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Abstract: Chemical fertilizer is one of the most important input factors in agricultural production, 
but the excessive use of fertilizer inevitably leads to the loss of agricultural eco-efficiency (AEE). 
Therefore, it is necessary to explore the impact of fertilizer use intensity (FUI) on AEE. However, 
ordinary panel regression, based on the assumption of parameter homogeneity may yield biased 
estimation conclusions. In this regard, a panel quantile regression model (QRM) was constructed 
with the provincial panel data of China from 1978–2020 to test the difference and variation of this 
impact under heterogeneous conditions. The model was then combined with the spatial 
econometric model to explore the effect of the spatial lag factor. The results are as follows: (1) The 
QSM has unveiled a great improvement space for AEE that remains low overall, despite displaying 
a rising trend; the highest AEE is in the eastern region. (2) The FUI has a significant negative effect 
on AEE with the rise in quantiles, this negative effect tended towards weakening overall, although 
it rebounded slightly; it was stronger in areas with low AEE. It is necessary to consider the 
heterogeneous conditions in comparison with the average treatment effect of ordinary panel 
econometric regressions. (3) The impact of FUI shows significant variability in different economic 
sub-divisions and different sub-periods. (4) After considering the spatial effect of fertilizer use, the 
negative influence on local AEE had a faster decay rate as the quantile rose, but could produce a 
positive spatial spillover effect on AEE in neighboring areas. Local governments should 
dynamically adjust and optimize their fertilizer reduction and efficiency improvement policies 
according to the level and development stage of their AEE to establish a complete regional linked 
agroecological cooperation mechanism. 

Keywords: agricultural eco-efficiency (AEE); fertilizer use intensity (FUI); quantile regression 
model (QRM); heterogeneity; spatial lag 
 

1. Introduction 
Sustainable development of agriculture needs to have a coordinated relationship 

between inputs, resource consumption, and environmental protection. Chemical 
fertilizer, one of the most critical inputs in agriculture, has contributed greatly to grain 
production, especially in China, where the contribution rate of chemical fertilizer has 
reached 56.81% [1,2]. However, data released by the Ministry of Agriculture revealed that 
the fertilizer use intensity (FUI) in China in 2018 was around 0.067 kg per hm2, much 
higher than the world average of 8 kg per mu, despite a decreasing trend, and nitrogen, 
phosphate, and potash fertilizer are overapplied to varying degrees [3,4], with the 
utilization rate of these fertilizers at 33%, 24%, and 42%, respectively. Therefore, excessive 
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and inefficient fertilizer use represents the price paid for the development of agriculture 
and calls for improved agricultural eco-efficiency (AEE), as this industry encounters 
increasingly limited growth space pumped by fertilizer [5]. The Central Document No.1 
of the Communist Party of China (CPC) in 2021 also pinpointed the need to reduce the 
use of chemical fertilizer and increase the efficiency of its use in order to accelerate the 
green transformation of agricultural production. Still, the current widespread distortion 
of the chemical fertilizer factor market exerts a significant stimulating effect on the 
emission of fertilizer non-point source pollution [6], with the overuse of fertilizer 
dwindling the marginal contribution to grain production and exacerbating agricultural 
non-point source pollution emission [7–9]. The fallout for this is environmental harms 
such as water pollution [10], biodiversity loss [11] and soil quality decline [12], then 
decreased AEE, and the impeded attainment of the “double carbon goal” and green 
development in agriculture across the board [13–15]. 

It is of great practical significance to discuss the impact of fertilizer use on AEE, to 
rationally control the fertilizer use intensity (FUI) and promote carbon reduction and the 
green transformation of agriculture in the production process. In addition, from 
international experience, developed countries such as those in the EU or North America 
have shown a tendency to maintain a steady decrease after reaching the peak, achieving 
a balance between fertilizer use, agricultural efficiency, and the ecological environment. 
Therefore, studying the impact of fertilizer reduction behavior on agriculture in China is 
expected to provide a reference for other countries in terms of fertilizer use, agricultural 
production, and ecological sustainability. 

Eco-efficiency refers to the coordinated relationship between inputs and outputs that 
meet the needs of human production, resources, and the environment within the carrying 
capacity of the earth, achieving a balance between economic benefit and environmental 
protection. It was first proposed by Schaltegger and Sturn [16] from Germany and 
promoted by the World Business Council for Sustainable Development (WBCSD) [17] and 
the OECD [18]. For food production, agricultural eco-efficiency (AEE) incorporates 
resource and environmental constraints into the analytical framework measuring 
agricultural production efficiency. This is to obtain as much agricultural output as 
possible with as little resource consumption and environmental pollution as possible 
under a certain combination of agricultural input factors to ensure the quality of farm 
products [19,20]. This requires attention to both the economic benefits of agricultural 
production activities and their resource and environmental constraints in order to achieve 
the dual goals of agricultural output growth and environmental management. 

Current research revealed that chemical fertilizer fails to draw much attention to its 
ecological impact, though its contribution has been recognized as one of the largest among 
all input factors to the agricultural process [1,2]. Therefore, it is necessary to pay attention 
to the impact of chemical fertilizer use on AEE. In addition, due to the distinctions in the 
agricultural economic basis, input structure, resource availability, and geographical 
location, the varying characteristics of chemical fertilizer use affecting AEE under 
different conditions are also noteworthy. Given the above, this paper will explore these 
issues through macro panel data and econometric test models based on a review of the 
literature. 

2. Theoretical Basis and Literature Review 
With the reform of the urban–rural dual structure system and the gradual elimination 

of mobility barriers, rural laborers gradually move to urban areas and engage in non-farm 
activities [21]. This not only prompts the re-allocation of agricultural labor in farm 
households but also causes changes in the intensity and structure of agricultural 
production inputs, which, in turn, affects the agricultural productivity and ecological 
environment of farmland. As rational economic agents, farmers will weigh their profits 
against changes to the external environment to efficiently allocate production resources 
and maximize output. To avoid output reduction and efficiency loss due to rural labor 
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mobility, in certain areas of cropland, farmers increase the use of fertilizer and other 
chemicals to ensure their agricultural output [22]. According to the theory of externality, 
fertilizer is a material factor with a negative externality. In the process of agricultural 
production, although increasing fertilizer input per unit area can improve the 
productivity of cropland and the output of agricultural products, excessive input and 
inefficient use also lead to increases in agricultural non-point pollution emission and 
agricultural carbon emission, resulting in negative externalities for farmland in terms of 
the ecological environment and the loss of AEE. In addition, fluctuations in fertilizer use 
and the flow of rural labor put agricultural production at risk of distortion and a mismatch 
in resources and allocation [23]. Increasing the input per unit area of material factors such 
as fertilizer can help increase agricultural productivity, but the mismatch of production 
factors may not only lead to a reduction in the scale of output but also a decrease in AEE. 
Because of this, fluctuations in fertilizer input per unit area would affect AEE, and the 
reduction of fertilizer use and the weakening of its input intensity, as well as the 
optimization of the factors structure, are the keys to ensuring agricultural production and 
improving AEE. 

We also need to note that there are differences in endowment conditions, agricultural 
production bases, and factor input structures in different regions. There are certain 
differences in the AEE in regions with different fertilizer use intensities (FUIs), which 
would result in different effects of FUI for regions with different AEEs. From a 
development perspective, when the AEE is low, micro-farmers tend to give up some 
environmental benefits and improve agricultural output by increasing fertilizer input and 
other material factors per unit area. With the optimization and adjustment of factor 
structure and the improvement in AEE, the factor allocation structure tends to stabilize 
and the negative externalities of fertilizer inputs gradually come to the fore, farmers are 
more inclined to reasonably control the production factor inputs based on the protection 
of farmland environment. It can be seen that FUI has different effects at different 
development stages of efficiency level. 

Current research on the relationship between fertilizer use and agricultural 
production has focused more on the beneficial effect of fertilizer input on grain yield. It 
has been confirmed that fertilizer use has a significant contribution to an increase grain 
yield, with a contribution rate of more than 40% [1,24]. Fertilizer overuse has heightened 
grain yield [10,25], but the diminishing marginal effect has led to a continuous decrease 
in the actual grain yield growth rise caused by fertilizer [5,15]. With regard to the degree 
of fertilizer overuse, Wu et al. found that not all wheat growers in North China were 
concerned by excessive use of chemical fertilizer after analyzing the optimal fertilizer use 
amount and its deviation as well as the influencing factors for small-scale and large-scale 
farmers [26]. Wei and Li reported fertilizer overuse in almost all provinces over the study 
period when evaluating the fertilizer overuse index regarding arable agricultural 
production in China and examining regional variations in fertilizer overuse [27]. Qiu et 
al. measured the extent of fertilizer overuse in China based on survey data, and pointed 
out that the risk aversion of a farmer the essential reason for fertilizer overuse [28]. Shi 
and Zhu (2016) observed that the current amount of fertilizer use in China has exceeded 
the optimal use rate in the economic sense, and that farmers overapplied fertilizer both in 
wheat, maize, and rice production, with the average over-input of chemical fertilizer for 
the three grain crops reaching over 30%. Some scholars have also revealed the low 
efficiency of chemical fertilizer overuse [29]. Hu et al. estimated the fertilizer use efficiency 
based on the survey of farm households and found that the average FUE of whole samples 
was only 0.60, much lower than the average technical efficiency, indicating that on 
average, half of the fertilizer utilized in China was excessive [30]. Wu measured fertilizer 
use efficiency at the farmer level in China based on farmer survey data and found that it 
was low, with two-thirds of fertilizer input being excessive [31]. Bai et al. (2019) examined 
the fertilizer use efficiency of apple production by adopting panel data of eight major 
apple production provinces in China [32]. The FUE score ranged from 0.002 to 0.878, with 
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a mean value of 0.472, and possessed greater variability than technical efficiency. In 
recognition of the problems caused by excessive fertilizer use, the Ministry of Agriculture 
and Rural Affairs of the PRC has formulated the “Action Plan for Zero Growth in Fertilizer 
Use by 2020” to promote fertilizer reduction and efficiency. 

The negative effects to the ecological environment, such as severe agricultural non-
point source pollution and soil acidification, caused by the excessive and inefficient use of 
chemical fertilizer, has gradually attracted much attention [33]. The study of Ge and Zhou 
(2012) shows that the widespread distortion of the chemical fertilizer market in China 
promotes the emission of agricultural non-point source pollution. After calculating the 
load of agricultural non-point source pollution in different irrigate amounts and 
comparing with fertilization schedules in paddy fields, Wang et al. unveiled a positive 
correlation between the fertilization and non-point pollution load, with the fertilizer 
pollution load seeing a record bump when turning green to tillering [34]. Some other 
literature has focused on the relationship between fertilizer use and agricultural economic 
growth. Li and Zhang found a typical inverted U-shaped curve relationship between 
fertilizer input, non-point source pollution, and economic growth, based on an 
environment Kuznets curve (EKC) test of inter-provincial panel data [35]. Zhang and Hu 
examined the environmental Kuznets curve between economic development and excess 
nitrogen pollution in Jiangsu Province with a significant inverted U-shaped curve 
relationship discovered [36]. At the same time, the results of the EKC test by Cao and Li 
(2011) showed no inverted U-shaped EKC relationship between them, with different 
study areas, samples, and agricultural pollution indicators leading to different EKC test 
results [37]. Zhang et al. investigated the relationship between rural non-point source 
pollution and economic development in the Three Gorges Reservoir area using the EKC 
hypothesis [38]. 

Research on the contribution of fertilizer to grain yield, the extent of fertilizer 
overuse, and the economic benefits of fertilizer input abound, with more scrutiny being 
afforded the latter aspect. However, fertilizer’s impact on the ecological efficiency of 
agriculture still requires further attention. The implication of similarity in diverse regions 
and levels [39,40], the homogeneity hypothesis in the existing literature, whether for 
studying the economic impact of fertilizer use or econometric models at other levels, 
denies the impact of various economic structures, resource endowments, locational 
conditions, technology markets, infrastructure, and government policies in different 
regions [41]. If the effect of fertilizer use on AEE is tested based on the homogeneity 
hypothesis, this may lead to biased estimation of results and limitations in their 
application [42]. Therefore, it is crucial to consider heterogeneity among regions. 

Since heterogeneity is not investigated in most existing studies, this paper intends to 
construct a long-term panel quantile regression model (QRM) using inter-provincial long-
run panel data in China from 1978–2020. This is to examine the effect of fertilizer use 
intensity (FUI) on agricultural eco-efficiency (AEE) in heterogeneous conditions and to 
explore the differences and changes in the impact of FUI in different economic sub-
divisions and sub-periods. With the improvement of agricultural market economy and 
the expansion of inter-regional openness, the spatial mobility of agricultural production 
factors is becoming more frequent, and the spatial link between agricultural production 
is getting closer [43,44], leading to the spillover effect of fertilizer use on a spatial scale. 
Hence, it is equally crucial to consider the spatial effect between regions. This paper also 
introduces the spatial lag factor into the econometric model to further examine the impact 
of fertilizer use under the spatial interaction effect. 

3. Materials and Methods 
3.1. Super-Efficient SBM Model 

During agricultural production, the optimum outcome is greater economic 
production generated by input factors accompanied by less environmental pollution due 



Int. J. Environ. Res. Public Health 2022, 19, 6612 5 of 23 
 

 

to the excessive use of chemicals such as fertilizer, pesticides, and agricultural films. The 
former is called the desired output, and the latter, non-desired. Therefore, the 
measurement of agricultural eco-efficiency (AEE) should consider both the desired and 
non-desired outputs. 

The slacks-based measure (SBM) model based on non-desired output first proposed 
by Tone [45] was adopted to measure eco-efficiency. Compared with the traditional data 
envelopment model (DEA), the SBM model can effectively solve the “crowding” or 
“slack” phenomenon of input factors caused by the radial and angular traditional DEA 
model. Still, like the conventional DEA model, for DMUs (decision-making unit) with 
efficiency =1, it is also difficult to distinguish the efficiency difference between efficient 
DMUs. Tone [46] defines the super-efficient SBM model based on the basic SBM model: 
the mix of the merits of the super-efficient DEA model and the basic SBM one, enables it 
to carry out effective yet further comparison and evaluation of the DMUs on the frontier. 
Therefore, in this paper, the super-efficient SBM model was used to measure AEE, and 
the specific model is constructed as follows: 
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In the formula, it is assumed that there are n DMUs with each DMU consisting of 
input (m), desired output (r1), non-desired output (r2), x, yd, yu, the element of the input 
matrix, desired output matrix and non-desired output matrix, respectively, and ρ, the 
value of AEE. 

The agriculture in this paper refers to the planting industry in a narrow sense. 
Referring to the relevant literature [19,47], combined with data availability and statistical 
caliber consistency, the evaluation index system of AEE was constructed according to the 
inputs, agricultural outputs, and ecological environmental impact in the agricultural 
production process, with land, labor, mechanical power, irrigation, chemical fertilizer, 
and pesticides taken as input indicators, the total agricultural output value as desired 
outputs, and agricultural non-point source pollution emissions as non-desired outputs 
(Table 1). 

Table 1. Evaluation index system of AEE. 

Indicators Variables Variable Description Remarks 

Elemental inputs 
(x) 

Land Total crop sown area/khm2 
Reflects the actual cultivated area in agricultural 

production 

Labor Agricultural employees/104 
people 

Primary industry employees × (Gross agricultural 
product / Gross output of agriculture, forestry, 

animal husbandry and fishery) 

Mechanical Total power of machinery/104 
kW 

Agricultural machinery is a representative tool of 
agricultural modernization 
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Water Effective irrigation area/khm2 To characterize the irrigation level of agricultural 
water 

Fertilizer Fertilizer use amount/104 t 
Fertilizer, pesticide, agricultural film, diesel fuel are 

the main sources of pollution in the agricultural 
production process 

Pesticide Pesticide use amount/104 t 
Plastic film Film use amount/104 t 

Energy 
Diesel consumption 

amount/104 t 
Desired outputs 

(yd) 
Economic output Gross agricultural 

product/100 million CNY 
Converted to constant price in 1978 to eliminate the 

effect of price changes 
Non-desired 
outputs (yu) 

Pollution 
emission 

Agricultural non-point 
source pollution/104 t 

Fertilizer loss, ineffective pesticide utilization, and 
agricultural film residue 

Next, we need to measure the level of non-desired outputs [47,48]. Agricultural non-
point source pollution is mainly caused by the excessive use of fertilizer, pesticides, and 
agricultural films. In this paper, the sum of fertilizer loss, ineffective pesticide utilization, 
and agricultural film residue was used to estimate the level of agricultural non-point 
source pollution [47]. (1) The pollutant indicators for fertilizer loss calculation are total 
nitrogen (TN) and total phosphorus (TP), which are stratified into three types: nitrogen 
fertilizer, phosphate fertilizer, and compound fertilizer. The emission coefficient of 
pollution units is equal to the pollution production coefficient multiplied by the fertilizer 
loss rate. The TN pollution production coefficients of nitrogen, phosphate, and compound 
fertilizer are 1,0 and 0.33, and the TP pollution production coefficients are 0, 0.44, and 0.15, 
respectively [29]. The fertilizer loss rate in each region was taken from the study of Lai et 
al. [49]. Fertilizer loss is the amount of nitrogen, phosphate, and compound fertilizer use 
× emission coefficient. (2) The formula for calculating ineffective pesticide utilization was 
pesticide use amount × ineffective pesticide utilization coefficient, with that of agricultural 
film residues being agricultural film use amount × agricultural film residue coefficient. 
The above two coefficients of pollution emissions are taken from Wu et al. [50] and 
“Manual of First National Pollution Census: Pesticide Loss Coefficient and Agricultural 
Film Residue Coefficient”, with regional cultivated land topography differences. 

3.2. Baseline Model and Variable Selection 
To empirically test the impact of FUI on AEE, a baseline econometric model was first 

constructed based on the Stochastic Impacts by Regression on Population, Affluence and 
Technology model (STIRPAT, I = aPbAcTde), usually in its logarithmic form: lnI = lna + blnP 
+ clnA + dlnT + lne, where P, A, and T denote population, affluence, and technology, 
respectively, b, c, and d are their elasticity coefficients, and a is a constant term [51]. In this 
paper, the variable is AEE and the core explanatory variable is FUI. We use rural labor 
transfer (RLT) to reflect population changes, per capita disposable income of rural 
households (DIR) to reflect affluence level, mechanical input intensity (MII) to reflect the 
technologal level, and introduce other structural factors such as the multiple crop index 
(MCI), crop planting structure (CPS), and fiscal supporting on agriculture (FSA) to extend 
the STIRPAT model. 

it 0 1 it 2 it 3 it 4 it 5 it 6 it 7 it itln AEE ln FUI ln RLT ln DIR ln MII ln MCI ln CPS ln FSAβ β β β β β β β ε= + + + + + + + + (3)

In Equation (3), in terms of variable selection, AEE is the agricultural eco-efficiency 
measured based on the SBM model, FUI is characterized by the fertilizer use per unit of 
crop sown area, and FUI = agricultural fertilizer use (discounted pure amount)/total crop 
sown area (kg/hm2). εit represents the residual term. The other variables are specified as: 
(i). Rural labor transfer (RLT) = rural employees-agricultural employees. The difficult 

data acquisition of provincial rural transfer from existing statistics means this paper 
can only define it from an employment standpoint. The rural labor transfer direction 
from the agricultural to the non-agricultural realm coincides with its changed 
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number [15]. The index explanation part of the China Statistical Yearbook shows that 
rural employees are divided into agriculture, industry, construction, and other fields. 
According to the longest time engaged in the main sector (the same time according 
to income). The real situation of rural employees in the non-agricultural industries 
agrees with the definition in this paper. 

(ii). Disposable income of rural households per capita (DIR). The affluence of rural 
households that represent the basis for agricultural production and management can 
influence the scale and structure of agricultural input factors affecting AEE 
characterized by the per capita disposable income of rural households. 

(iii). Machinery input intensity (MII) = total power of agricultural machinery/per unit 
sown area. At present, China’s agricultural production techniques have completed 
the transformation from relying mainly on human and animal power to relying 
mainly on mechanical power. Machinery use, the most intuitive manifestation of the 
agricultural technology progress, can improve agricultural output by popularizing 
machinery services and promoting labor productivity by effectively replacing the 
labor force. 

(iv). Multiple crop index (MCI) = total crop sown area/cropland area. Multiple crop index, 
the average number of crops planted on the same cultivated land in a certain period 
(usually one year), is adopted to reflect the impact of changes in the degree of 
cultivated land use on AEE. The proportion of sown area to cropland area is usually 
used to characterize the MCI, where the sown area is similar to the gross cropped 
area and cultivated land area is similar to the net cropped area. 

(v). Crop planting structure (CPS) = grain crop planting area/total crop sown area. 
Planting structure refers to the proportion of crop types grown in a certain area with 
its change leading to the changed agricultural input factor structure, affecting AEE. 

(vi). Fiscal supporting on agriculture (FSA) = fiscal expenditure on agriculture, forestry, 
and water affairs/total crop sown area. The subsidy intensity of financial funds to 
agriculture can affect the input of rural residents to agricultural resources such as 
chemical fertilizer, pesticides, and agricultural machinery services and can reflect the 
impact of the administrative intervention on AEE. 

3.3. Quantile Regression Model 
The traditional panel regression model, also the mean regression model, has 

parameter values estimating conditional expectations for the dependent variable, only 
reflecting the average marginal impact of the independent variable on the expectations of 
the dependent counterpart [52]. However, for regions with different resource endowment 
bases we see the various impacts of FUI on AEE. The advantages of the quantile regression 
model (QRM) are that it is a separated model for different quantile points and its full 
capture of conditional distribution skewness. The QRM, first proposed by Koenker in 1978 
[53], is an extended linear model for regressing independent variables based on the 
conditional quantile of dependent variables. Compared with the ordinary OLS model, 
QRM is less influenced by outliers of dependent variables than mean regression without 
assumptions about the distribution of random disturbance terms. Its selection of arbitrary 
quartiles of the dependent variable for parameter estimation can minimize extreme values 
in the estimation results [54]. So, we further constructed a panel QRM based on the 
baseline model to examine in depth the heterogeneity of FUI impacts. QRM specifically 
estimates the elasticity coefficients of conditional distribution Y/X in terms of several 
quantile points across the board and uses a weighted average of the absolute values of 
residuals as the objective minimization function to eliminate estimation errors due to 
outliers. 

With the development of panel econometric models, Koenker [55] extended quantile 
regression to panel data, and the θ quantile of explanatory variable Y was defined as: 
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{ }|( )=inf : ( ) ,0 1it it Y ZQuant Y Z y F yθ θ θ≥ < <  (4)

Then, the QRM can be expressed as: 

( ) +T
it it itQuant Y Z Zθ θ θβ ε=  (5)

In the formula, Yit is the AEE, Zit is the influencing factor of AEE, Quantθ Yit|Zit  is 
the conditional quantile of Yit corresponding to quantile θ (0 < θ < 1) for a given Zit, εθ is 
the residual vector, and βθ is the coefficient to be estimated for θ quantile, whose estimator 
is obtained by minimizing the asymmetric weighted absolute outlier sum [56]. When 
Yit > Zit

Tβθ, the weight of absolute deviation is θ, while Yit < Zit
Tβθ, the weight of absolute 

deviation is (1 − θ): 

, : , :

=min (1 )
T T

it it it it

n n
T T

it it it it
i t Y Z i t Y Z

Y Z Y Z
θ

θ θ

θ θ θβ
β β

β θ β θ β
≥ <

  − + − − 
  

   (6)

3.4. Data Sources 
Agriculture in the broad sense includes agriculture, animal husbandry, and fishery, 

while in the narrow sense means crop planting, so the empirical evidence in this paper 
focuses on agriculture in the narrow sense. The research focusses on 30 provinces 
(municipalities and autonomous regions) in China but does not include Tibet, Hong Kong, 
Macao, and Taiwan given their special resource endowment, agricultural production 
conditions, and data availability. The required basic data were obtained from the China 
Rural Statistical Yearbook, China Agricultural Statistics, Agricultural Statistics of New 
China in the Past Fifty Years, and the National Bureau of Statistics data website, available 
online: http://data.stats.gov.cn/easyquery.htm?cn = E0103 (accessed on 25 March 2022). 
Some of the missing data were obtained by consulting the provincial statistical yearbooks 
or 60-year statistical data, with still missing data filled by interpolation. The data of 
Chongqing before 1997 and Hainan before 1988 were obtained through their respective 
statistical yearbooks and 60-year statistical data and adjusted to the corresponding data 
of Sichuan and Guangdong. This allowed the panel data of 30 provinces for 43 years from 
1978 to 2020 to be finalized. Table 2 shows the descriptive statistics for each variable. 

Table 2. Variables definition and descriptive statistics. 

Variable/Unit Variable Definition Mean Std. Dev. Min Max 
Explained 
variable 

Agricultural eco-efficiency 
(AEE) 

Measurement based on super-
efficient SBM model 

0.474 0.334 0.085 2.385 

Core 
explanatory 

variable 

Fertilizer use intensity 
(FUI)/(kg/hm2) 

Agricultural fertilizer use/total 
crop sown area 249.540 139.066 9.170 799.590 

Independent 
variables 

Rural Labor Transfer 
(RLT)/(104 people) 

Rural employees—agricultural 
employees 

445.942 497.162 1.400 2226.640 

Disposable income of rural 
households (DIR)/(CNY) 

Disposable income of rural 
households per capita 4412.624 5,548.311 100.930 34,911.000 

Machinery input intensity 
(MII)/(kW/hm2) 

Total power of agricultural 
machinery/total crop sown area 

158.396 52.700 43.050 285.850 

Multiple cropping index 
(MCI)/(%) 

Total crop sown area/cropland 
area 

3.795 2.801 0.289 14.156 

Crop planting structure 
(CPS)/(%) 

Grain crop planting area/total 
crop sown area 70.558 11.952 32.810 97.080 
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Fiscal Supporting on 
Agriculture 

(FSA)/(CNY/hm2) 

Fiscal expenditure on agriculture, 
forestry and water affairs/total 

crop sown area 
9.871 5.298 0.415 67.321 

4. Results 
4.1. Measurement of AEE 

After having measured the AEE of 30 provinces in China from 1978–2020, the super-
efficient SBM model based on non-radial (non-Oriented) variable returns to scale (VRS) 
solved for the mean value of each year, and also divided the country into four major 
regions according to economic subdivisions: Eastern region (ER), Central region (CR), 
Western region (WR) and Northeastern region (NER), to compare and analyze the mean 
values of AEE in different regions (Figure 1). 

 
Figure 1. Evolution of AEE in China from 1978–2020. The reference for economic division is 
available online: http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/201106/t20110613_71947.htm 
(accessed on 25 March 2022), which contains 10 provinces in the ER, including Beijing, Tianjin, 
Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan; 6 provinces in the 
CR, including Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan; 12 provinces in the WR, including 
Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, 
Ningxia and Xinjiang; and 3 provinces in the NER, including Liaoning, Jilin and Heilongjiang (Tibet, 
Hong Kong, Macao and Taiwan are not included in this study). 

(1) The interpretation of the trend reveals that the average AEE, which is essentially 
under 0.8 in most years, sees a low level of AEE with a stable upward trend in China. 
However, the years 1978–2000 saw volatility and fluctuation in AEE with a small 
increase magnitude, while from the year 2000 onwards it enjoyed a stable upward 
trend, before falling back after 2016. 

(2) The division into two stages with the year 2000 as the boundary in the context of 
comparing the AEE of the four major regions. The ranking of AEE during 1978–2000 
is WR > ER > NER > CR, while during 2000–2018 is ER > WR > NER > CR, with a small 
gap between the CR and the WR, while after 2016, the change of AEE in the NER and 
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CR is the opposite trend from the ER and WR, with the gap between regions first 
widening and then narrowing. 
To continue to analyze the clustering differences in the evolution of AEE over time, 

a non-parametric kernel density function with a Gaussian normal distribution was 
adopted [57], and the six years of 1978, 1986, 1996, 2006, 2016, and 2020 were selected as 
observation time points for kernel density estimation (KDE). The wave crest height 
reflects the agglomeration degree of AEE in each province (Figure 2). The overall 
distribution of AEE in China shows a “bimodal” evolution from left to right, with peaks 
ranging from high to low, indicating that China’s AEE increases steadily with time, with 
most provinces gradually shifting from low-level agglomeration to a narrowing trend of 
“high–low” discrete differences. 

 
Figure 2. Kernel density estimation of AEE in China. 

At the beginning of reform and opening up, the AEE of most provinces concentrated 
at a low level. After the 1990s, with the enhancement of agricultural environmental 
protection consciousness and the acceleration of the agricultural mechanization process, 
the AEE of each province was improved to varying degrees. However, due to the 
differences in resource endowment and economic strength between provinces, the gap in 
AEE between provinces began to increase, forming several peaks of different magnitudes, 
and the trend of low agglomeration gradually decreased. By 2016, the wave height of 
bimodal distribution narrowed, the gap in AEE was further decreased, and a near 
“bimodal” evolution pattern of “low-low and high-high agglomeration” was essentially 
formed. But after 2016, influenced by agricultural endowment, production cost, and 
environmental protection pressure, the gap in AEE between regions expanded, and the 
overall distribution was unimodal. 

In the 21st century, the No. 1 Document of the Central Committee has focused on 
agriculture for many years, paying attention to the issues of agriculture, rural areas and 
farmers, and proposing the idea that “we should encourage the development of circular 
agriculture and ecological agriculture.” It shows that the government attaches importance 
to sustainable agricultural development to prohibit AEE from effectively declining. Given 
the low AEE situation, there is much room for achieving resource conservation and 
environmental protection in the sustainable development of agriculture in China [19]. In 
addition, the regional differences in AEE mainly stem from the fact that, with the 
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continuous development of the agricultural economy, the differences in agricultural 
mechanization and technological progress are gradually highlighted between regions due 
to objective factors such as development level and terrain conditions. For example, ER has 
fast development in the agricultural economy, owing to its advanced agricultural 
technology, more attention to agricultural modernization, and the coordination between 
agricultural production, resource conservation, and environmental protection. On the 
contrary, CR is affected by the hilly terrain, has relatively slow development in 
agricultural technology, a low degree of agricultural mechanization, and the development 
of agricultural production still needs further adjustment. 

4.2. The Heterogeneity Impact of FUI on AEE 
To avoid pseudo-regression problems, unit root tests on the panel data must ensure 

the stationarity of variables. In this paper, the tests were conducted with four test 
methods, LLC (Levine-Lin-Chu), IPS (Im-Pesaran-Skin), ADF-Fisher, and Harris-Tzavalis 
(Table 3). The results showed that although individual variables fail the significance test 
under certain methods, considered together, it can be concluded that rejecting the original 
hypothesis that there were unit roots in the variables is correct, and the variables can be 
considered stationary. In addition, the variance inflation factors (VIF) of the independent 
variables are all significantly less than 10, with an average VIF of 2.87, indicating that there 
is no significant multicollinearity problem among the variables. 

Table 3. Unit root test results of variables. 

Original 
Variables 

LLC IPS ADF-Fisher Harris-Tzavalis 
VIF 

Value p Value p Value p Value p 
lnFUI −4.435 0.000 −7.933 0.000 −6.033 0.000 0.739 0.000 4.34 
lnRLT −1.753 0.039 −5.043 0.000 −3.924 0.000 0.702 0.000 2.10 
lnDIR −2.213 0.014 −5.563 0.000 −2.428 0.007 0.796 0.031 5.01 
lnMII −1.865 0.023 −0.907 0.182 −3.457 0.000 0.978 0.000 4.12 
lnMCI −1.960 0.017 −4.840 0.000 −1.890 0.029 0.692 0.000 1.95 
lnCPS −1.417 0.078 −4.314 0.000 −2.923 0.002 0.797 0.033 1.45 
lnFSA −4.347 0.000 −9.206 0.000 −7.010 0.000 0.728 0.000 1.11 

Note: The different unit root tests all include time trend and subtract the cross-sectional mean. 

The Hausman test results favored a panel QRM with a fixed effect. Table 4 shows the 
estimation results of the QRM for the full sample, and the baseline panel econometric 
result was added as a reference to observe the average treatment effect of FUI (Table 4). 
The baseline regression result showed that FUI had a significant negative effect on AEE. 

Table 4. Estimation results of the QRM for the impact of FUI on AEE. 

Quantile lnFUI lnRLT lnDIR lnMII lnMCI lnCPS lnFSA C R2 

Baseline −0.338 *** 

(0.035) 
−0.141 *** 

(0.016) 
0.466 *** 

(0.018) 
0.129 *** 

(0.037) 
−0.287 *** 

(0.053) 
−0.304 *** 

(0.081) 
−0.004 
(0.022) 

−1.897 *** 

(0.487) 
0.606 

θ = 10% 
−0.211 *** 

(0.026) 
−0.124 *** 

(0.008) 
0.387 *** 
(0.032) 

−0.028 
(0.021) 

−0.131 *** 
(0.032) 

−0.390 *** 

(0.051) 
−0.040 *** 

(0.018) 
−0.118 

(0.362) 0.562 

θ = 20% 
−0.154 *** 

(0.023) 
−0.169 *** 

(0.008) 
0.327 *** 
(0.028) 

−0.004 
(0.018) 

0.012 
(0.028) 

−0.308 *** 

(0.045) 
−0.044 *** 

(0.017) 
−0.872 *** 

(0.320) 0.566 

θ = 30% −0.171 *** 
(0.023) 

−0.202 *** 
(0.008) 

0.268 *** 
(0.029) 

0.082 *** 
(0.019) 

0.126 *** 
(0.029) 

−0.227 *** 
(0.047) 

−0.068 *** 
(0.017) 

−1.141 *** 

(0.331) 
0.563 

θ = 40% −0.163 *** 
(0.027) 

−0.235 *** 
(0.009) 

0.226 *** 
(0.034) 

0.120 *** 
(0.022) 

0.199 *** 
(0.034) 

−0.261 *** 
(0.054) 

−0.080 *** 
(0.020) 

−0.862 *** 

(0.382) 0.540 

θ = 50% 
−0.157 *** 

(0.029) 
−0.269 *** 

(0.010) 
0.163 *** 
(0.036) 

0.141 *** 
(0.024) 

0.261 *** 

(0.037) 
−0.339 *** 

(0.058) 
−0.136 *** 

(0.021) 
−0.086 
(0.411) 0.529 
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θ = 60% −0.158 *** 
(0.031) 

−0.294 *** 

(0.010) 
0.146 *** 
(0.038) 

0.173 *** 
(0.025) 

0.319 *** 

(0.039) 
−0.358 *** 

(0.061) 
−0.135 ** 
(0.023) 

−0.051 

(0.433) 
0.524 

θ = 70% −0.144 *** 
(0.035) 

−0.316 *** 

(0.012) 
0.148 *** 
(0.044) 

0.168 *** 
(0.029) 

0.341 *** 
(0.044) 

−0.409 *** 
(0.070) 

−0.110 *** 

(0.026) 
0.154 

(0.494) 
0.514 

θ = 80% 
−0.065 * 
(0.036) 

−0.368 *** 
(0.012) 

0.235 *** 
(0.046) 

0.082 *** 
(0.030) 

0.382 *** 

(0.046) 
−0.517 *** 

(0.074) 
−0.029 
(0.027) 

1.116 *** 

(10.97) 0.509 

θ = 90% 
−0.127 *** 

(0.036) 
−0.381 *** 

(0.012) 
0.323 *** 
(0.046) 

0.020 
(0.030) 

0.298 *** 

(0.046) 
−0.668 *** 

(0.073) 
0.007 

(0.026) 
1.263 ** 

(0.518) 0.485 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, and standard errors are in parentheses. 

The panel QRM is estimated using 10 quantile points. The coefficients of FUI are all 
significantly negative, indicating that FUI has had a significant inhibitory effect on AEE 
at the provincial level since the reform and opening up, and that overuse of fertilizer is 
not conducive to AEE, consistent with the result of the baseline regression result. Each 1% 
increase in FUI can lead to a decrease in AEE in the range of [−0.211, −0.065] (Figure 3), 
with the increase of the quantile, the negative coefficient of FUI shows a steady upward 
trend of rising first and then falling, that is, the negative effect of FUI on AEE shows a 
gradual weakening and then a slight rebounding, with a high negative effect at the low 
quantile, and the smallest negative effect on AEE when FUI is at the 80% quantile. 

 
Figure 3. The trend of the estimated coefficient of FUI. 

For regions with a lower level of AEE, increasing the FUI can lead to a higher 
inhibitory effect on the AEE. Areas with low efficiency where more attention has been 
paid to the economic benefits from agricultural production, the ideal equilibrium among 
inputs, economic benefits, and ecological impacts has not yet been reached, and the cost 
and benefits are not enough to support the efficiency improvement in these areas; thus, 
excessive fertilizer use has a relatively large inhibitory effect on the AEE [19]. While for 
regions with a higher level of AEE, the negative impact of FUI tends to be weaker, though 
slightly rebounding. We believe that the inputs, agricultural output, and ecological 
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environment impact in higher efficiency areas can achieve an equilibrium, and can 
effectively match the reasonable scale and intensity of fertilizer use [58]. 

From the coefficients of the control variables, 
(1) RLT has a inhibitory effect on the AEE, and this negative impact shows a persistent 

enhancement as the quantile rises, indicating that areas with a higher AEE are more 
negatively affected by rural labor transfer. 

(2) The increase of DIR helps improve AEE, which is similar to the findings of Xu et al. 
[59]. In addition, the positive impact of DIR increases with the increase of the 
quantile, indicating that areas with higher AEE are more positively affected by the 
DIR. 

(3) The coefficients of MII showed a shift from negative to positive at different quantile 
points, indicating that the negative effect of MII on the AEE gradually disappeared 
and the positive effect gradually appeared as the quantile points rose. However, the 
impact of MII was not significant at the low quantile (10%, 20%) and high quantile 
(90%), implying that areas with low and high AEE were not significantly affected by 
machinery inputs. 

(4) The coefficient changes of the MCI at different quantile points were similar to those 
of the MII, which also showed a shift from negative to positive, starting from the 30% 
quantile to be significantly positive, and reaching the maximum at the 80% quantile, 
indicating that the positive effect of the MCI gradually increased as the quantile point 
rose, and that the positive effect of the MCI was more prominent in areas with a high 
AEE. 

(5) The effect of CPS on the AEE was significantly negative at different quantile points, 
and this negative impact showed a continuous enhancement of transformation 
characteristics as the quantile point increased, reaching the highest at the 90% 
quantile, implying that the increase in the proportion of food crop cultivation is not 
conducive to enhancing AEE, and the areas with higher AEE are more negatively 
affected by the CPS. 

(6) The coefficients of FAS also showed a shift from negative to positive at different 
quartiles, with negative coefficients gradually insignificant and positive coefficients 
gradually significant; and the positive effect reached the highest point at the 90% 
quartile, indicating that FSA had a stronger positive promoting effect on the more 
efficient regions and a more negative inhibiting effect on the less efficient regions. 

4.3. Spatial–Temporal Differences of FUI Impact 
The differences in the effects of FUI on AEE were further examined in different 

regions and periods (Table 5). Firstly, considering the spatial variation of provincial 
samples, the spatial heterogeneity of the impact of FUI on the AEE was investigated 
according to different economic sub-divisions. Secondly, China started a large-scale 
comprehensive agricultural development in 1988 to promote sustainable development in 
agriculture. In addition, since 2004, the central government has issued the No. 1 Document 
on the “agriculture, rural areas and farmers” and completely abolished the agricultural 
tax in 2006. Considering the historical nodes of agricultural policies and the time lag of 
policy effects, the development of China’s agricultural economy since the reform and 
opening up can be divided into three periods: 1978–1989, 1990–2003, and 2004–2020, and 
the temporal heterogeneity of the impact of FUI can be examined. 

  



Int. J. Environ. Res. Public Health 2022, 19, 6612 14 of 23 
 

 

Table 5. Estimation results of QRM for the regional grouping. 

lnFUI 
Economic Sub-Divisions Sub-Periods 

ER CR WR NER 1978–1989 1990–2003 2004–2020 

Baseline −0.702 *** 

(0.060) 
−0.445 *** 

(0.071) 
−0.095 * 

(0.055) 
−0.384 *** 

(0.125) 
−0.006 
(0.042) 

−0.179 ** 

(0.079) 
−0.077 
(0.095) 

θ = 10% 
0.029 

(0.052) 
0.147 ** 

(0.069) 
−0.218 *** 

(0.045) 
−0.185 *** 

(0.030) 
−0.193 *** 

(0.057) 
−0.294 *** 

(0.054) 
0.159 *** 

(0.039) 

θ = 20% 
0.104 ** 

(0.049) 
0.106 ** 

(0.049) 
−0.118 *** 

(0.047) 
−0.185 *** 

(0.034) 
−0.065 
(0.052) 

−0.178 *** 

(0.043) 
0.085 ** 

(0.038) 

θ = 30% 0.148 *** 

(0.043) 
0.017 

(0.048) 
−0.101 ** 

(0.046) 
−0.185 *** 

(0.037) 
−0.053 
(0.052) 

−0.139 *** 

(0.038) 
0.084 ** 

(0.037) 

θ = 40% 0.035 
(0.040) 

−0.013 

(0.039) 
−0.104 ** 

(0.046) 
−0.224 *** 

(0.022) 
−0.038 
(0.050) 

−0.126 *** 

(0.041) 
0.126 *** 

(0.039) 

θ = 50% 
−0.043 

(0.041) 
−0.044 

(0.043) 
−0.016 

(0.043) 
−0.229 *** 

(0.018) 
−0.030 
(0.051) 

−0.099** 

(0.044) 
0034 

(0.037) 

θ = 60% −0.091 ** 

(0.042) 
0.032 

(0.035) 
−0.020 
(0.046) 

−0.266 *** 

(0.025) 
0.039 

(0.050) 
−0.129 ** 

(0.050) 
−0.041 
(0.039) 

θ = 70% −0.136 *** 

(0.047) 
−0.010 

(0.048) 
−0.061 

(0.044) 
−0.324 *** 

(0.046) 
0.071 

(0.052) 
−0.163 *** 

(0.055) 
−0.080 * 

(0.041) 

θ = 80% 
−0.113 ** 

(0.053) 
0.184 *** 

(0.054) 
−0.131 *** 

(0.047) 
−0.324 *** 

(0.043) 
0.109 ** 

(0.054) 
−0.244 *** 

(−0.054) 
−0.125 *** 

(0.045) 

θ = 90% −0.136 ** 

(0.062) 
0.213 *** 

(0.058) 
−0.171 *** 

(0.048) 
−0.324 *** 

(0.038) 
0.113 ** 

(0.055) 
−0.256 *** 

(0.060) 
−0.187 *** 

(0.051) 
Note: *** p < 0.01, ** p < 0.05, * p < 0.1, and standard errors are in parentheses.  

From the results of different grouping criteria, FUI showed different impacts between 
regions in different economic sub-divisions, and there is a need to consider spatial 
heterogeneity. The baseline regression results show that the coefficients of FUI were 
significantly negative in all regions, and that the negative effect of average treatment was 
greatest in the ER, followed by the CR, indicating that reducing the intensity of fertilizer 
use in these regions is beneficial to improving the local AEE. The quantile regression 
results showed that the coefficients were significantly negative at most of the quantiles in 
all regions, which overall, indicated that FUI had a negative effect on the AEE, reflecting 
the robustness of the conclusions side-by-side. However, the coefficients of FUI in 
different regions showed different variation characteristics with the increase of quantiles 
(Figure A1 in Appendix A). As the quantile rises: 
(1) The coefficients in the ER undergo a similar U-shaped change from positive to 

negative, strengthening and then weakening, with the coefficient turning from 
positive to negative in 40~50% quantile, and the greatest positive impact at the 30% 
quantile and the strongest negative impact at the 90% quantile. This indicates that 
the FUI has a positive promoting effect on the lower AEE regions and a negative 
inhibiting effect on the more efficient regions in the ER, where the greater the 
quartile, the stronger the negative impact, which is inconsistent with the results at 
the national level and may be related to the differences in endowment conditions and 
the positioning of agricultural production within the ER. 

(2) The coefficients in the CR showed a transformation from “positive → negative → 
positive”, first weakening negatively and then strengthening positively, with a 
negative effect in 40~70% quartiles and a positive effect at both lower and higher 
quartiles. This indicates that FUI has a significant positive effect on both the lower 
and higher AEE areas in the CR, but does not have a significant negative effect on the 
areas with intermediate efficiency, probably because the provinces in the CR are 
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mainly grain-producing areas with better agricultural production conditions, and 
fertilizer use tends to be dynamically balanced. 

(3) The coefficients in the WR showed a similar inverted U-shaped shift of rising and 
then falling, except for a weaker but insignificant negative effect at the 50~70% 
quantile, and the significantly negative effect at all other quantiles with larger 
negative inhibition at both the low and high quartiles. This indicates that FUI has a 
stronger negative inhibitory effect in the WR regions with lower and higher 
agroecological efficiency. This is closely related to the agricultural production 
conditions and endowment base in the WR, and for the WR regions with high 
efficiency, increasing FUI is more likely to break the equilibrium relationship 
between inputs and outputs. 

(4) The coefficients in the NER were all significantly negative and gradually 
strengthening, but the negative effect was more stable at both the low and high 
quartiles, indicating that FUI has a significant negative effect on areas in the NER at 
different efficiency levels, and the higher the AEE, the more pronounced the negative 
inhibitory effect of FUI. 
From the results of the different period groupings, the baseline regression results 

show that FUI had a significant negative impact on the AEE only during 1990–2003, but 
the quantile regression results show that the impact and significance levels of FUI at 
different quantile points within each period showed variability (Figure A2 in Appendix 
A). 
(1) The FUI coefficients during 1978–1989 show a negative to positive shift at different 

quartiles, with the negative effect weakening and positive effect increasing and 
starting to exert positive effect after the 60% quantile but only reaching significance 
at the high (80%~90%) quantile, where fertilizer has a positive enhancing effect. This 
indicates that FUI had a negative inhibitory effect on areas with low AEE, and a 
positive promoting effect on areas with high AEE during this period. 

(2) The FUI coefficients during 1993–2003 were significantly negative at all quartiles, and 
this negative effect showed a first weakening and then strengthening shift, with a 
less negative effect of FUI on areas at the 40% to 60% quartiles; indicating that FUI 
had a strong negative inhibitory effect on both high and low AEE areas during this 
period. 

(3) The FUI coefficients during 2004–2020 showed a shift from positive to negative at 
each quantile, with the positive effect weakening and negative effect increasing, 
which is the opposite of the period 1978–1989, when FUI had a stronger negative 
effect on areas in the high quantile (80%~90%). 

4.4. Considering the Spatial Effect of Agricultural Production 
Agricultural production is not isolated in space, and there is heterogeneity. The 

economic phenomenon in any region has a certain correlation with its surrounding areas, 
and the closer the geographical distance is, the closer the correlation between regions [60]. 
If the spatial correlation between regions is ignored, the estimation results may be biased 
and inconsistent [61]. Therefore, spatial effect needs to be introduced into the QRM [62], 
so, the spatial lag term of FUI is added to the QRM to construct a spatial quantile 
regression model (SQRM) to investigate the spatial differences and variations in the 
influence of FUIs. 

We have constructed three different forms of spatial weight matrices: (i) Rook 
adjacency matrix (Wq), which is set based on the Rook spatial adjacency relationship; (ii) 
geographical distance matrix (Wd), in which the elements take values as the inverse of 
Euclidean distance between the capital cities of the two provinces [63]; (iii) agricultural 
economic distance matrix (Wa), in which the elements take values as the product of the 
geographic distance weight matrix (Wd) and the diagonal matrix of agricultural economic 
scale [64]. The above three weight matrices are all row standardization. 
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The distribution range of Moran’s I of the three spatial weight matrices is 
0.1917~0.4598, and all of them passed the significance test, indicating that there is a 
significant positive correlation of FUI in space, so it is feasible to introduce a spatial lag 
term into the QRM (Table 6). Only the estimated coefficients of FUI and its spatial lag term 
are reported. 

Table 6. Estimation results of QRM with the introduction of the spatial lag term. 

lnFUI 
Wq Wd Wa 

lnFUI Wq × lnFUI lnFUI Wd × lnFUI lnFUI Wa × lnFUI 

θ = 10% −0.281 *** 

(0.026) 
−0.020 *** 

(0.003) 
−0.166 *** 

(0.025) 
0.691 *** 

(0.086) 
−0.196 *** 

(0.025) 
0.210 *** 

(0.031) 

θ = 20% 
−0.228 *** 

(0.023) 
−0.016 *** 

(0.003) 
−0.118 ** 

(0.022) 
0.780 *** 

(0.073) 
−0.127 *** 

(0.021) 
0.256 *** 

(0.026) 

θ = 30% 
−0.223 *** 

(0.024) 
−0.020 *** 

(0.003) 
−0.151 *** 

(0.024) 
0.961 *** 

(0.078) 
−0.166 *** 

(0.023) 
0.329 *** 

(0.028) 

θ = 40% −0.215 *** 

(0.026) 
−0.022 *** 

(0.003) 
−0.138 *** 

(0.025) 
1.170 *** 

(0.084) 
−0.132 *** 

(0.026) 
0.382 *** 

(0.032) 

θ = 50% −0.226 *** 

(0.026) 
−0.024 *** 

(0.003) 
−0.095 *** 

(0.028) 
1.282 *** 

(0.093) 
−0.134 *** 

(0.028) 
0.389 *** 

(0.035) 

θ = 60% 
−0.201 *** 

(0.029) 
−0.021 *** 

(0.004) 
−0.059 *** 

(0.028) 
1.422 *** 

(0.095) 
−0.116 *** 

(0.029) 
0.426 *** 

(0.035) 

θ = 70% −0.161 *** 

(0.035) 
−0.013 *** 

(0.004) 
0.012 

(0.029) 
1.508 *** 

(0.097) 
−0.055 *** 

(0.029) 
0.437 *** 

(0.036) 

θ = 80% −0.047 

(0.035) 
0.009 ** 

(0.004) 
0.022 

(0.028) 
1.480 *** 

(0.095) 
0.014 

(0.030) 
0.472 *** 

(0.037) 

θ = 90% 
−0.134 *** 

(0.036) 
0.007 * 

(0.004) 
0.031 

(0.032) 
1.561 *** 

(0.105) 
0.057 * 

(0.033) 
0.446 *** 

(0.041) 
Note: *** p < 0.01, ** p < 0.05, * p < 0.1, and standard errors are in parentheses.  

The regression results show that, under the premise of considering different spatial 
weight matrices, the coefficients of FUI had a transformation process in which the 
negative effect gradually decreases with the rise of quantile. Compared with the result of 
the ordinary QRM, the transformation process of negative coefficients is more similar at 
different quantiles, but the decay rate of negative effects is faster under different spatial 
weight matrices. Under Wd and Wa, the coefficient of FUI shows a transition from 
negative to positive, which means the existence of spatial effects; there is a more obvious 
strategic imitative interaction for areas with higher levels of AEE, and the demonstration 
effect and driving effect generated by spatial linkage promote the communication and 
exchange of production factors and utilization methods between regions and helps to 
dissipate the negative effects brought by fertilizer use. 

The coefficients of the spatial lag term of FUI, except for the negative to positive shift 
under Wq, were significantly positive under both Wd and Wa, which took into account 
geographical distance and economic level, indicating overall that FUI had a negative 
impact on the local AEE, but a positive spillover effect on the AEE of neighboring areas, 
mainly due to the feedback interaction effect among neighboring areas [65]. The positive 
spillover effect of FUI is stronger under Wd, and after superimposing economic factors 
(Wa), this spillover effect decreases, which may be because the agricultural economic 
distance weight matrix takes into account not only the influence generated by the 
geographical distance between regions but also the difference in agricultural economic 
scale, which has a dragging role on this positive spillover effect of FUI. In addition, with 
the increase of the quantile, the positive spillover effect of FUI gradually increased, 
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implying that the areas with higher AEE would have a stronger positive spatial spillover 
effect. 

5. Discussion 
Since the reform and opening up, great changes have taken place in developing the 

agricultural economy in China. Analyzing the data of agricultural inputs, we find that the 
rural labor force in most provinces shows a downward trend, while the material factors 
of production, such as machinery services and the use of fertilizers, show an upward trend 
to varying degrees, which leads to a change in stable crop sowing area. In addition, with 
the urbanization process and the massive outflow of rural labor, the development of 
China’s agricultural economy has changed from a stage where labor and material factors 
of production such as mechanization were “complementary”, to a stage where material 
factors such as mechanization are “substitutes” for labor. However, the ongoing 
substitution process has increased the expected output of agriculture and increased the 
agricultural non-point source of pollution. 

This study found that the negative effect of FUI on the AEE was robust in an average 
sense, but there were differences in the effect of FUI for areas at different levels of 
efficiency. Agricultural production plays an essential role in socioeconomic development; 
however, agricultural development can be unsustainable due to the negative 
environmental effects of pollutant inputs such as fertilizers [66], so it is worthwhile to 
study the impact of FUI on AEE. However, agricultural production varies significantly 
among regions regarding resource endowment, technical equipment, development level 
and structure, infrastructure, and other aspects. Comparing the results of the baseline 
regression with the QRM, the baseline regression can only reflect the impact of FUI on the 
AEE in an average sense, masking the heterogeneous effect caused by differences in 
regional development. Ordinary panel regression models based on the homogeneity 
hypothesis may yield biased conclusions, whereas the QRM can account for the 
differential changes in the impact of FUI among different regions in detail, so it is 
necessary to consider the conditions of inter-regional heterogeneity in the impact of FUI 
on AEE [64]. 

Currently, China is facing the problems of inefficient fertilizer use and pressure to 
increase grain production. It is helpful to strengthen the management of the structure, 
method, and intensity of chemical fertilizer use, which could enhance grain production 
and reduce the environmental pollution of farmland caused by excessive fertilizer use 
[67]. Considering the goal of zero growth in fertilizer use, there are still unmet needs in 
different regions and crops, resulting in regional heterogeneity in the impact of chemical 
fertilizer use on the AEE, so regions with different levels of AEE should follow the 
principle of adapting to local conditions and set different fertilizer reduction standards. 

The Chinese government has realized the dual threats to agricultural production and 
farmland environment caused by excessive fertilizer input and has issued the “Action 
Plan for Zero Growth in Fertilizer Use”, which aspires to maintain fertilizer use in major 
crops at the current level through scientific fertilization management and technical 
systems. Fertilizer use is the major source of agricultural carbon emissions [24,68], the 
reduction and zero growth of fertilizer are key to ensuring the effective supply of 
agricultural products and promoting the green development of agricultural production. 
Fertilizer zero growth is a dynamic goal, which does not mean no input of chemical 
fertilizer during crop production, but rather to improve fertilizer use efficiency and 
agricultural productivity by changing fertilizer utilization methods and reducing 
unreasonable use of fertilizer. Fertilizer reduction belongs to process management, which 
means not only a decline in the scale of use but also the intensity of fertilizer use must be 
controlled at reasonable levels. It is also important to note that there are differences in 
growth conditions in different regions, and differences in fertilizer demand for the growth 
of different crops, so, the reduction action should focus on local conditions and be crop 
specific while still ensuring the necessary output capacity. 
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Around the world, countries are also facing the problems of non-point source 
pollution and efficiency reduction caused by excessive fertilizer use. Although the 
agricultural production patterns in various countries are quite different, China’s 
government-led and farmer-involved approach to fertilizer reduction can provide lessons 
for other countries that also need to control excessive fertilizer input according to their 
own national conditions. For example, India, a major agricultural country in South Asia, 
is promoting a plan to reduce its fertilizer use by at least 10%, but the implementation of 
the plan requires a heterogeneous fertilizer reduction program based on the endowment 
differences between different regions of the country [69] and guides the public to 
participate in order to reduce the impact of fertilizer on the agroecology and the loss of 
efficiency. 

Although this paper has obtained interesting conclusions, there is still room for 
improvement. For example, we only reflected agricultural technological progress through 
the popularization of mechanization, but the use of technological innovations in seed 
varieties and quality in agricultural production was limited by the difficulty of 
characterization and macro data acquisition and so are not reflected in our study. In future 
research, methods to scientifically and rationally assess agricultural technological 
progress requires our focus. 

6. Conclusions 
In this paper, a panel QRM has been constructed to test the effect of FUI on the AEE 

at the provincial level based on the heterogeneous conditions, and the differences of this 
effect in different regions and time periods has been explored. The spatial lag term of FUI 
has been further introduced to discuss the changes in the effect on AEE under the spatial 
effect. 
(1) AEE of China shows a stable upward trend amidst fluctuations, remains at a low 

level overall, and there is more room for resource conservation and environmental 
protection, with significant inter-regional differences. Fluctuation in the AEE is 
mainly concentrated between 1978–2000, with a more pronounced increase in the 
eastern regions than in the mid-west and western regions during 2001–2020. 

(2) At different quantiles, the increase in FUI has a significant negative inhibitory effect 
on the improvement of AEE. The negative effect of FUI on AEE showed a gradual 
weakening and then a slight rebound shift as the quantile increased. FUI had a 
stronger negative effect at the lower quantile. 

(3) For different economic sub-divisions, FUI in the ER had a positive promoting effect 
on areas with lower AEE, FUI in the CR had a significant positive effect on areas of 
both lower and higher AEE, and FUI in the WR had a stronger negative inhibiting 
effect on areas of both lower and higher AEE, and FUI in the northeast region has a 
more pronounced negative inhibiting effect on areas of higher AEE. For different sub-
periods, FUI positively promoted the areas with high AEE in 1978–1989, then FUI 
had a strong negative inhibitory effect on areas of both high and low AEE in 1993–
2003, and FUI had a stronger negative effect on areas of high AEE in 2004–2020. 

(4) After considering the spatial lag of FUI, the negative effect of FUI undergoes a 
gradual decreasing transformation with the rise of quantile, and the decay of this 
negative effect was faster. Although FUI had a negative effect on local AEE, it had a 
positive spillover effect on the AEE of neighboring areas, and the higher the AEE, the 
stronger the positive spatial spillover effect of fertilizer use. 

7. Policy Implications 
Reducing the intensity of fertilizer use and negative environmental externalities, and 

improving fertilizer use efficiency have become the consensus of the whole of society. The 
policy implication of this paper is that considering heterogeneous conditions in different 
regions can help provide a more differentiated explanation for the effects of fertilizer use 
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intensity on agricultural eco-efficiency. The impact of fertilizer use varies significantly 
across regions, and time periods, all of which indicate that the central and local 
governments should dynamically adjust the fertilizer reduction and efficiency policies 
according to the development of the AEE in different regions, depending on local 
conditions. 

On the one hand, government departments should focus on the sustainable growth 
goal of serving “two types of agriculture” (resource-saving and environment-friendly) 
and zero growth in fertilizer use, make differentiated deployment according to the 
heterogeneous conditions of agricultural production, dynamically adjust the input 
structure of agricultural production factors, reasonably control the proportion of rural 
labor transfer, optimize crop planting structure, continue to increase financial support to 
agriculture, and strengthen agricultural science and technology research while pursuing 
the improvement of agricultural economic benefits. It is also essential to restrain the 
excessive growth of fertilizer use per unit area and substitute mineral or chemical 
fertilizers with mineral or organic fertilizers to enrich soil fertility and maintain farmland 
productivity [70]. On the other hand, neighboring regions should be given more emphasis 
because the fact has been confirmed that negative effects can be influenced by the spatial 
effect of fertilizer use in neighboring regions. Therefore, while paying attention to the local 
fertilizer reduction and efficiency improvement, neighboring regions should also 
establish a complete agro-ecological cooperation mechanism, improve inter-regional 
fertilizer reduction and efficiency improvement policies, and strengthen agricultural 
production cooperation and exchange, which would be of great practical significance to 
ensure national food security and ecological safety. 
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Appendix A 
Variation of FUI coefficients in economic subdivisions and sub-periods at different 

quartiles. 
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