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Abstract: The accurate prediction of Municipal Solid Waste (MSW) electricity generation is very
important for the fine management of a city. This paper selects Shanghai as the research object,
through the construction of a Bidirectional Long Short-Term Memory (BiLSTM) model, and chooses
six influencing factors of MSW generation as the input indicators, to realize the effective prediction
of MSW generation. Then, this study obtains the MSW electricity generation capacity in Shanghai
by using the aforementioned prediction results and the calculation formula of theMSW electricity
generation. The experimental results show that, firstly, the mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE) values of the BiLSTM model are 42.31,
7.390, and 63.32. Second, it is estimated that by 2025, the maximum and minimum production of
MSW in Shanghai will be 17.35 million tons and 8.82 million tons under the three scenarios. Third, it
is predicted that in 2025, the maximum and minimum electricity generation of Shanghai MSW under
the three scenarios will be 512.752 GWh/y and 260.668 GWh/y. Finally, this paper can be used as a
scientific information source for environmental sustainability decision-making for domestic MSW
electricity generation technology.

Keywords: MSW generation volume forecasting; electric power generation; waste to energy; BiLSTM

1. Introduction

With the growth of the world’s population, economic development and the acceler-
ation of urbanization, Municipal Solid Waste (MSW) has increasingly become a focus of
attention [1]. At present, the large amount of MSW and improper disposal are the most
challenging environmental problems faced by all countries in the world, and it is also
one of the important problems of fine urban management in China. From the source,
MSW is collected from household, industrial, commercial buildings and urban sources,
and its generation is closely related to human activities [2]. From the perspective of MSW
treatment methods, they are landfill, incineration, and composting respectively. In the
volume of MSW collected, landfill accounted for 52%, incineration accounted for 45%, and
composting accounted for only 3% [3]. It is urgent for China to accurately predict the
amount of MSW generated, and then accurately predict the amount of electricity generated
by MSW [4]. MSW generating electricity is a form of waste-to-energy (WtE); it can help
bridge the gap between sustainable environment and energy supply, reduce the amount of
waste sent to landfills, and generate useful electricity at the same time to achieve sustainable
urban development.

In the face of the growing MSW generated by complex challenges, China has invested
a lot of energy in MSW management and technological development, both to conform to
national policy and try to reduce the solid waste landfill area, seeking the right MSW dis-
posal methods, so the MSW electricity generation in our country, MSW management, plays
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a more and more important role, and accurate prediction of MSW generation can meet part
of the energy demand and ensure effective MSW management to overcome environmental
pollution. At present, the research methods used in MSW electricity generation predic-
tion are mainly divided into the traditional statistical prediction method [5], time series
prediction method [6], and combination prediction method [7]. The traditional statistical
forecasting method is based on MSW and uses the quality of combustible waste in MSW
to calculate and forecast the electricity generation of MSW [8]. As the waste composition
index is not fixed, the prediction range of MSW electricity generation is unstable and the
precision is not high. The time series prediction method effectively solves the complexity
of statistical methods and has been successfully applied to a variety of complex nonlinear
organic solid waste problems; the prediction accuracy is higher than that of traditional
statistical prediction methods [9]. Although the single model has made a breakthrough
in prediction accuracy, it still cannot reach a satisfactory height. On that basis, Miyuru
Kannangara et al. [10] used the combination model of decision tree and neural network to
predict the electricity generation of Canadian MSW and found that the combined prediction
method had better prediction performance compared with the single prediction method.
At present, it is urgent to optimize the research basis to predict the electricity generation
of MSW. In recent research, the deep learning method has been gradually applied to the
prediction process of MSW electricity generation, but the prediction accuracy of the simple
Long and Short -Term Memory (LSTM) neural network model is often lower than that of
the combined model prediction method.

In this study, a Bidirectional Long Short- Term Memory (BiLSTM) was established to
predict the MSW generation in Shanghai from 2020 to 2025 by using six key influencing
factors to reduce the uncertainty in the prediction model. Secondly, based on the predicted
results of MSW generation, this study predicts the electricity generation of MSW and
puts forward appropriate suggestions for sustainable environmental development. The
contributions of this study mainly include three aspects: (1) A combined prediction model
of MSW generation based on BiLSTM was established. (2) National economic indicators
include Gross Domestic Product (GDP), per capita disposable income and per capita
consumption expenditure, population indicators include population density and year-
end resident population, social indicators include the number of urban public transport
vehicles (taken as input indicators), and the new combination model is used to improve
the prediction accuracy. (3) Combined with the development of the region, taking the
prediction result of MSW generation, the electricity generation of MSW is reasonably
predicted, and then the optimization scheme of MSW disposal is put forward to save the
urban land area and improve environmental quality.

2. Literature Review
2.1. Influencing Factors of MSW Generation

MSW generation is a complex process, mainly including MSW generation volume
transportation, collection and classification, MSW incineration, MSW heat electricity gener-
ation, pollutant treatment, and other aspects. The electricity generation of MSW is mainly
affected by the generation of the combustible part of MSW in solid waste. The research on
the influencing factors of MSW mainly focuses on the three aspects of economy, society,
and population. Among them, the economic indicators commonly used by scholars include
GDP [11,12], per capita consumption expenditure, per capita disposable income [13], the
consumption level of residents, total retail sales of consumer goods [14], social indicators
include the number of urban public transport vehicles, green space area, road area and
urban green coverage rate [15], while population indicators include population number
and population density [16]. The influencing factors of MSW generation required in this
study are determined by scholars’ existing research results.

In addition, some scholars have further studied the relationship between MSW gen-
eration and the main influencing factors. Lakioti et al. [17] studied the impact of social,
economic, and demographic factors on a small scale (i.e., family level or urban unit) and
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adopted factors, including family size, education level, socioeconomic status, and income
level [18], together with age, household employment, and population per household [19,20]
and seasons [21]. Ogwueleka [22] showed that there was a strong positive correlation be-
tween MSW generation and household size and income level, as well as high-income
groups. There was a significant difference between the household size of high-income
groups and average daily per-capita household waste generation, and household con-
sumption pattern would be affected, leading to changes in the composition and quantity
of household solid waste. Khan et al. [23] evaluated the generation of household solid
waste from different social and economic factors, such as family income, education pro-
fession, and number of family members. The generation rate and composition of MSW
were closely related to various social and economic parameters in the community and the
results showed that the middle socio-economic group produced the largest amount of solid
waste. Wang et al. [24] used the ESDA method to analyze the effects of population, green
coverage rate, industrial structure, and road density on the amount of MSW generation,
and found that population, technology, urbanization, and green coverage rate all have
inhibitory effects on MSW generation. Industrial structure, number of hospital beds per
capita, and road density are the driving factors of MSW generation. Cheng et al. [25]
studied the relationship between GDP, population size, education level, gas permeability,
and the proportion of tertiary industry and the amount of MSW generation, and found that
population growth and urbanization promoted the generation of MSW, and the increase in
gas permeability reduced the emission of MSW. At the same time, the proportion of the
tertiary industry is significantly positively correlated with the proportion of MSW.

2.2. MSW Prediction Models

In recent years, a variety of forecasting methods have been applied to the MSW gen-
eration prediction; existing research can be divided into three types, as listed in Table 1:
linear regression method [26], statistical analysis methods [27], and artificial neural net-
work [28,29]. These models do not fully consider the long-term correlation between the
input samples, so the ability to improve the accuracy of the prediction model of MSW gen-
eration is very limited. Sunayana et al. [30] used nonlinear autoregressive (NAR) to predict
the monthly generation in Nagpur (India) in 2023, and established a classical multiplication
decomposition model of simple linear regression for time series, with a maximum error
of 6.34%, overcoming the data availability problem. Li et al. [27] determined three series
of important parameters through statistical analysis, sampling survey, and the Analytic
Hierarchy Process: the amount of waste generated by unit consumer expenditure, the
distribution of consumer expenditure to activities in unit time, and the time allocation of
different resident groups to activities. Noori et al. [31] developed an improved support
vector machine model combined with principal component analysis (PCA) technology to
predict the weekly generation of MSW, with an r2 of 0.75 and MRE of 3.35%. However, the
SVM model is not only a small sample prediction model but also, with the increase in train-
ing data, it will consume a lot of time and computer performance, affecting the universality
of the model. Sun et al. [32] used MATLAB to build an ANN neural network model and
predict the future MSW generation capacity of Bangkok. In this case, a recursive neural
network is introduced to improve the accuracy of MSW electricity generation prediction.

Compared with traditional statistical methods and machine learning methods, deep
learning technology solves the problem that traditional statistical methods find it difficult
to deal with nonlinear data. RNN is a deep learning network, and there is a recursive
link in the network structure. The relationship between samples before and after learning
can be considered, especially for processing time series signals. Some scholars have
studied various improvement methods for the problems of gradient explosion and gradient
disappearance. The emergence of the LSTM neural network effectively solves the problems
existing in previous models and has achieved considerable results in the field of MSW
generation. Dongjie Niu. [33] selected an LSTM model to make a long-term prediction of
MSW, considering the static and dynamic change characteristics of MSW; it was found
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that the LSTM model had a better prediction effect compared with ANN and SVM. At
present, it is difficult for a single model to achieve a better prediction effect, but the method
of multi-model fusion finds it easier to improve the accuracy of the prediction model.
Therefore, in order to accurately predict the generation of MSW, this study constructed the
BiLSTM combined model, optimized the input index and improved the prediction accuracy
of the model.

Table 1. Research and comparison on prediction of Municipal Solid Waste (MSW).

Methods Models Authors (Year) Cases Performance

linear regression method nonlinear autoregressive Sunayana et al. (2021) India maximum error of 6.34%
regression analysis Ghinea et al. (2016) America -

statistical analysis methods statistical analysis Li et al. (2011) Beijing -

artificial neural network
Artificial neural network Alidoust et al. (2021) [34] - R2 = 0.98

ANN neural network Sun et al. (2017) Bangkok R2 = 0.96
support vector machine Noori et al. (2009) Mashhad MRE: 3.35%

- This symbol indicates no mention of performance.

3. Methodology and Study Area

BiLSTM is composed of a bidirectional recursive neural network (BI-RNN) and long
and short memory (LSTM), which is a standard neural network. In this case, BiLSTM
is generated to solve the problems of gradient explosion and information deformation.
Besides, it can effectively handle the sequential data composed of reason-time instances.

BiLSTM model can not only analyze the subtle relationship characteristics among
the original index factors, but also combine the self-learning and fault-tolerant ability
of the neural network, which can not only improve the prediction accuracy of MSW
production amount, but also improve the network learning efficiency, and then reasonably
and effectively predict the MSW power generation. The steps for predicting MSW power
generation based on the BiLSTM model are shown in Figure 1.

3.1. Basic Principles of BiLSTM

In order to improve the learning ability of the traditional LSTM model, the bidirectional
relationship of input data in the time structure is considered, rather than the single direction
through the LSTM gate of input processing, and the bidirectional LSTM model fully
considers the next information when processing the current time series data. This kind
of two-way processing obtains more structural information through the gate mechanism
and enhances the method of information intelligence. The BiLSTM model encodes the
information in order to obtain the information characteristics of the data before and after,
thus improving the generalization ability. The LSTM unit starts from the input sequence,
and the inverse form of the input sequence has been integrated into the LSTM network. The
BiLSTM model generated by the forward ht and backward layers h′t is shown in Figure 2.
Calculate forward from time 1 to time t in the forward layer to get and save the output of
forwarding at each time. Calculate Backward from time t to Time 1 in the backward layer
to get and save the output of the backward layer at every moment. Finally, the final output
can be obtained at each moment by combining the out put results at the corresponding
moments of the forward layer and the backward layer. The mathematical expression is
shown in Equations (1)–(3):

ht = f (w1xt + w2ht−1) (1)

h′t = f (w3xt + w5ht−1) (2)

σt = g
(
w4ht + w6h′t

)
(3)

where, Wi (i = 1, 2, · · · ,) are six independent weight matrices, as shown below: Input
the forward and backward hidden layer weights (w1,w3), hidden layer to hidden layer
weight (w2,w5), hidden layer forward and backward output layer weight (w3,w6). These six
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weights are repeated at each time step. σt is the final output value obtained by combining
the output of the forward and backward layers.
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3.2. Study Area

Shanghai is China’s leading economic city and financial center and aims to become
the world’s top city and science and technology center. With the sustained, stable, and
rapid development of the national economy, the demand for resources and the output of
MSW are increasing day by day, which restricts the sustainable development of cities. How
to properly solve the collection, transportation, and treatment of MSW has become the
primary work of Shanghai environmental protection department. In 2019, the amount of
MSW in Shanghai rose to 10.38 million tons, half of which is burned, and the Shanghai
municipal government has been trying to develop a mature urban circulation system, set
up the big four garbage classification system, and the city government also issued the first
Chinese city waste management regulations, in accordance with those established from the
source separation, the final disposal of the entire collection, and recycling chain, and the
regulations took effect on 1 July 2019; it is expected that Shanghai’s recyclable waste will be
better managed. It is also important to assess the recycling capacity of recyclable waste so
that a recycling system can be optimized.

3.3. Data Source

Based on scholars’s research on the factors influencing the volume of MSW and the
availability of indicator data in Shanghai, this study collected and integrated the available
indicator data sets for 1978–2018 for 6 influencing factors in 3 major categories: social,
economic, and demographic. Namely, GDP (CNY billion), per capita disposable income
(CNY), per capita consumption expenditure (CNY), public transport vehicles numbers
(car), the permanent resident population (10,000 people), permanent resident population
density (people/square kilometer), for total of 246 annual data points. The data are all from
the 1978–2018 Shanghai Statistical Yearbook published by the Shanghai Municipal Bureau
of Statistics. Table 2 shows the details of the six indicators.

Table 2. Six indicator statistics.

Max Min Average Std. Dev

MSW 1038 108 474.54 247.95
Gross regional product 32,679.87 272.81 8071.50 9595.54

Permanent resident population at year-end 2424 1098 1662.07 470.75
Per capita disposable income of urban households 60,231 560 16,637.90 18,126.98

Per capita consumption expenditure of urban households 46,015 488 12,127.02 12,873.64
Number of urban public transport vehicles operating 23,516 2983 13,011 6824.21

The population density 3823 1785 2670.78 720.99
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3.4. Prediction Model Evaluation Index

Mean absolute percentage error (MAPE), root mean square error (RMSE), and mean
absolute error (MAE) were used to evaluate the prediction performance and fitting degree
of the model constructed in this paper. MAPE, RMSE, and MAE are used to measure the
difference between the simulated data and the model data, and also the value range. When
the predicted value is in complete agreement with the real value, it is equal to 0. The greater
the error, the greater the value [0,+∞).

The calculation formula of average absolute percentage error is shown in Equation (4).

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (4)

The root mean square error calculation formula is shown in Equation (5).

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (5)

The calculation formula of average absolute error is shown in Equation (6).

MAE =
1
n

n

∑
i=1
|ŷi − yi| (6)

where, ŷ = {ŷ1 , ŷ2, · · · , ŷn} is the predicted value, y = {y1 , y2, · · · , yn} is the true value,
and n is the number of indicator variables.

3.5. Electricity Generation of MSW Estimation in This Study

The incineration of combustible components of refuse releases a lot of heat energy.
The captured heat can be used to generate steam in a boiler, which drives a steam turbine to
generate electricity. Thus, the useful heat produced in a steam turbine is generated by mass
combustion of usable waste parts, MW1 (or—organic matter), MW2 (paper), MW3 (plastic),
MW6 (rubber and textiles), and MW7 (wood) can produce electricity per year EP(INC, M-B),
which can be calculated as follows (Ayodele et al., 2017):

Ep(INC, M− B) =
(LHVW ·Mw)× η

3.6
(7)

where LHVW ·Mw is the dot product of two vectors: LHVw =[LHVW1, LHVW2, LHVW3,
LHVW6, LHVW7] and Mw = [MW1, MW2, MW3, MW6, MW7]. LHVw(MJ/KG) is the
waste LHV. The LHV(low humidity and high LHV) of biologically dried combustible is
shown in Table 3 [35], where LHV2(MJ/KG) is the new energy content of biologically dried
MSW components. The individual available component Mw can be obtained by using the
following methods:

MW(C) =
∑ n

t=1MW(C)(t)
n

(8)

where (C) refers to 1, 2, 3, 6, and 7, respectively, to individual waste components: organic
matter, paper, plastics, rubber, textiles, and wood. Annual electric energy EP(INC, RDF) is
used through the burning of RDF.

EP(INC,RDF) =
LHVRDF ×MU(INC) × η

3.6
(9)
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Table 3. Biological drying hypothesis.

Waste Constituents Class Moisture Content
(% wb)

Water
Reduction Via
Biodrying (%)

Organic Matter
Reduction Via
Biodrying (%)

LHV1 (MJ/kg) LHV2 (MJ/kg)

Organics W1 84.8 75 16 4.4 11.3
Paper W2 12.2 60 8 11.7 13.2

Plastics W3 14.8 35 0 37.7 38.1
Glass and ceramics W4 2.4 0 0 0.0 0.0

Metal W5 2.7 0 0 0.0 0.0
Textiles and Rubber W6 7.8 60 6 17.2 21.0

Wood and others W7 5.4 45 6 9.8 12.3

The LHVRDF is 17.9 MJ/kg [35]. The conversion efficiency of mass incineration is
η = 0.29 [36] and 0.26 RDF incineration [37]. MU(INC)(tons/year) is the average mass of
waste burned each year by

MU(INC) =
∑ n

t=1MU(INC)(t)
n

(10)

MU(INC)(t) is the amount of waste (n) (in tons) available for incineration during the project
period. For the quality of waste composition under different scenarios, see Figure 3.
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4. Results
4.1. Model Accuracy

In order to effectively evaluate the performance of BiLSTM in the prediction of MSW,
this paper adopts traditional machine learning and deep learning prediction methods as a
comparative experiment. Based on the same input time series, the learning of each model
is tested and its errors are compared and analyzed. In the experiment, support vector
regression (SVR), gate regression unit (GRU), bidirectional and support vector regression
(BI-SVR), and bidirectional and gate regression (BI-GRU) are used to predict the time series,
and comparative tests are carried out. Besides, the proportion of the training set to the
test set was the same as that of the BiLSTM model, and five comparative experiments
were conducted. In order to objectively evaluate and describe the performance of these
six prediction models, the prediction error values of each model are calculated according
to the above formulas. The BiLSTM neural network contains four parameters that affect
the prediction accuracy of the model, including the learning rate, the time step of each
layer, the number of Hidden_layers of each layer and the number of training epochs. When
the number of Hidden_layers gradually increases, the number of Hidden_layer neurons
has little effect on the results, and the prediction error curve is relatively stable. In the
training process of the model, the setting of a single parameter is different, but other
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parameters are the same, so as to find the best prediction model. Each parameter setting in
the proposed model is shown in Table 4. The process steps of adjusting parameters are as
follows: (1) Adjust the BiLSTM model architecture suitable for time series prediction and
test the applicability of the model architecture to the data set. (2) The optimal number of
BiLSTM Hidden_layers is determined according to the size of the data set. (3) According
to the data characteristics of the data set, the optimal activation function is selected from
the four types of sigmoid, tanh, relu, and linear functions. (4) The learning rate value, time
step, and batch size are determined by grid search. At the beginning of the experiment,
the default super parameter setting is used to observe the change in loss, preliminarily
determine the range of each super parameter, and then adjust the parameters. For each
super parameter, we only adjust one parameter each time, and then observe the loss change
until the optimal parameter is determined.

Table 4. Parameter setting for the BiLSTM neural network.

Model Time Step Learn Rate Batch_Size Hidden_Layer Epoch Mape (%)

BiLSTM

2 0.01 2 32 5000 11.236
2 0.01 2 64 10,000 9.626
2 0.001 2 64 10,000 7.390
2 0.001 3 64 10,000 10.428
2 0.001 3 128 10,000 12.528

The MAE, MAPE, and RMSE experimental results of the original test set are shown
in Table 5. Among the six prediction model algorithms, LSTM has the largest prediction
error, and the traditional SVR algorithm is second only to the LSTM algorithm. The values
of MAE, RMSE, and MAPE of LSTM and SVR are 163.23, 19.42, 176.32, and 163.28, 19.32,
183.24, respectively. Compared with the traditional SVR algorithm, the MAPE value of
the BI-SVR prediction algorithm is significantly decreased, and the prediction accuracy
is significantly improved, among which the MAPE value of the BI-SVR algorithm and
SVR algorithm are 14.32 and 19.32, respectively. Compared with BI-GRU and BI-SVR, the
GRU and SVR algorithms show little change, but they also play a role in improving the
prediction performance of the model. Compared with other algorithms, the prediction
error of the BiLSTM combined model is the smallest, and the MAPE value is 7.390.

Table 5. Comparison of prediction performances using deep learning models.

Model MAE Mape (%) RMSE

SVR 163.28 19.32 183.24
GRU 173.82 17.32 163.23
LSTM 163.23 19.42 176.32
Bi-SVR 128.32 14.32 132.73
Bi-GRU 123.53 18.32 125.53
BiLSTM 42.31 7.390 63.32

4.2. Predicted MSW Generation
4.2.1. Scenarios Setting

The study sets different scenarios and calculates the value of each index according
to different scenarios, then the index data sequence under different scenarios is input
into the prediction model to reduce the uncertainty of model prediction. Combined with
the historical data of six indicators and the planning of macro-economic, consumption,
and population indicators, the characteristics and trends of each indicator are reasonably
analyzed, so as to effectively predict the amount of MSW generation. In this study, three
scenarios were established based on different economic development conditions to predict
the MSW output in Shanghai from 2020 to 2025. Scenario 1 is the low-growth scenario,
which will continue to maintain the recent development trend of the country and reason-
ably calculate the lowest non-negative growth rate of social, economic, and demographic
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indicators, according to the historical growth rate of data series, to predict the amount of
MSW generation in Shanghai. Scenario 2 is the base growth scenario, which is based on
the average year-on-year growth rate of each indicator from 1978 to 2018, which is more
consistent with the development trend of each indicator feature from 2019 to 2023, so will
be more accurate. Scenario 3 is the high-growth scenario, which maintains a high-growth-
rate change trend, according to the changes in historical data series. Based on the data
characteristics from 1978 to 2018, this study calculates the average year-on-year growth
rate of each indicator and increases 1.2-times based on the basis of the average growth rate.
The growth rates of data series under different scenarios are shown in Table 6.

Table 6. Growth rate of each indicator under different situations.

Scene
Category

The Population
Density

Number of Urban
Public Transport

Vehicles in Operation

Permanent
Resident

Population at
Year-End

Gross Regional
Product

Per Capita
Disposable

Income

Per Capita
Consumption
Expenditure

Scenario 1 0.0014 0.0125 0.0081 0.0137 0.0173 0.0334
Scenario 2 0.0020 0.0593 0.0280 0.0230 0.0210 0.0480
Scenario 3 0.0121 0.0745 0.0254 0.0353 0.0346 0.0545

4.2.2. Forecast Results of MSW Prediction

By comparing the error values of the single prediction model and combined prediction
model, this study found that the BiLSTM model has the highest prediction accuracy, and
used the BiLSTM combined model to predict the MSW generation amount of Shanghai
in six years from 2020 to 2025. The index characteristics under different scenarios are
input into the optimal prediction model to reasonably predict the generation amount of
MSW in Shanghai. The prediction results of MSW generation under different situations are
shown in Figure 4. The prediction result of Scenario 1 shows that the generation of MSW
will decrease slowly in the future, from 10.38 million tons in 2019 to 8.82 million tons in
2025. In Scenario 2, the variation trend of MSW generation in Shanghai is relatively gentle,
increasing from 10.38 million tons in 2019 to 11.36 million tons in 2023, and then sees an
inflection point, increasing to 12.84 million tons in 2025. Scenario 3 is dominated by an
overall upward trend, rising from 10.38 million tons in 2019 to 17.35 million tons in 2025.
In conclusion, the amount of MSW produced in Shanghai will fluctuate from 8.82 million
tons to 17.35 million tons in 2025.

Under the baseline growth and high-growth-rate scenarios, although there will be an
inflection point in 2023, the amount of MSW will show an overall upward trend. In order
to solve the MSW to speed up growth, promoting economic and social development, in the
“difference”, a new stage of development, taking the thought of socialism with Chinese
characteristics in Xi Jinping’s new era as a guide, the party’s 19th session of 2, 3, plenary
meeting spirit should be fully implemented: accelerate the MSW classification on the classi-
fication, classified collection, classification, transport, construction of facilities for treating,
filling up the treatment capacity gap, improve the urban environmental infrastructure,
improve the ecological environment, upgrade the modernization of treatment capacity,
promote the formation of an MSW classification and treatment system compatible with
economic and social development and comprehensively promote the construction of an
incineration treatment capacity. In areas where the daily garbage collection volume exceeds
300 tons, it is necessary to speed up the development of garbage treatment, mainly through
incineration, build appropriately advanced incineration treatment facilities, commensurate
with the daily garbage collection volume, and basically achieve “zero landfill” of native
domestic garbage by 2023.
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4.3. Electrical Energy Generation Potential of MSW

During the 14th Five-Year Plan period, Shanghai will continue to improve the ability
of waste incineration capacity, which will become an important method for the disposal
of MSW in the future. Therefore, it is very important to reasonably predict the electricity
generation of MSW and improve the disposal efficiency of MSW. Based on the BiLSTM
combined model, this study predicts the generation amount of MSW using different
scenarios and predicts the electricity generated by the disposal of solid waste by using
the garbage electricity generation calculation formula. The estimated results are shown in
Figure 5.

Int. J. Environ. Res. Public Health 2022, 19, 6616 12 of 16 
 

 

 
Figure 5. MSW electricity generation under different scenarios. 

Under the low-growth-rate scenario, Shanghai’s MSW electricity generation shows a 
downward trend, and its electricity generation decreases from 303.22 GWh in 2020 to 
260.67 GWh in 2025. Under the baseline growth rate scenario, the electricity generation of 
Shanghai MSW remains stable, and the electricity generation of Shanghai MSW fluctuates 
between 335.73 GWh and 379.47 GWh. Under the high-growth-rate scenario, the electric-
ity generation of Shanghai MSW keeps rising and is expected to decrease by the end of 
2023. However, overall, the electricity generation in Shanghai MSW keeps increasing and 
is expected to reach 512.75 GWh in 2025. These results indicate that MSW electricity gen-
eration has great energy potential. 

5. Discussion 
5.1. Analysis of Driving Factors of MSW Generation 

The factors affecting the generation of MSW in Shanghai are complex; Shanghai 
MSW generation shows a strong growth trend, resulting in the continuous growth of 
MSW electricity generation potential. MSW electricity generation potential is generated 
by the mass combustion of combustible components of available MSW, so the amount of 
MSW generation is a decisive factor in MSW electricity generation. According to the pre-
dicted generation of the aforementioned MSW and the electrical energy generation poten-
tial of MSW, this study analyzed the reasons for the driving factors and put forward sug-
gestions for sustainable MSW management. The sustainable growth of MSW generation 
in Shanghai may be related to the following aspects. First, China’s economy has sustained 
and rapid growth. At present, China’s economic development model from high-speed de-
velopment to high-quality development, for the growth of MSW, has laid a foundation. 
Second, the increase in MSW is related to the rapid growth of the population. With the 
continuous development of cities, the population number is increasing. The increase in 
population will inevitably lead to more generation activities and consumption materials, 
resulting in a large amount of MSW. Third, the improvement and expansion of urban 
construction level and scale, the continuous improvement in garbage collection and trans-
portation, leading to the rapid growth of MSW, results in an urgent need for the 

Figure 5. MSW electricity generation under different scenarios.



Int. J. Environ. Res. Public Health 2022, 19, 6616 12 of 16

Under the low-growth-rate scenario, Shanghai’s MSW electricity generation shows
a downward trend, and its electricity generation decreases from 303.22 GWh in 2020 to
260.67 GWh in 2025. Under the baseline growth rate scenario, the electricity generation of
Shanghai MSW remains stable, and the electricity generation of Shanghai MSW fluctuates
between 335.73 GWh and 379.47 GWh. Under the high-growth-rate scenario, the electricity
generation of Shanghai MSW keeps rising and is expected to decrease by the end of
2023. However, overall, the electricity generation in Shanghai MSW keeps increasing
and is expected to reach 512.75 GWh in 2025. These results indicate that MSW electricity
generation has great energy potential.

5. Discussion
5.1. Analysis of Driving Factors of MSW Generation

The factors affecting the generation of MSW in Shanghai are complex; Shanghai MSW
generation shows a strong growth trend, resulting in the continuous growth of MSW
electricity generation potential. MSW electricity generation potential is generated by the
mass combustion of combustible components of available MSW, so the amount of MSW
generation is a decisive factor in MSW electricity generation. According to the predicted
generation of the aforementioned MSW and the electrical energy generation potential of
MSW, this study analyzed the reasons for the driving factors and put forward suggestions
for sustainable MSW management. The sustainable growth of MSW generation in Shanghai
may be related to the following aspects. First, China’s economy has sustained and rapid
growth. At present, China’s economic development model from high-speed development
to high-quality development, for the growth of MSW, has laid a foundation. Second, the
increase in MSW is related to the rapid growth of the population. With the continuous
development of cities, the population number is increasing. The increase in population
will inevitably lead to more generation activities and consumption materials, resulting in a
large amount of MSW. Third, the improvement and expansion of urban construction level
and scale, the continuous improvement in garbage collection and transportation, leading
to the rapid growth of MSW, results in an urgent need for the government to rationally
plan and utilize the value of MSW. Fourth, the improvement of Shanghai residents’ living
standards has promoted the increase in per-capita disposable income and expenditure. The
per capita consumption expenditure of Shanghai MSW increased from 488 CNY in 1978
to 46,015 CNY in 2018, and the per-capita disposable income of Shanghai MSW increased
from 560 CNY in 1978 to 60,231 CNY in 2018. People’s purchasing power has increased.
In this way, the quantity and types of consumption will increase, and more MSW will be
generated.

5.2. Suggestions for Sustainable MSW Management

The improper disposal of MSW affects public health and harms the people living in the
surrounding areas. Landfill will cause smell, dust, wind-blown garbage, visual interference,
noise, and traffic congestion to varying degrees. In addition, it will also cause land resource
dissipation and pollution. The antibiotics in landfills leaching to nearby environment by
leachate may threaten ecosystem health, leading to a high concentration of pollutants that
are difficult to treat [38]. Due to greenhouse gas emissions, leachate and overpopulation city
land usability problems do not conform to the requirements of the sustainable development
of the environment, and we are seriously in need of a shift from the traditional methods
of landfill waste electricity generation. Compared with landfill, waste into energy, or
MSW incineration, electricity generation is a good way to replace fossil fuel combustion.
The development of this technology in China’s MSW treatment and resource utilization
has been greatly improved and can be used as a sustainable alternative method. The
utilization of poultry waste for energy generation is feasible and environmentally benign.
Arshad M et al. [39] estimated the waste generated from poultry farming and discussed
technology for the conversion of poultry waste into biogas. Generating electricity from
poultry waste is feasible and environmentally sound to reduce the reliance on fossil fuels.
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Global economic development has led to increased demand for energy, and the energy
supply chain is overburdened. Fossil fuel reserves are developed to meet high energy
demand, and their combustion is becoming a major source of environmental pollution.
There is an urgent need to find safe, renewable, and sustainable sources of energy. WtE can
be considered as an alternative energy source that is economically and environmentally
sustainable. MSW electricity generation is considered as a kind of renewable energy, and
WtE is a win-win strategy that can eliminate waste and generate energy, issues that has
caused widespread concern around the world [40]. MSW is a major contributor to the
development of renewable energy and sustainable environment. These data for MSW
electricity generation under the three scenarios indicate that MSW incineration can be an
option and contribute a larger share in the national energy matrix. In addition, the growth
of large-scale incineration for national energy will support the insertion of intermittent
renewable energy, which is required to provide a stable output in national system energy.
Thus, MSW can play a vital role in offsetting fossil fuel consumption and increasing the
share of renewable energy.

MSW electricity generation is one of the main methods of biomass electricity gen-
eration. On 22 October 2016, the Ministry of Housing and the National Development
and Reform Commission, as well as other departments, jointly issued opinions on further
strengthening the incineration treatment of urban household garbage, which first affirmed
the role of household garbage incineration treatment, and put forward the “planning first”,
speeding up construction, to make up the shortcomings of MSW treatment, take the con-
struction of waste incineration treatment facilities as the key to maintain public security,
promoting the construction of ecological civilization, improve government governance
capacity and strengthen urban planning, construction, and management, which shows the
determination of the state to firmly support waste treatment to adopt incineration electricity
generation. In December 2016, the National Energy Administration issued the “13th Five-
Year Plan for biomass Energy Development” in the “Development layout and Construction
key points”, which aims to: “Encourage the construction of waste incineration cogeneration
projects. Accelerate the application of modern waste incineration treatment and pollution
prevention and control technologies to improve the environmental protection of waste
incineration electricity generation. Strengthen publicity and public opinion guidance to
avoid and reduce the nimby effect.” This further reflects the country’s high attention to
biomass energy. In September 2020, the National Development and Reform Commission
issued the “Implementation Plan for Improving the Construction and Operation of Biomass
Electricity Generation Projects” to clarify the subsidy methods for new projects in the
transitional period. In October 2020, the Ministry of Finance and other departments issued
the Supplementary Circular on Subsidy Funds to the Opinions on Promoting the Healthy
Development of Non-Water Renewable Energy Electricity Generation. The state provides
practical financial support for renewable energy generation. A series of national policies
will boost the generation of MSW in the future.

The development of existing MSW electricity generation technology will be the main
trend of MSW treatment in China in the next few years, and incineration plants are likely
to further develop into mainstream applications. Because of the diversity of MSW, how
to effectively convert MSW into energy is the main challenge faced at present. In terms of
controlling the generation of MSW, the government must strive to standardize the classifi-
cation and collection of MSW nationwide, so as to achieve a balance between urbanization
and waste flow. For example, we can learn from the practice of developed countries and
set up a garbage collection system. There is a huge amount of MSW in China. Therefore,
improving the treatment and recycling efficiency of MSW is of great positive significance
to environmental protection, resource conservation, economic development, and human
health protection. The environmental protection measures of MSW treatment in order to
popularize the electricity generation technology of solid waste, must be further discussed.
The ideal MSW treatment, technology should be a cost-effective system that promotes
recycling, reduces emissions, and solves MSW treatment problems in a sustainable man-
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ner. Prudent policies should, therefore, be adopted to strengthen prevention, reuse, and
recycling, while promoting waste-generating electricity generation.

6. Conclusions

The improper disposal of MSW, as a significant environmental problem, restricts re-
gional and national economic development and people’s quality of life. Accurate prediction
of MSW production and reasonable estimation of MSW electricity generation can help the
environmental sanitation administrative departments to plan the scale of household waste
disposal facilities and land use and avoid the waste of land resources. This study first
collected six indicator variables, then indicators of GDP, the number of public transport
operating vehicles, the per-capita consumption expenditure, per-capita disposable income,
population density, and the population of permanent residents as input variables, input
into the BiLSTM combination model to forecast the Shanghai city life garbage output, and
finally, with the help of an urban living garbage electricity calculation formula, a reasonable
estimate for Shanghai’s city life garbage output was established through the experiment,
leading to the following conclusions:

(1) The electricity generation capacity of MSW is related to the gross regional product,
the number of public transport operating vehicles, per-capita consumption expendi-
ture, per-capita disposable income, population density, and the permanent resident
population at the end of the year, which can be used as the input variable of the model
to effectively predict the electricity generation capacity of MSW.

(2) In this study, the BiLSTM combined model was selected to predict the MSW generation
in Shanghai. The experimental results show that the MAPE of the combined prediction
model is 7.390. Compared with machine learning and a single prediction model, this
model can predict the MSW generation in Shanghai more accurately.

(3) With the help of the calculation formula of MSW electricity generation and com-
bined with the predicted amount of MSW generation above, a reasonable electricity
generation estimate for Shanghai MSW can be obtained. Based on the changes in
MSW production and electricity generation obtained from the research, exploring
new technologies and maximizing the utilization of MSW will be the main goals in
the future.
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