limitations

Limited by the time range of data resources, the present research employed mul-
tisource remote sensing data to merge and extend time series interpolation, providing
reliable data support for ecosystem research. The vegetation changes observed here were
influenced by a combination of natural and anthropogenic factors. However, the present
study only considered the effects of temperature, precipitation, and human activities on
vegetation change. Therefore, subsequent analyses shall compile various climatic factors
affecting vegetation growth for screening via a stepwise regression method, thus revealing
the primary factors underlying vegetation growth. Considering the complexity of model
coupling, a black box structural equation model (i.e., neural network) will be used to
analyze the joint influence of anthropogenic activity and natural elements on vegetation
change. The socioeconomic and natural element data of the key ecological restoration
project areas will be collected and collated. Structural equation models will be constructed
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separately to conduct comparative studies to clarify the degrees of influence in each region,
providing a certain reference basis for constructing ecological projects [51–54].

5. Conclusions

The spatiotemporal characteristics of NDVI and climate factors in China were assessed
here using GIMMS NDVI3g data from 1982 to 2018. Results showed that:

1. Vegetation and climate change throughout China displayed marked spatiotemporal
heterogeneity. From 1982 to 2018, the vegetation showed a gradually increasing trend
at a rate of 0.5%·10 a−1. Therefore, it was concluded that the vegetation area in the
study area that is significantly improving (37.15%, p < 0.05) was statistically more
extended than that undergoing significant degradation (7.46%, p < 0.05).

2. From 1982 to 2018, the study area showed a warming trend at a rate of 0.38 ◦C·10 a−1,
whereas precipitation showed a stronger spatial heterogeneity, gradually decreasing
from the southeast to the northwest, with notably less rain in the north compared to
the south.

3. Temperature significantly affected the vegetation growth in spring (R > 0; p < 0.05);
however, the increase in summer temperatures significantly inhibited the growth
(R < 0; p < 0.05) in NN (RNDVI-tem = −0.379), QZ (RNDVI-tem = −0.051), YG
(RNDVI-tem = −0.162), some parts of NW (RNDVI-tem = −0.078), and other areas. The
regions with significantly positive correlations between spring NDVI, summer NDVI,
and precipitation (R > 0; p < 0.05) accounted for 10.13% and 13.51% of the study
area, respectively. In winter, NDVI significantly negatively correlated with precipi-
tation (R > 0; p < 0.05) and was mostly distributed in NE (RNDVI-pre = −0.410), NW
(RNDVI-pre = −0.256), and YG (RNDVI-pre = −0.365). Therefore, it was also concluded
that the increase in winter precipitation inhibited vegetation growth in some areas.

4. Residual trend analysis showed that human activities had a double-edged effect on
vegetation change, where growth across 22.91% of the study area was significantly
promoted by anthropogenic activity (p < 0.05) and inhibited across 9.97% of the study
area (p < 0.05).
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