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Abstract: This study aimed to assess the gap between the supply and demand of adult surgical masks
under limited resources. Owing to the implementation of the real-name mask rationing system, the
historical inventory data of aggregated mask consumption in a pharmacy during the early period
of the COVID-19 outbreak (April and May 2020) in Taiwan were analyzed for supply-side analysis.
We applied the Voronoi diagram and areal interpolation methods to delineate the average supply
of customer counts from a pharmacy to a village (administrative level). On the other hand, the
expected number of demand counts was estimated from the population data. The relative risk (RR)
of supply, which is the average number of adults served per day divided by the expected number
in a village, was modeled under a Bayesian hierarchical framework, including Poisson, negative
binomial, Poisson spatial, and negative binomial spatial models. We observed that the number of
pharmacies in a village is associated with an increasing supply, whereas the median annual per
capita income of the village has an inverse relationship. Regarding land use percentages, percentages
of the residential and the mixed areas in a village are negatively associated, while the school area
percentage is positively associated with the supply in the Poisson spatial model. The corresponding
uncertainty measurement: villages where the probability exceeds the risk of undersupply, that is, Pr
(RR < 1), were also identified. The findings of the study may help health authorities to evaluate the
spatial allocation of anti-epidemic resources, such as masks and rapid test kits, in small areas while
identifying priority areas with the suspicion of undersupply in the beginning stages of outbreaks.

Keywords: Bayesian hierarchical modeling; Voronoi diagram; surgical mask; small area estimation;
supply and demand

1. Introduction

A scientific review of the literature offers evidence in support of masks used as a source
to reduce the transmission of infectious diseases, such as coronavirus disease (COVID-19),
caused by the severe acute respiratory syndrome coronavirus-2 [1]. In response to the
COVID-19 pandemic, the Taiwanese government launched a nationwide real-name mask
rationing system to distribute adult and child surgical masks to citizens in February 2020 [2],
followed by the mandated wearing of masks when accessing public transportation in
April 2020. Under the epidemic control policy, access to surgical masks was limited to
community pharmacies and district public health centers across the country. Customers
freely purchased masks at the above-mentioned vendors but were verified via their National
Health Insurance cards [3]. Based on the weekly rationing number of masks, the quota
of masks that each person could buy was predetermined from February to May until the
Ministry of Health and Welfare (https://www.mohw.gov.tw/, accessed on 1 May 2022)
announced that surgical masks could be freely sold in retail channels, such as convenience
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stores, on 1 June 2020 [4]. However, owing to its close geographic and economic ties with
China, Taiwan was expected to have the second-highest number of imported cases in the
early phase of the COVID-19 pandemic [5].

Small area estimation (SAE) leverages statistical techniques to estimate parameters of a
particular demographic in a set of small geographical areas [6], which provides insights for
reorganizing local productive processes [7], understanding the extent of household poverty
in districts [8], and portraying the progress of the HIV prevalence rate in districts [9]. A
model-based SAE incorporates random effect terms in a mixed model to borrow information
from neighboring areas when estimating spatially correlated random effects [10,11]. For
non-normal autocorrelated responses, such as auto-Poisson counts, in SAE, there are
no closed-form solutions for normalization factors [12] and methods such as Markov
chain Monte Carlo procedures [13] are required, which are applied in Bayesian inference.
Bayesian hierarchical modeling, in which parameter values can arise from distributions,
is used to borrow strength across areas using both spatially structured and unstructured
random effects to estimate cross-stratified counts of interest [14]. Furthermore, the use of
Bayesian methodology has seen great advances because of the introduction of software and
statistical packages such as WinBUGS [15] and the integrated nested Laplace approximation
(INLA) package in R [16].

Serving as the fundamental administrative unit in Taiwan, a village area comprises rich
aggerated demographic and economic information from a regular nationwide survey and is
also the administrative unit for disease surveillance [17]. However, to our knowledge, few
studies have revealed the supply demand mismatch of medical resources, incorporating
SAE and small-area demographic and economic information [18,19]. We propose a generic
method to estimate the supply and demand of customers residing in a small area (village),
using an adult surgical mask as an example. The findings of the study may help health
authorities evaluate the allocation of anti-epidemic resources at the village level and identify
villages with suspected undersupply in the early phase of a pandemic.

2. Materials and Methods

This study aimed to model the supply (in terms of customer counts) of adult surgi-
cal masks served in a village in the Taipei metropolitan areas. In the following subsec-
tions, we highlight the following: (1) preprocessing of inventory datasets of adult surgical
masks, (2) delineation and areal interpolation of the customer count of adult surgical
masks using a Voronoi diagram from a pharmacy (source zone) to a village (target zone),
and (3) specification of a Bayesian spatial modeling framework on the relative risk (RR)
of supply.

2.1. Data and Preprocess of Data

Inventory datasets for surgical masks were obtained from the data market platform
of the National Center for High-Performance Computing (https://scidm.nchc.org.tw/,
accessed on 1 May 2022). The historical inventory number of aggregated adult and children
surgical masks per 10 min between 9 April 2020, and 27 May 2020, for pharmacies located
in Taipei City and New Taipei City was included (https://scidm.nchc.org.tw/dataset/nhi-
maskdata-archive, accessed on 1 May 2022) [20]. To obtain the daily average customer
number served by each pharmacy, we (1) examined the inventory number of adult surgical
masks to identify the negative slope of inventory intervals (∆Is

t1 . . . , i.e., the change in stock
level) every hour, (2) summed up the net inventory values of n negative slope intervals
(∆Is

t1 + ∆Is
t2 + . . . + ∆Is

tn) (Figure 1a) to obtain the total number of adult surgical mask in

date t (= Is
t ) for store s, (3) calculated the average sales number per day (Is = ∑ Is

t
T ) for store

s in a total of T days, and (4) estimated the average customer served per day (= Is

9 ) for store
s since the predetermined quotas of adult surgical masks per person per 2-weeks were nine
masks [21] at that period under the real-name mask rationing system in Taiwan [4].

https://scidm.nchc.org.tw/
https://scidm.nchc.org.tw/dataset/nhi-maskdata-archive
https://scidm.nchc.org.tw/dataset/nhi-maskdata-archive
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2.2. Voronoi Diagram and Areal Interpolation

This study aimed to estimate the daily average number of service counts at the village
level. In Section 2.1, we demonstrated the estimation of the average number of service
counts per day for each pharmacy. The original datasets of supply counts were at the point
level (pharmacy), whereas demand counts were extracted from the areal level (village).
Therefore, methods such as the Voronoi diagram and areal interpolation that deal with the
change-of-support problem [22], that is, spatial misalignment between supply and demand,
are required. We constructed the Voronoi diagram [23], which partitions a set of points
into areas for each pharmacy to generate a mutually exclusive surface of service counts.
Next, we applied areal interpolation [24] methods to redistribute the service counts from
the Voronoi diagram (source zone colored in green, and the centroid is the location of the
pharmacy) to the village (target zone colored in red) under the assumption of homogeneous
population density [25] (Figure 1b). For example, the total customer counts of village A
(thick red lines) are summed from four subsets (intersects): a1, a2, a3, and a4.

2.3. Bayesian Spatial Modeling on the Supply of Adult Surgical Mask

We propose four Bayesian hierarchical models, namely Poisson, negative binomial,
Poisson spatial, and negative binomial spatial models, to investigate the RR of supply. For
the ith village, the number of served customer count Yi (Formula (1)) is modeled as supply
following a Poisson distribution with mean λi [26]:

Yi ~ Poisson(λi = Eiρi) (1)

log(ρi = λi/Ei) = b0 + b1x1 + · · · + b6x6 + ui + υi (2)

λi = Eiρi where Ei, treated as an offset (= r × Popi), is the expected number (demand)
of served adults for each village i. r (= ∑Yi/∑Popi) is the observed (overall) service rate for
the total n villages [27] and Popi is the adult number (aged ≥ 15 years) in village i. ρi is the
village-specific RR that quantifies whether the village i has an over- (ρi = λi/Ei > 1) or under-
(ρi = λi/Ei < 1) supply than that expected. b0 is the intercept, representing the average
RR in the study area. b1, . . . , b6 are the estimated parameters for independent variable
x1, . . . , x6 respectively, including: (1) the total number of pharmacy in a village, (2) the
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median annual per capita income in 2019 of the village, the percentages of (3) business area,
(4) residential area, (5) mixed area, and (6) school area in a village.

To borrow strength from surrounding villages, random effect terms: ui + υi were
added after the fix effect terms (b0 + b1x1 + · · · + b6x6) and defined as the Poisson spatial
model (Formula (2)). ui is the spatially structured residual using intrinsic conditional
autoregressive (ICAR) specification, that is, the Besag-York-Mollie model [28] such that:

ui(u−i ∼ Normal (µi +
1
Ni

∑
n

j=1aij (uj − µj), si
2) (3)

where µi is the mean for village i and si
2 = σu

2 / Ni is the variance for village i, which
depends on the number of neighbors Ni. aij is the weighting matrix defining the contiguity
of villages (Formula (3)). υi is the unstructured residual such that (Formula (4)):

υi ~ Normal (0, συ
2) (4)

For a Poisson distribution, we assume V(λi) = E(λi). Considering overdispersion data:
V(λi) > E(λi), a Poisson distribution with a Gamma prior: Gamma (ϑ, ϑ) on λi, that is, a
negative binomial distribution (Formula (5)), might be suggested [29,30]:

Yi ∼ NegativeBinomial

(
λi, λi +

λ2
i

ϑ

)
(5)

Additionally, identical random effect terms from Formula (2) were specified for the
negative binomial spatial model. In the absence of information, default vague priors
are applied to the fixed effect. Regarding the prior distributions of random effects, a
gamma (0.0001, 0.0001) prior with small values of precision parameters was chosen for
both structural and unistructural random effects [31,32]. In addition to estimate the ρi, we
further calculated the exceedance probabilities of RR of supply being less than 1, that is, Pr
(RR < 1) [33] to identity the village with suspicion of undersupply.

The Poisson and negative binormal models serves as the benchmark for their corre-
sponding spatial counterparts, and to investigate the performance of these models, the
deviance information criterion (DIC) [34,35] and Watanabe-Akaike information criterion
(WAIC) [34,36] were evaluated. For predictive accuracy assessment, the mean absolute
percentage error (MAPE) and mean squared error (MSE) were also applied [37]. Bayesian
hierarchical modeling was implemented using the INLA approach [38], which is more
reliable than the harmonic mean method [39], in the R-INLA R package [40,41].

3. Results

We modelled the supply and demand of adult surgical masks served at the village
level in Taipei metropolitan areas using inventory datasets during the early phase of the
COVID-19 pandemic. The RR of supply, which is the average number of adults served
per day divided by the expected number in a village, was modelled using a Bayesian
hierarchical framework. The corresponding uncertainty measurement, villages where the
probability exceeds the risk of undersupply, that is, Pr (RR < 1), was also presented.

As the largest metropolis in Taiwan, the Taipei metropolitan areas encompass a popu-
lation of 6.59 million and a mean population density of 0.002 (#pop/meter2) (Figure 1a) in
2020. There are a total of 1488 villages and 1774 pharmacies in the study area. The median
population of the villages is approximately 4268 people. The median supply of adult
surgical masks, i.e., the average daily customer count in a village, is 105 adults (Figure 2b;
Table 1), whereas the total supply in the study area is 193,052 customers, indicating an
overall service rate of r = 0.033.
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Table 1. Descriptive statistics of the independent/dependent variables (supply count) and raw
relative risks ρi (n = 1488).

Variable Minimum 1st Quantile Median 3rd Quantile Maximum VIF

store number 0 0 1 2 9 1.136
median income (1000 NTD) 222 378 439 528 1031 1.076

business area % 0 0.006 0.019 0.052 0.457 1.118
residential area % 0 0.062 0.165 0.287 0.783 1.197

mixed area % 0 0.024 0.127 0.233 0.735 1.260
school area % 0 0 0.001 0.031 0.632 1.040
supply count 0 47 105 186 854 −

ρi 0 0.491 0.850 1.446 18.896 −
VIF: variance inflation factor.

Figure 2a shows the 2020 population density of Taipei metropolitan areas, in which
high population density values are concentrated in central business district areas (colored
in red). Ranging from 0 to 854 (Table 1), the distributions of the average daily supply counts
of adult surgical masks in a village were (presented in Figure 2b) were similar to the pattern
of population density (Figure 2a).

The median values for the independent variables include (1) the total number of phar-
macies in a village, (2) the median annual per capita income of the village, the percentages
of (3) business, (4) residential, (5) mixed, and (6) school areas in a village are 1, 439,000 (New
Taiwan Dollars), 0.019, 0.165, 0.127, and 0.001, respectively. The raw RR, which ranged from
0 to 18.896, had a median value of 0.850. (Table 1). To rule out multicollinearity among the
independent variables, the values of the variance inflation factors (VIF) for the six variables
were also reported (Table 1). The VIF values were all less than 10 [42], indicating that
multicollinearity was not observed. The size parameter ϑ for the negative binomial model
is 1.600 (Table 2), implying overdispersion in the data.

For the Poisson spatial model (Table 2), we observed that the posterior mean of the
independent variable: store number is β̂storeNumber = 0.124 with a 95% credible interval
equals to (0.095, 0.153) (Table 3), indicating the store number increases the supply. On
the contrary, β̂log(MedianIncome) = −0.565(−0.853, −0.277), β̂residentialArea% = −2.821(−3.224,
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−2.418) and β̂mixArea% = −0.990(−1.491, −0.489) have an inverse relationship on the sup-
ply. Conversely, β̂schoolArea% = 0.467(0.012, 0.923) is positively associated with the supply.
Regarding the random effect, the corresponding posterior means (standard deviations) of
spatial (1/σu

2) and nonspatial (1/συ
2) parameters for the Poisson spatial model are 0.497

(0.048) and 6.380 (1.279), respectively (Table 2). For the negative binomial spatial model,
since the size parameter ϑ is large (posterior mean = 24.957), the values of parameter are
similar to those of the Poisson spatial model since the variance of the negative binomial
spatial model is approaching to its mean.

Table 2. Posterior means and standard deviations (sd) for four Bayesian hierarchical models.

Variable Poisson: Mean(sd) Negative
Binomial: Mean(sd)

Poisson
Spatial: Mean(sd)

Negative Binomial
Spatial: Mean(sd)

intercept 1.099(0.062) 2.190(0.564) 3.702(0.900) 3.718(0.906)
store number 0.119(0.001) 0.137(0.016) 0.124(0.015) 0.124(0.015)

log(median income) −0.214(0.010 −0.341(0.094) −0.565(0.147) −0.565(0.147)
business area % 1.632(0.039) 1.833(0.410) 0.559(0.411) 0.559(0.413)

residential area % −0.976(0.021) −1.607(0.167) −2.821(0.205) −2.822(0.207)
mixed area % 0.426(0.021) 0.131(0.214) −0.990(0.255) −0.990(0.258)
school area % 1.219(0.025) 0.939(0.232) 0.467(0.232) 0.467(0.234)

spatial component (1/σu
2) 0.497(0.048) 0.508(0.042)

iid component (1/συ
2) 6.380(1.279) 7.689(1.715)

size parameter (ϑ) 1.600(0.055) 24.957(9.606)
DIC * 98,613 17,015 12,240 13,616

WAIC * 97,560 17,019 11,876 13,891
MAPE * 0.694 0.600 0.035 0.066
MSE * 1.738 1.671 0.002 0.039

* DIC, deviance information criterion; WAIC, Watanabe-Akaike information criterion; MAPE, mean absolute
percentage error; MSE, mean squared error.

Table 3. The 95% credible intervals of the posterior mean of the independent variables by four
Bayesian hierarchical models.

Title 2 Variable 0.025 Quantile 0.500 Quantile 0.975 Quantile
Poisson store number 0.116 0.119 0.121

log(median income) −0.234 −0.214 −0.194
business area % 1.555 1.632 1.708

residential area % −0.016 −0.976 −0.936
mixed area % 0.385 0.426 0.467
school area % 1.170 1.219 1.268

Negative binomial store Number 0.106 0.136 0.168
log(median income) −0.523 −0.340 −0.155

business area % 1.041 1.828 2.649
residential area % −1.932 −1.607 −1.279

mixed area % −0.286 0.130 0.552
school area % 0.492 0.936 1.401

Poisson spatial store number 0.095 0.124 0.153
log(median income) −0.853 −0.565 −0.277

business area % −0.248 0.559 1.366
residential area % −3.224 −2.821 −2.418

mixed area % −1.491 −0.990 −0.489
school area % 0.012 0.467 0.923

Negative binomial spatial store number 0.095 0.124 0.153
log(median income) −0.853 −0.565 −0.275

business area % −0.251 0.559 1.372
residential area % −3.228 −2.823 −2.416

mixed area % −1.495 −0.990 −0.482
school area % 0.009 0.466 0.926
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We suggest a Poisson spatial model based on DIC, WAIC, MAPE, and MSE (Table 2),
with corresponding values of 12,240, 11,876, 0.035, and 0.002, respectively, with the best
goodness of fit. Figure 3a–d show village-specific maps of the estimated RRs of supply
counts based on four Bayesian hierarchical models (Poisson, Poisson spatial, negative bino-
mial, and negative binomial spatial models, respectively) against the raw RRs (Figure 3e).
Overall, we observed that aspatial models (Figure 3a,c) underestimate the RRs, and the
patterns agreed with the results of the goodness of fit tests in Table 2. Finally, we calculated
the exceedance probabilities of the RRs of supply being less than 1, that is, Pr (RR < 1)
(Figure 4b) for the Poisson spatial model (Figure 4a), which is useful for identifying villages
with an undersupply.
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4. Discussion

This study proposed a generic method for estimating the supply and demand of adult
surgical mask customers served in a small area. Demand is characterized by the expected
number of customers served, whereas the supply side estimate comes from the observed
number of customers served in a village, delineated from the neighboring pharmacies. The
under- or over-supply of surgical mask in a village of Taipei metropolitan areas is evaluated
by ρi < 1 or ρi > 1, which is defined as the RR in the literature of Disease Mapping and
Spatial Epidemiology [43,44].
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Taking a surgical mask as an example, we identified villages with a suspected under-
supply of adult surgical masks (Figure 4b). We also evaluated the factors associated with
the supply of customers in the ecological regression (Table 3). The findings of this study
may be helpful for health authorities to evaluate the spatial allocation of anti-epidemic
products, such as vaccines, in small areas while identifying priority communities with an
undersupply [45,46].

We observed that the number of pharmacies in a village is associated with increasing
supply, while the median annual per capita income has an inverse relationship in the
Poisson spatial model. Regarding land use percentages, the percentages of residential and
mixed areas in a village were negatively associated, while the percentage of school area was
positively associated with supply. In a spatial dependency model analyzing the sales of
medical products [47], a significant negative sign on the median household income (block
group level) was identified in Houston, Texas. Meanwhile, land use mix, defined as the
entropy index of residential, commercial, business, public, cultural, and other land use
areas against the total floor area, is positively associated with retail sales in Seoul, South
Korea [48].

Similar to the study assessing offenders’ counts across the enumeration districts of
Sheffield, England in 1995, we found that compared to the negative binomial counterpart,
the Poisson spatial model provides better model fitting, indicating that all the variance
excess is successfully modeled by the random effect term [49].

The timely distribution of anti-epidemic materials is crucial in the early stages of an
outbreak, such as COVID-19. Owing to the implementation of the real-name mask rationing
system, historical inventory data of aggregated mask consumption during the early period
of the COVID-19 outbreak in Taiwan was recorded for supply side analysis. We applied the
Voronoi diagram and areal interpolation methods to delineate the average supply count
from a store to a village. Since the variance of the average sales count for each store was also
estimated, further evaluation of the uncertainty of the average sales count for each village
can be performed by Monte Carlo simulation [50]. For the demand side estimation, we
implemented the overall service rate r to each village. Indirect standardization accounting
for population size, age, and gender could be applied for the estimation of cross-stratified
rage×gender to obtain Ei = ∑ rage×gender × popi

age×gender [51], if cross-stratified counts (age by
gender strata) of inventory data are available from the Ministry of Health and Welfare in
the future.

The limitations of this study include the following: (1) we studied pharmacies located
in Taipei metropolitan areas, and our findings should be generalized to other locations with
caution; (2) due to the unavailability of commuting flow datasets at the village level, the
effect of in-/out- flows on the consumption of surgical masks was ignored; (3) we assumed
a homogeneous population density when conducting areal interpolation of supply counts,
which could be released by methods such as dasymetric mapping [52] when additional
ancillary information is available; (4) individual differences in consumption (such as
knowledge of hygiene, socioeconomic status, and purchasing power) and reuse of surgical
masks [53,54] were ignored in this ecological study; (5) we did not consider the irregular
change in stock level resulting from the logistics system, and such information can be
extracted and included in the model for adjustment.

5. Conclusions

Under the Bayesian hierarchical framework, we proposed a generic method to estimate
the supply and demand of customer counts at the village level in Taipei metropolitan
areas during the initial stages of a pandemic, using adult surgical masks as an example.
The findings of this study may be helpful for health authorities to evaluate the spatial
allocation of anti-epidemic products, such as masks and rapid test kits, in small areas, while
identifying priority areas with suspected undersupply.
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