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Abstract: To mitigate climate change, reducing carbon dioxide (CO2) emissions is of paramount
importance. China, the largest global CO2 emitter, proposes to peak carbon emissions by 2030 and
become carbon neutral by 2060; transforming the energy structure represents one of the primary
means of addressing carbon emissions; thus, it is essential to investigate the impacts of alternate
energy sources throughout the country. Based on energy consumption and carbon emissions data
from 30 provincial-level administrative regions in China (excluding Tibet, Hong Kong, Taiwan, and
Macau, due to the lack of data), the study here investigated the shares of coal, petroleum, natural
gas, and non-fossil energy sources (i.e., hydropower, nuclear power, wind power, solar power, and
biomass power), as they relate to total, per capita, and per unit GDP CO2 emissions via spatial
regression. The results showed that: (1) The epicenters of coal and carbon emissions have shifted
from the east to the central and western regions; (2) There is a significant correlation between energy
structure and carbon emissions: coal has a positive effect, petroleum’s effects are positive at first,
and negative subsequently; while both natural gas and non-fossil energy sources have a negative
impact; (3) Provincial-level carbon emissions are affected by energy structure, carbon emissions in
neighboring regions, and other factors.

Keywords: carbon emissions; energy structure; Moran’s I; SEMLD; provincial level; China

1. Introduction

According to the International Energy Agency, China is the world’s largest emitter of
greenhouse gases (GHGs) accounting for 28.93% of global emissions, 94.60% of which was
in the form of CO2 from fossil fuel combustion in 2019, according to the China Statistical
Yearbook and the China Energy Statistical Yearbook. Indeed, China’s CO2 emissions per
unit gross domestic product (GDP) exhibited a continuous downward trend between 1980
and 2019, falling from 5.23 to 1.08 tC· CNY 10,000−1 (Chinese Yuan—CNY); although, total
CO2 emissions and per capita rates increased over the same period, rising from 1.38 to
9.58 billion tC, and from 1.39 to 6.79 tC·persosn−1, respectively (Figure 1). Despite these
trends, China’s energy structure improved consistently from 1997 to 2019, as the share of
fossil fuels dropped from 96.00% to 84.70%, chiefly due to the decreasing share of coal.
Over the same period, the share of petroleum remained relatively unchanged, that of
natural gas slowly grew, and the shares of non-fossil fuel energy sources (i.e., hydropower,
nuclear power, solar power, and wind power) also grew consistently from 4.00% to 15.30%,
equating to an increasing proportion of the country’s power generation structure from
19.36% to 31.15% (Figure 2).

Moreover, these proportional shifts were accompanied by variable effects on the CO2
emission indicators. Hence, there remains a need to assess the impacts of energy structure
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on total, per capita, and per unit GDP CO2 emissions, thereby informing future carbon
reduction policies in China for combatting global climate change.
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While studies regarding the impacts of individual energy components on carbon
emissions remain limited, there has been an abundance of research on factors influencing
carbon emissions, the majority of which indicating that energy structure is one of the
most important factors influencing carbon emissions. The main research methods used in
such studies were factor decomposition and econometric analyses, where the former tends
to use the logarithmic mean Divisia index (LMDI) for studying the impacts of dynamic
changes in various factors, such as energy consumption intensity and structure, as well
as industry structure, GDP, and population, on carbon emissions [1–12]. For example,
Bhattacharyya et al. studied 15 European Union member nations using LMDI-based
factor decomposition, finding that changes in energy structure, reduced energy intensity,
and improved production processes were the primary drivers of carbon emissions [7].
Alternatively, econometric analyses typically involve the use of time series, cross-sectional,
and panel data models to study the correlations of technological progress, population size,
urbanization, and other factors with carbon emissions [13–20]. Moreover, the geographic
detector method (i.e., geodetector), has become a dominant technique for investigating
factors influencing the spatial distribution patterns of carbon emissions since being first
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proposed by Wang et al. [21]. Additionally, spatial regression models have also been
applied to the spatiotemporal patterning of carbon emissions given their intuitive, rapid,
and comprehensive nature.

In China, several studies have focused on the effects of population growth, industries,
urbanization, energy structure, and energy consumption intensity on carbon emissions.
Du constructed a panel data model of provincial-level carbon emissions, finding that the
shares of coal, heavy industry, as well as urbanization levels, have a significant positive
correlation with carbon emissions in China, whereas the relationship between per capita
CO2 emissions and the level of economic development displayed a significantly inverted
U-shape [22]. Both Yang and Liu, and Wan et al. analyzed factors influencing regional
differences in carbon emissions across China using the stochastic impacts by regression
on population, affluence, and technology (STIRPAT) model, concluding that energy and
industry structure, energy intensity, per capita GDP, and urban population size play a
critical role in carbon emissions based on per capita energy sources [23,24]. Alternatively,
Cao and Zeng and Wang and He analyzed the driving factors behind regional differences in
carbon emissions across the Yangtze River Economic Belt, and those influencing provincial-
level CO2 emissions throughout China, respectively [25,26]. Other scholars have also
conducted a series of quantitative studies to reveal the influential factors of energy structure
on carbon emissions [27–34].

Accordingly, it has been revealed that population growth, industries, and urbanization
affect carbon emissions through energy structure and consumption. Since total energy
consumption is primarily influenced by various aspects, including both economic and
technological factors, the sector cannot directly dictate total energy consumption, but only
manage the supply structure. Accordingly, as carbon reduction mechanisms are explored
from the perspective of the energy sector, the research here has analyzed panel data on
provincial-level energy structure and carbon emissions in China using a geographically
weighted regression model. The purpose of the present study was twofold: (1) To analyze
the characteristics of energy structure and CO2 emissions at the provincial level in China,
and (2) To investigate the impact of energy structure on carbon emissions.

2. Materials and Methods
2.1. Data Sources and Processing

Since only the data of China’s provincial carbon emissions from 1997 to 2019 can be
collected at present, all data used in this study are from that period, a total of 23 years. Here,
population and GDP data for the 23-year period since 1997 were sourced from the China
Statistical Yearbook (1997–2019), while total energy consumption and energy structure data
were obtained from the China Energy Statistical Yearbook (1997–2019). Carbon emissions
data were obtained from the China Emission Accounts and Datasets (1997–2019), whereas
CO2 emissions coefficients were acquired from the 2019 IPCC Guidelines for National
Greenhouse Gas Inventories. These datasets were processed using ArcGIS v.10.6 and
GeoDa v.1.16.

The first step in data processing was standardizing the measurement units of energy
sources. Here, various types of energy sources were converted to the heat unit measurement
of tons of coal equivalent (tce), where one tce is equal to 29,307.6 ∗ 103 kJ or 7000 kcal
(according to the International Steam Table calorie). Appendix A presents the conversion
factors for various types of energy sources from which the uniform standard heat for each
energy source type was obtained.

Second, the total energy consumption from coal, petroleum, natural gas, and non-
fossil fuel energy sources was calculated. Total coal consumption was taken as the sum
of consumption for various coal product types, including: (1) raw coal, (2) clean coal,
(3) other washed coal, (4) briquettes, (5) coke, (6) coke oven gas, (7) other gasses, (8) other
coking products, and (18) heat; whereas total petroleum consumption assessed: (9) crude
oil, (10) gasoline, (11) kerosene, (12) diesel oil, (13) fuel oil, (14) liquefied petroleum gas—
LPG, (15) refinery gas, and (16) other petroleum products. Natural gas consumption was
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obtained directly from the relevant data on (17) natural gas. All non-fossil fuel energy
sources—hydro-, nuclear, wind, and solar power—consisted of two parts: (18) electricity
and (19) other energy. Based on provincial-level statistical yearbooks published throughout
China, hydro- and nuclear power consumption were included under (18) electricity, while
wind, solar, and biomass consumption were placed within (19) other energy. Notably,
electricity consumption, represented here solely by hydro- and nuclear power consumption,
excluded fossil-fuel power consumption. Since CO2 emissions coefficients of non-fossil
energy sources were zero, their correlated impacts on emissions were considered negligible.
Furthermore, the consumption of non-fossil fuel energy sources was typically presented
as a single total in statistical yearbooks, and could not be further partitioned out into
individual sources; thus, the analyses of non-fossil energy sources here were combined into
a single category.

2.2. Methods
2.2.1. Energy Structure and Carbon Emissions

The formula for energy structure was expressed via Equation (1):

SEi =
Ei ∗ ECC i

∑ Ei ∗ ECC i
(1)

where SE represents the energy structure, E is the physical energy consumption, ECC is
standard conversion factor for energy sources based on the tce (details are provided in
Appendix A), and i is the source energy type.

The sourced carbon emissions data from the China Emission Accounts and Datasets
were calculated based on energy consumption, and thus served as the CO2 emissions
coefficients used for calculation [35–38].

2.2.2. Exploratory Spatial Data Analysis

The study here assessed the spatial correlations and variations between units of
analysis from both global and local perspectives, commonly represented by Moran’s I
indicator [39]. Global Moran’s I was used for detecting spatial correlations across China,
to identify overall spatial clustering and characteristics of carbon emissions (total, per
capita, and per unit GDP CO2 emissions). The formula for global Moran’s I is shown in
Equation (2):

Moran′s I =
∑i,j Wij

(
CEi − CE

)(
CEj − CE

)
σ2 ∑i,j Wij

(2)

where i and j represent two different provincial-level administrative regions; CE is the
CO2 emissions; CE is the average CO2 emissions of the 30 provincial-level administrative
regions; σ2 is the variance; and W is the spatial weight matrix whose determinant is 1 if i
and j are adjacent to each other, otherwise it is 0. Global Moran’s I range between −1 and
1, where a positive (negative) value represents a positive (negative) correlation, and the
greater the absolute value, the stronger the spatial correlation. A global Moran’s I of zero
indicates no spatial correlation.

As local spatial autocorrelation can be used to identify clusters of similar values among
different provinces, it addresses the shortcoming that global spatial autocorrelation cannot
reflect spatial clustering characteristics within regions. Accordingly, the formula for local
Moran’s I is expressed via Equation (3):

Ii =
Yi −Y

σ2

N

∑
j=1,j 6=i

Wij
(
Yi −Y

)
(3)

where Yi and Yj represent CO2 emissions in provinces i and j, respectively; Wij represents
the row-normalized spatial weight matrix (calculated based on Equation (2)), constructed
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according to the adjacency and distance rules; and Yi −Y represents the standard deviation
for the potential of each region.

2.2.3. Spatial Regression Analysis

Ordinary least squares models (OLS, Equation (4)) have been adopted by previous
studies since the spatial effects of dependent variables are generally considered independent
and identically distributed; however, this can lead to the incomplete interpretation of
regression results, as it neglects potential spatial effects [40]. Here, three spatial regression
models with different application directions were employed for analysis, including the
spatial lag model (SLM, Equation (5)), spatial error model (SEM, Equation (6)), and the
spatial error model with lag dependence (SEMLD, Equation (7)) [41,42]. SLM assumes that
spatial correlations are present in dependent variables, emphasizing neighborhood effects,
and taking into consideration the spatial diffusion (spillover effects) of dependent variables
across geographical units. Alternatively, SEM focuses on neglected and unobserved spatial
correlations between variables, whereas SEMLD is an extended model of SEM including
the addition of spatial lag variables. Lastly, the study here determined the fit of these
models using the log-likelihood ratio (LogL), Akaike information criteria (AIC), and the
Schwartz criterion (SC), where the greater the LogL and the smaller the AIC or SC values,
the better the fit [43]. All models are simulated on GeoDa v.1.16.

OLS, SLM, SEM, and SEMLD were expressed via Equations (4)–(7), respectively:

Yt = αXt + ε (4)

Yt = αXt + β1W1Yt + γ (5)

Yt = αXt + β2W2ε + γ (6)

Yt = αXt + β1W1Yt + β2W2ε + γ (7)

where Yt represents the matrix of the dependent variable (carbon emissions) at time t; Xt
represents the matrix of the independent variable (energy structure) at time t; α is the
coefficient vector of Xt, indicating the impact of the independent variable on the dependent
variable; β1 is the spatial lag term; β2 is the spatial error term; W1 and W2 represent
the spatial weight matrices of the lag and error terms, respectively (calculated based on
Equation (2)); ε is the vector of the random error term in the least-squares model; and γ
represents the constant error term.

3. Results
3.1. Spatiotemporal Characteristics of Energy Structure in China

Since only data on carbon emissions from 1997 to 2019 can be collected, to demonstrate
the spatiotemporal characteristics of China’s energy structure more clearly from 1997 to
2019, a visual analysis of the energy structure data was conducted, and the results were
illustrated across five-time sections: 2000, 2005, 2010, 2015, and 2019. The results of these
analyses are detailed as follows:

3.1.1. Coal Consumption

Figure 3 illustrates the spatial shares of coal in China’s provincial-level energy structure.
Over the past 20 years, the share of coal increased at first, and declined thereafter. Moreover,
trends of coal consumption varied by province. In 2000, Inner Mongolia and Shanxi had the
highest shares of coal, followed by Jilin, Hebei, Henan, Anhui, Jiangsu, Jiangxi, Yunnan, and
Guizhou. In 2005, the share of coal in Guizhou increased significantly, while declines were
recorded in Ningxia and Guangdong. In 2010, the share of coal in Anhui rose markedly,
followed by that of Gansu; whereas in 2015, the provinces with the highest coal shares were
Inner Mongolia, Ningxia, Gansu, Shanxi, and Shandong, compared to Qinghai, Sichuan,
Chongqing, Guangxi, Guangdong, Fujian, Zhejiang, and Beijing with the lowest shares. In
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2019, the highest shares of coal were observed in Inner Mongolia and Shanxi, while the
lowest were found in Qinghai and Sichuan.
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3.1.2. Petroleum Consumption

Figure 4 illustrates the provincial-level proportion of petroleum consumption in
China’s energy structure. Since 2000, petroleum’s share has increased, and then declined,
subsequently, resulting in relatively minor changes overall. Moreover, petroleum con-
sumption varied by province: in 2000, Guangdong and Hainan demonstrated the highest
share of petroleum, followed by Heilongjiang, Fujian, Zhejiang, Beijing, and Tianjin. In
2005, the share of petroleum in Xinjiang, Inner Mongolia, and Chongqing exhibited an
upward trend; whereas the remaining provinces showed either a decline or no significant
change. In 2010, petroleum’s share in Xinjiang, Ningxia, Shandong, Jiangsu, Guizhou, and
Guangdong decreased; however, Gansu, Shaanxi, Yunnan, and Hainan saw an increase,
while the remaining provinces showed no significant changes. In 2015, the provinces with
the highest petroleum shares were Beijing and Shanghai, followed by Tianjin, Liaoning,
Guangdong, and Fujian. In 2019, the highest shares of petroleum were found in Beijing
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and Shanghai, while the lowest were recorded in Inner Mongolia, Shaanxi, Shanxi, Hebei,
Shandong, and Hainan.
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3.1.3. Natural Gas Consumption

Figure 5 illustrates the provincial-level natural gas consumption in China’s energy
structure. Notably, the share of natural gas has grown over the analysis period. In 2000,
Xinjiang, Sichuan, and Chongqing maintained the highest share of natural gas; whereas in
2005, Hainan demonstrated the greatest proportion, followed by Qinghai, with the shares in
all remaining provinces remaining low. In 2010, Hainan showed a decline in the natural gas
share, while Qinghai and Beijing exhibited an increasing trend, and no significant changes
were observed in the remaining provinces. In 2015, Hainan, Tianjin, Beijing, Qinghai, and
Gansu experienced an increase in the share of natural gas; whereas in 2019, the provinces
with the highest shares were Beijing and Hainan, followed by Tianjin, Qinghai, Sichuan,
and Chongqing, with those in all remaining provinces being below the medium level.
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3.1.4. Non-Fossil Fuel Energy Consumption

Figure 6 illustrates provincial-level non-fossil fuel energy consumption in China, show-
ing that it has grown markedly since 2000, with the most significant increase observed
between 2015 and 2019. In 2000, the highest share of non-fossil fuel energy sources was
observed in Ningxia, followed by Qinghai, Yunnan, and Guangxi. In 2005, Ningxia experi-
enced a significant decline in the share of non-fossil fuel energy, while the lowest shares
were recorded in Inner Mongolia and Shanxi. In 2010, there were no significant changes in
the spatial patterning of non-fossil fuel energy consumption were recorded in any of the
provinces; however, Ningxia, Anhui, and Shaanxi exhibited a decline, while an increase
was observed in Guizhou, Hunan, and Jiangxi. In 2015, the share of non-fossil energy
in Yunnan and Guangxi grew, while in 2019, the highest shares of non-fossil fuel energy
sources were Beijing, Sichuan, Yunnan, Guangxi, and Zhejiang, with the lowest in Inner
Mongolia, Shanxi, Qinghai, and Anhui.
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3.2. Spatiotemporal Characteristics of Carbon Emissions in China

To more clearly demonstrate the spatiotemporal characteristics of total, per capita, and
per unit GDP CO2 emissions in China between 1997 and 2019, this study conducted further
visual analyses of the data, and illustrations are provided across five years: 2000, 2005, 2010,
2015, and 2019. The results of these analyses are detailed as follows:

3.2.1. Total CO2 Emissions

Total CO2 emissions in China have been increasing consistently since 2000, as the
number of provinces with >2 million tCO2 emissions has risen from only four in 2000, to
27 in 2019, thereby encompassing most of the provinces in China. The center of peak total
CO2 emissions has gradually shifted from the eastern region (Bohai Rim) to the central and
western regions, while the province with the highest total CO2 emissions has changed from
Liaoning to Shanxi over the past two decades. Regarding the pace of change, total CO2
emissions rose at their fastest between 2000 and 2010, but slowed significantly around 2019
(Figure 7).
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Figure 7. Spatiotemporal distribution of provincial-level total CO2 emissions (in million tons) in
China since 2000.

3.2.2. Per Capita CO2 Emissions

Figure 8 illustrates the provincial-level per capita CO2 emissions in China, revealing
similar upward trends in total CO2 emissions since 2000. The distribution of maximum per
capita CO2 emissions has gradually shifted from the east (Bohai Rim) to the central and
western regions. Specifically, the province with the highest per capita emissions shifted
from Liaoning to Shanxi over the last two decades. Regarding the pace of change, per capita
CO2 emissions increased the fastest between 2000 and 2010, slowing gradually thereafter
(Figure 8).



Int. J. Environ. Res. Public Health 2022, 19, 5850 11 of 25

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 11 of 26 
 

 

3.2.2. Per Capita CO2 Emissions 

Figure 8 illustrates the provincial-level per capita CO2 emissions in China, revealing 

similar upward trends in total CO2 emissions since 2000. The distribution of maximum 

per capita CO2 emissions has gradually shifted from the east (Bohai Rim) to the central 

and western regions. Specifically, the province with the highest per capita emissions 

shifted from Liaoning to Shanxi over the last two decades. Regarding the pace of change, 

per capita CO2 emissions increased the fastest between 2000 and 2010, slowing gradually 

thereafter (Figure 8). 

 

Figure 8. Spatiotemporal distribution of provincial-level CO2 emissions per capita (in tons·person−1) 

in China (five-time sections). 

3.2.3. CO2 Emissions per Unit GDP 

Figure 9 illustrates the provincial-level CO2 emissions per unit GDP across China, 

revealing a continuous decline over the past 20 years, with only Shanxi in the central re-

gion experiencing an increase over the analysis period. Peak CO2 emissions per unit of 

GDP shifted from the northeast to the central region, while the province with the highest 

Figure 8. Spatiotemporal distribution of provincial-level CO2 emissions per capita (in tons·person−1)
in China (five-time sections).

3.2.3. CO2 Emissions per Unit GDP

Figure 9 illustrates the provincial-level CO2 emissions per unit GDP across China,
revealing a continuous decline over the past 20 years, with only Shanxi in the central region
experiencing an increase over the analysis period. Peak CO2 emissions per unit of GDP
shifted from the northeast to the central region, while the province with the highest CO2
emissions per unit of GDP changed from Inner Mongolia to Shanxi. Regarding the pace of
change, emissions per unit GDP declined relatively rapidly between 2000 and 2015, and
continued to do so more gradually thereafter (Figure 9).

3.3. Spatial Autocorrelation

Spatial correlation analyses were conducted with three dependent variables—total, per
capita, and per unit GDP CO2 emissions—to obtain the values of global Moran’s I between
1997 and 2019 (Table 1). In these analyses, p represented the concomitant probability, where
p < significance level indicated that the value of Moran’s I passed the significance test. The
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values of global Moran’s I for per capita CO2 emissions fell within the α = 0.05 significance
level; thus, per capita emissions in China exhibited a relatively stable spatial clustering
pattern, and with significant autocorrelation among China’s 30 provinces.
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Table 1. Spatial autocorrelation indicators of carbon emissions in China from 2000 to 2019.

Year
CO2 Emissions per Unit of GDP (Tons

per Ten Thousand CNY)
CO2 Emissions per Capita (Tons per

Person)
Total CO2 Emissions

(Million Tons)

Moran’s I z-Score p-Value Moran’s I z-Score p-Value Moran’s I z-Score p-Value

2000 −0.019 0.212 0.832 0.247 3.919 0.000 0.054 1.305 0.192
2005 0.130 2.183 0.029 0.400 5.777 0.000 0.075 1.531 0.126
2010 0.116 2.001 0.045 0.270 4.067 0.000 0.009 0.581 0.561
2015 0.076 1.481 0.139 0.166 2.687 0.007 −0.018 0.221 0.825
2019 0.111 1.934 0.053 0.146 2.421 0.015 −0.030 0.059 0.953

3.3.1. Total CO2 Emissions

According to the local indicators of spatial association (LISA) map for the spatiotempo-
ral distribution of total CO2 emissions (Figure 10), the high-high cluster in China exhibited
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regional clustering, with similar total CO2 emissions in 2000, 2005, 2010, 2015, and 2019. In
2000, the high-high cluster primarily included four provinces—Jilin, Hebei, Shandong, and
Henan—and was distributed in strips along the northeast coast. Elsewhere, Gansu became
part of the low-low cluster, which was located in the central and western regions; whereas
neither low-high nor high-low clusters existed. In 2005, some changes were observed to this
spatial divergence, as the high-high cluster primarily consisted of five provinces, including
Hebei, Shandong, Henan, Shaanxi, and Anhui, while low-low clusters were comprised of
two provinces—Xinjiang and Sichuan; however, as with 2000, no low-high or high-low
clusters were observed. In 2010, high-high clusters showed no further expansion, although
Sichuan became part of the high-low cluster. Alternatively, no changes were recorded in
the low-low cluster either, while no low-high clusters were recorded. In 2015, the high-high
cluster began to shrink to four primary provinces—Hebei, Shandong, Henan, and Shaanxi;
whereas Xinjiang became part of the high-low cluster. Notably, both the low-low and
low-high clusters were absent. In 2019, the high-high cluster continued to shrink down
to three main provinces—Hebei, Shandong, and Henan—whereas the high-low cluster
remained unchanged. Moreover, Sichuan became part of the low-low cluster, while the
low-high cluster remained absent.
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3.3.2. Per Capita CO2 Emissions

According to the LISA map for the spatiotemporal distribution of per capita CO2
emissions (Figure 11), the high-high cluster in China exhibited regional spatial clustering,
with similar per capita CO2 emissions in 2005, 2010, 2015, and 2019. In 2000, the high-high
cluster primarily included three provinces—Jilin, Liaoning, and Henan—mainly distributed
in strips along the northeast coast; however, no low-high, high-low, or low-low clusters
were present. In 2005, there were some significant changes to this spatial divergence, as the
high-high cluster expanded to include Inner Mongolia; whereas the low-low cluster mainly
consisted of seven provinces—Hubei, Hunan, Jiangxi, Guangdong, Guangxi, Guizhou, and
Yunnan—while low-high and high-low clusters were not present. In 2010, the high-high
cluster shrank to three provinces—Inner Mongolia, Hebei, and Shaanxi—and the low-low
cluster also decreased in size to four provinces—Hunan, Jiangxi, Guangdong, and Guangxi.
Alternatively, Guizhou became part of the high-low cluster, while Gansu served as the
epicenter of the low-high cluster. In 2015, there were no significant changes to the spatial
distribution of the four clusters, as all observations remained relatively consistent with those
of 2010. In 2019, the high-high cluster continued to decrease in size to only incorporate Inner
Mongolia, while the low-low cluster also shrank to three provinces—Hunan, Guangdong,
and Guangxi. The low-high cluster expanded to two provinces—Hebei and Jilin—whereas
the high-low cluster remained unchanged.
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3.3.3. CO2 Emissions per Unit GDP

According to the LISA map for the spatiotemporal distribution of CO2 emissions per
unit GDP (Figure 12), the high-high cluster in China exhibited regional spatial clustering
of similar values in 2005, 2010, 2015, and 2019. In 2000, the high-high cluster primarily
included three provinces in the northeast, while the low-high cluster was comprised of two
provinces—Ningxia and Sichuan. Neither high-low nor low-low clusters were present. In
2005, there were some changes to this spatial divergence, as the high-high cluster consisted
of four provinces in northern China—Inner Mongolia, Gansu, Ningxia, and Shaanxi—
while the low-low cluster was now comprised of four provinces along the southeastern
coast—Guangdong, Fujian, Guangxi, and Zhejiang. Low-high clusters had disappeared,
while high-low clusters did not exist. These findings were consistent with those observed
in both 2005 and 2010. In 2015, the high-high cluster expanded to include Shanxi, while
the low-low cluster shrank to only include Jiangxi. Alternatively, Henan became part of
the low-high cluster, while no high-low clusters were observed. In 2019, the high-high
cluster continued to expand, now including Jilin, as did the low-low cluster to incorporate
Zhejiang as well; however, the low-high cluster had disappeared, while the high-low cluster
remained non-existent.
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3.4. Impact of Energy Structure on Carbon Emissions in China
3.4.1. Energy Structure on Total CO2

When investigating the impacts of energy structure on total CO2 emissions, the results
of the OLS residual test showed that the values of Moran’s I for 2000, 2005, 2010, 2015,
and 2019, were −0.861, 0.379, 0.424, 0.454, and 0.378, respectively, suggesting that there
was strong spatial autocorrelation among the residuals in this model, while statistically
significant spatial lag and error terms were also present. Accordingly, the use of SLM,
SEM, and SEMLD in the present study had the potential to improve the goodness of fit.
When comparing the LogL, AIC, and SC values of these three models, it was found that the
SEMLD model had the greatest LogL, and smallest AIC and SC values, thus indicating its
superior explanatory power (Table 2).

Table 2. Spatial regression results for total CO2 emissions in China (five-time sections).

2000 2005 2010

OLS SLM SEM SEMLD OLS SLM SEM SEMLD OLS SLM SEM SEMLD

R2 0.742 0.828 0.787 0.871 0.450 0.454 0.452 0.567 0.410 0.435 0.410 0.578
LogL −37.901 −32.554 −36.242 −26.730 −32.428 −32.336 −32.395 −30.254 −33.015 −32.543 −33.014 −28.608
AIC 85.801 77.108 82.485 65.460 74.855 76.672 74.791 72.507 76.031 77.086 76.029 69.215
SC 92.807 85.515 89.491 73.663 81.692 84.876 81.627 80.711 82.867 85.289 82.865 77.419

2015 2019

R2 0.501 0.517 0.501 0.671 0.464 0.468 0.464 0.520
LogL −33.086 −32.739 −33.083 −29.981 −35.923 −35.839 −35.920 −32.893
AIC 76.171 77.479 76.166 71.962 81.846 83.678 81.840 77.785
SC 83.008 85.682 83.003 80.166 88.682 91.881 88.677 85.989

The spatial regression results obtained using the SEMLD model relating to the share
of coal in 2000, 2005, 2010, 2015, and 2019 (the same order of years applies hereinafter) were
0.523, 0.850, 0.652, 1.284, and 0.723, respectively, notably all of which were positive (Table 3).
Based on this trend, the share of coal was found to decrease at first, before increasing and
declining again thereafter; thus, there was a positive correlation between the share of coal
and total CO2 emissions, but the intensity of its impact fluctuated with time. Alternatively,
the regression coefficients for petroleum turned from positive to negative: 0.537, 0.239,
0.160, −0.114, and −0.288, respectively, showing that an increase in petroleum’s share led
to a rise in total CO2 emissions up to 2013, and a decline in total CO2 emissions thereafter.
Alternatively, the regression coefficients of the share of natural gas were −0.085, −0.065,
−0.074, −0.126, and −0.190, respectively, all of which indicated a negative correlation
between the share of natural gas and total CO2 emissions. Moreover, the absolute values of
these coefficients increased with time, revealing that the increasing share of natural gas was
correlated with a greater decline in total CO2 emissions over time. Lastly, the regression
coefficients of the share of non-fossil fuel energy sources were all negative: −0.619, −0.500,
−0.019,−0.011, and−0.196. Additionally, the absolute values of these coefficients exhibited
a decreasing trend at first, and increased thereafter, confirming that an increase in the share
of non-fossil fuel energy sources led to a decline in total CO2 emissions; moreover, its
impact declined at first, and increased subsequently.

The spatial lag terms of the SEMLD in 2000, 2005, 2010, 2015, and 2019 were significant,
indicating that the spatial spillover effect of total CO2 emissions in each province of China
was significant. On average, for every 1% increase in total CO2 emissions within a given
province, the total correlated CO2 emissions increased by 0.506%, 0.628%, 0.744%, 0.776%,
and 0.504%, respectively. Accordingly, such growth in carbon emissions did not come from
growth within the province, but rather was imported from neighboring provinces. Thus,
carbon emissions in a particular province are not only highly correlated to its own internal
factors, but closely related to neighboring factors (e.g., carbon emissions in neighboring
provinces) as well. Further, the spatial error terms in all five-time sections were significant
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at the α = 0.01 level, demonstrating that total CO2 emissions in China were influenced by
coal, petroleum, natural gas, and non-fossil fuel energy sources, in addition to other factors.

Table 3. Spatial regression results for total CO2 emissions in China (five-time sections), based on the
SEMLD model.

2000 2005 2010 2015 2019

Constant (γ) −6.180 ** −0.432 −16.915 −5.174 2.575
(3.052) (19.148) (20.135) (4.903) (7.953)

Coal (α)
1.523 *** 0.850 0.652 1.284 *** 0.723
(0.299) (2.149) (2.165) (0.477) (0.686)

Petroleum (α)
0.537 *** 0.239 0.160 −0.114 ** −0.288
(0.167) (0.823) (0.834) (0.053) (0.434)

Natural gas (α) −0.085 −0.065 −0.074 −0.126 −0.190
(0.312) (0.616) (0.711) (0.352) (0.632)

Non-fossil energy (α) −0.619 ** −0.500 −0.019 −0.011 −0.196
(0.249) (0.518) (0.505) (0.312) (0.390)

Spatial lag term (β1) 0.506 *** 0.628 *** 0.744 *** 0.776 *** 0.504 **
(0.154) (0.221) (0.221) (0.205) (0.242)

Spatial error term (β2) −0.915 *** −0.736 *** −0.678 *** −0.952 *** −0.382
(0.238) (0.258) (0.263) (0.232) (0.276)

R2 0.871 0.567 0.578 0.671 0.520
LogL −26.730 −30.254 −28.608 −29.981 −32.893
AIC 65.460 72.507 69.215 71.962 77.785
SC 73.663 80.711 77.419 80.166 85.989
N 30 30 30 30 30

The present study constructed spatial matrices using queen contiguity. *** p ≤ 0.01, ** p ≤ 0.05. Values in
parentheses denote standard deviations.

3.4.2. Energy Structure on per Capita CO2

When investigating the impacts of energy structure on per capita CO2 emissions, the
results of the OLS residual test showed that the values of Moran’s I for the five years of
2000, 2005, 2010, 2015, and 2019 were 3.653, 1.560, 1.725, 2.261, and 0.435, respectively,
with p-values of 2000, 2010, and 2015 being significant at the α = 0.10 level. These findings
suggest a strong spatial autocorrelation among the residuals in this model, and confirm the
presence of statistically significant spatial lag and error terms as well. When comparing
the LogL, AIC, and SC values of the SLM, SEM, and SEMLD models, it was found that the
SEMLD model had the greatest LogL value, and the smallest AIC and SC values, again
indicating its stronger explanatory power (Table 4).

Table 4. Spatial regression results for per CO2 emissions in China (five-time sections).

2000 2005 2010

OLS SLM SEM SEMLD OLS SLM SEM SEMLD OLS SLM SEM SEMLD

R2 0.703 0.779 0.860 0.907 0.638 0.736 0.709 0.802 0.605 0.695 0.643 0.809
LogL −21.451 −18.137 −13.992 −10.302 −19.119 −15.374 −17.572 −12.016 −20.361 −17.230 −19.470 −12.873
AIC 52.902 48.274 37.983 34.605 50.238 44.749 47.144 38.032 52.722 48.459 50.940 39.746
SC 59.739 56.478 44.820 44.176 58.442 54.320 55.348 47.603 60.926 58.030 59.143 49.317

2015 2019

R2 0.772 0.815 0.806 0.817 0.774 0.780 0.774 0.792
LogL −17.740 −15.079 −16.216 −14.568 −20.479 −20.146 −20.471 −19.630
AIC 47.481 44.158 44.431 43.137 52.958 54.292 52.942 53.260
SC 55.685 53.730 52.635 52.708 61.162 63.863 61.146 62.831

According to these spatial regression results from the SEMLD model (Table 5), the
regression coefficients for the shares of coal in 2000, 2005, 2010, 2015, and 2019 were 0.811,
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0.712, 0.656, 0.856, and 0.110, respectively, all of which were positive, and exhibited a
decreasing trend with time. These findings confirm a positive correlation between the
share of coal and per capita CO2 emissions; although, the strength of its impact decreased
gradually with time. Alternatively, the regression coefficients for the shares of petroleum
shifted from positive to negative over time: 0.630, 0.367. −0.569, −0.058, and −0.619,
respectively. These findings suggest that the increase in petroleum’s share led to a rise in
per capita CO2 emissions up to 2008, and a decline thereafter. For natural gas, the regression
coefficients were all negative: −0.428, −0.348, −0.530, −0.623, and −0.757, respectively;
however, the absolute values of these coefficients exhibited an increasing overall trend.
Thus, the share of natural gas had a negative correlation with CO2 emissions per capita,
where a continuous increase in the share of natural gas led to a decline in per capita CO2
emissions, with the strength of its impact increasing with time. Lastly, the regression
coefficients for the shares of non-fossil fuel energy sources were all negative as well: −0.619,
−1.035, −0.926, −0.760, and −0.798, respectively; however, the absolute values of these
coefficients exhibited a downward trend over the analysis period. Thus, an increase in
the share of non-fossil fuel energy sources led to a decline in per capita CO2 emissions;
although, its impact gradually weakened with time.

Table 5. Spatial regression results for per capita CO2 emissions in China (five-time sections), based
on the SEMLD model.

2000 2005 2010 2015 2019

Constant (γ) −3.636 * 17.069 * 19.231 * 0.970 8.919 **
(2.054) (10.127) (10.354) (3.104) (4.465)

Coal (α)
0.811 *** 0.712 0.656 0.856 *** 0.110
(0.250) (1.164) (1.166) (0.324) (0.409)

Petroleum (α)
0.630 *** 0.367 −0.569 −0.058 * −0.619 **
(0.107) (0.451) (0.458) (0.032) (0.263)

Natural gas (α) −0.428 ** −0.348 −0.530 −0.623 −0.757
(0.206) (0.359) (0.372) (0.307) (0.375)

Non-fossil energy (α) −0.619 *** −1.035 *** −0.926 *** −0.760 *** −0.798 ***
(0.199) (0.308) (0.255) (0.186) (0.252)

Spatial lag term (β1) 0.651 *** 0.693 *** 0.681 *** 0.377 ** 0.251 *
(0.113) (0.133) (0.104) (0.153) (0.152)

Spatial error term (β2) −0.610 ** −0.709 *** −0.965 *** 0.077 −0.344
(0.268) (0.260) (0.230) (0.255) (0.276)

R2 0.907 0.802 0.809 0.817 0.792
LogL −10.302 −12.016 −12.873 −14.568 −19.630
AIC 34.605 38.032 39.746 43.137 53.260
SC 44.176 47.603 49.317 52.708 62.831
N 30 30 30 30 30

The present study constructed spatial matrices using queen contiguity. *** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1. Values
in parentheses denote standard deviations.

The spatial lag terms in the SEMLD model throughout the study period were all
significant, indicating the importance of the spatial spillover effect on per capita CO2
emissions in each province. The spatial lag terms in 2000, 2005, 2010, 2015, and 2019 were
0.651, 0.693, 0.681, 0.377, and 0.251, respectively, all of which were significant at the α = 0.10
level. On average, for every 1% increase in per capita CO2 emissions within a particular
province in 2000, 2005, 2010, 2015, and 2019, per capita CO2 emissions increased by 0.651%,
0.693%, 0.681%, 0.377%, and 0.251%, respectively. In addition, the spatial error terms in
2000, 2005, and 2010 were all significant, showing that China’s per capita CO2 emissions in
these years were influenced not only by coal, petroleum, natural gas, and non-fossil fuel
energy resources, but by other factors as well.



Int. J. Environ. Res. Public Health 2022, 19, 5850 19 of 25

3.4.3. Energy Structure on CO2 Emissions per Unit GDP

The OLS residual test results on the impacts of energy structure for CO2 emissions
per unit GDP showed that the values of Moran’s I in 2000, 2005, 2010, 2015, and 2019
were 0.234, 2.068, 3.266, 2.915, and 4.009, respectively. Furthermore, the p-values in 2005,
2010, 2015, and 2019 were significant at the α = 0.05 level, indicating the presence of strong
spatial autocorrelation among the model residuals. When comparing the LogL, AIC, and
SC values of the SLM, SEM, and SEMLD, it was found that the SEMLD had the greatest
LogL, and the smallest AIC and SC values, thus revealing its stronger explanatory ability
(Table 6).

Table 6. Spatial regression results for CO2 emissions per unit GDP in China (five-time sections).

2000 2005 2010

OLS SLM SEM SEMLD OLS SLM SEM SEMLD OLS SLM SEM SEMLD

R2 0.805 0.811 0.810 0.812 0.624 0.751 0.758 0.772 0.659 0.804 0.846 0.812
LogL −30.067 −29.680 −29.909 −29.660 −20.491 −15.889 −17.345 −13.569 −21.418 −15.074 −13.930 −12.797
AIC 70.134 71.359 69.817 71.320 50.983 43.779 44.689 39.138 52.836 42.147 37.860 37.595
SC 76.970 79.563 76.654 79.524 57.819 51.983 51.526 47.342 59.673 50.351 44.696 45.799

2015 2019

R2 0.690 0.790 0.785 0.806 0.743 0.837 0.842 0.839
LogL −26.335 −21.821 −22.906 −19.859 −28.344 −22.709 −23.242 −21.556
AIC 62.669 55.643 55.813 51.719 66.688 57.417 56.483 55.112
SC 69.506 63.847 62.649 59.923 73.524 65.621 63.320 63.316

The spatial regression results obtained using the SEMLD model relating to the share of
coal in 2000, 2005, 2010, 2015, and 2019 (the same order of years applies hereinafter) were all
positive and exhibited a decreasing trend: 1.181, 1.175, 1.133, 1.129, and 0.607, respectively
(Table 7). Thus, it was indicated that an increase in coal’s share led to a rise in CO2
emissions per unit GDP; however, its impact decreased gradually with time. Alternatively,
the regression coefficients for the shares of petroleum were almost all negative: 0.772,
−0.652, −0.893, −0.751, and −0.603, respectively, with only the coefficient in 2000 being
positive. Therefore, it was revealed that the correlation between the share of petroleum
and CO2 emissions per unit GDP shifted from positive to negative over the analysis
period, where more recent increases in petroleum’s share after 2003 led to a decline in CO2
emissions per unit GDP. The regression coefficients for the shares of natural gas were all
negative: −0.168, −0.210, −0.337, −0.437, and −0.439, respectively; although, the absolute
values of these coefficients demonstrated an increasing trend. These findings indicate that
the share of natural gas had a negative correlation with CO2 emissions per unit GDP, where
continuous increases in the shares of natural gas led to a decline in CO2 emissions per unit
of GDP, with its impact gradually increasing with time. Lastly, the regression coefficients
for the shares of non-fossil fuel energy sources were also all negative: −0.985, −0.501,
−0.649, −0.693, and −0.581, for the years 2000, 2005, 2010, 2015, and 2019, respectively,
showing that an increase in the share of non-fossil fuel-based energy sources leads to a
decline in CO2 emissions per unit GDP; although, its impacts fluctuated over time.

The spatial lag terms in the SEMLD for 2005, 2010, 2015, and 2019 were significant,
indicating the importance of the spatial spillover effect of CO2 emissions per unit GDP in
each province. Moreover, the spatial lag terms in this model were 0.825, 0.811, 0.654, and
0.874, respectively, all of which were significant at the α = 0.10 level. These findings suggest
that on average, for every 1% increase in CO2 emissions per unit GDP within a given
province, correlated CO2 emissions per unit GDP increased by 0.825%, 0.811%, 0.654%, and
0.874%, respectively.
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Table 7. Spatial regression results for CO2 emissions per unit GDP in China (five-time sections),
based on the SEMLD model.

2000 2005 2010 2015 2019

Constant (γ) −0.269 5.040 10.387 −4.082 1.296
(4.017) (10.722) (9.787) (3.685) (4.544)

Coal (α)
1.181 *** 1.175 1.133 1.129 *** 0.607
(0.456) (1.221) (1.095) (0.412) (0.420)

Petroleum (α)
0.772 *** −0.652 −0.893 ** −0.751 −0.603 **
(0.257) (0.452) (0.432) (0.038) (0.282)

Natural gas (α) −0.168 −0.210 −0.337 −0.437 −0.439
(0.467) (0.419) (0.412) (0.384) (0.413)

Non-fossil energy (α) −0.985 *** −0.501 * −0.649 *** −0.693 *** −0.581 **
(0.361) (0.285) (0.236) (0.206) (0.249)

Spatial lag term (β1) 0.217 0.825 *** 0.811 *** 0.654 *** 0.874 ***
(0.301) (0.168) (0.166) (0.203) (0.140)

Spatial error term (β2) −0.190 −0.330 −0.005 0.282 1.17487
(0.273) (0.276) (0.262) (0.229) (0.260)

R2 0.812 0.772 0.812 0.806 0.839
LogL −29.660 −13.569 −12.797 −19.859 −21.556
AIC 71.320 39.138 37.595 51.719 55.112
SC 79.524 47.342 45.799 59.923 63.316
N 30 30 30 30 30

The present study constructed spatial matrices using queen contiguity. *** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1. Values
in parentheses denote standard deviations.

4. Discussion
4.1. Transformation of Energy Structure in China

(1) The spatial distribution of the share of energy resources varies by energy source type.
Coal use is ubiquitous, but peaks in central and western China, whereas petroleum
use peaked in southern China, and natural gas in western and southwestern China.
Alternatively, the epicenter of non-fossil fuel energy use was mainly situated in
southwestern and southern China.

(2) The change trends in the share of energy sources varied by type. The share of coal first
increased, then subsequently decreased; whereas the share of petroleum decreased,
increased, then decreased again. The share of natural gas showed an upward trend,
while the same was also observed for that of non-fossil fuel energy resources.

(3) The pace of change in the share of energy sources varied by type as well. Non-fossil
energy consumption changed at the fastest pace, especially more recently; whereas
petroleum and coal consumption changed more gradually. Alternatively, natural gas
consumption changed at a moderate pace. Overall, there was relatively little change
observed throughout China’s energy infrastructure due to the low base effect.

4.2. Relationship between Energy Structure and Carbon Emissions

(1) Despite the different trends of change in China’s total, per capita, and per unit GDP
CO2 emissions, energy infrastructure essentially had the same impact on all three
carbon emissions indicators. Coal has a net positive impact on the indicators, while the
impacts of petroleum were positive at first, turning negative thereafter. Meanwhile,
both natural gas and non-fossil fuel energy resources had a primarily negative impact
on these indicators. The main reason behind these findings is that the amount of
CO2 produced varies by energy source type per unit energy produced. Based on the
ton of coal equivalent (29,307.6 × 103 kJ), carbon emissions from coal, petroleum,
natural gas, and non-fossil energy were 2.50, 2.07, 1.61, and 0 carbon dioxide tons,
respectively (without considering indirect carbon emissions caused by production
processes). Hence, under the same conditions, provinces with higher shares of coal
contributed more to CO2 emissions; whereas those with higher shares of natural gas
and non-fossil fuel energy sources contributed less so.
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(2) The statistical results of the three models, namely, the SLM (8), SEM (9), and SEMLD,
were all significant, thus indicating that energy infrastructure is correlated with total,
per capita, and per unit GDP CO2 emissions. Nevertheless, since the SEMLD had the
greatest LogL value, in addition to the lowest AIC and SC values, it demonstrated
the best goodness of fit among the three. Therefore, the results obtained using the
SEMLD were chosen as the basis for correlation analysis in the present study.

(3) According to the SEMLD results, the impacts of energy infrastructure on carbon
emissions varied widely over the analysis period, while varying effects on different
carbon emissions indicators were observed as well. With respect to the impacts of
energy infrastructure on total CO2 emissions, the strength of coal’s effects declined
gradually over time, but remained the greatest of all energy source types. Alternatively,
the impacts of petroleum on this indicator fluctuated, with an overall decreasing trend.
Further, the impacts of natural gas on this indicator increased gradually with time,
while those of non-fossil fuel energy sources fluctuated, with an overall upward
trend. Regarding the impacts of energy structure on per capita CO2 emissions, coal
fluctuated across a generally decreasing trend, while petroleum on this indicator
declined at first, and increased thereafter. Conversely, the impacts of natural gas
on this indicator rose gradually over time; whereas those of non-fossil fuel energy
sources exhibited a continuously increasing trend, and were the greatest among all
energy source types. Regarding the impact of energy structure on CO2 emissions per
unit GDP, coal declined gradually over time, but was generally the greatest among
all energy source types, while the impacts of petroleum fluctuated at first, before
declining. Natural gas had an increasing impact on this indicator over time, and that
of non-fossil fuel energy sources fluctuated across a generally downward trend. In
summary, coal had the greatest impact on total and per unit GDP CO2 emissions,
while non-fossil fuel energy sources and natural gas had the greatest impacts on per
capita CO2 emissions.

(4) Based on the spatial lag terms in the SEMLD, carbon emissions in a particular province
were influenced not only by the energy infrastructure within, but also by the energy
structure of neighboring provinces as well. On average, for every 1% increase in
carbon emissions around a particular province, carbon emissions in the province
increased by 0.5% to 0.9%. Hence, carbon emissions in neighboring provinces have a
substantial impact on carbon emissions in a particular province.

(5) According to the spatial error terms in the SEMLD, carbon emissions are not only
significantly influenced by energy structure, but by other factors as well.

4.3. Policy Implications

After analyzing the characteristics of energy structure in China, and investigating the
correlated impacts on carbon emissions, this study has put forth several suggestions for
reducing carbon emissions within the energy sector, as listed below:

(1) Energy transitioning is paramount to achieving carbon reduction; thus, China must
set a clear direction toward energy transitioning in the future. For instance, natural
gas and non-fossil fuel energy resources should be prioritized, followed by petroleum,
while coal consumption should be phased out.

(2) During the energy transition process, interactions between provinces should not be
overlooked, as it remains necessary to strengthen energy exchanges between provinces
for improving comprehensive energy efficiency. With the central and western regions’
rich hydro- and solar energy resources, as well as the coastal region’s abundant
wind energy resources, electricity can be transmitted and distributed via the grid
between regions to bolster the proportion of non-fossil fuel energy consumption in all
neighboring provinces as well. In addition, international exchanges should also be
strengthened [44].
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(3) Since carbon emission reductions are a complicated target, a series of effective mea-
sures in addition to energy transitioning can also be implemented, such as improving
energy efficiency, and increasing carbon sink capacity.

4.4. Limitations and Future Directions

There are several limitations with the present research, as listed below:

(1) This study did not explain the mechanism(s) behind the impacts of energy structure
on carbon emissions, especially with respect to the variable strengths of impact
observed. While the impacts of energy resources varied by type, the reasons behind
such variations remained unexplored.

(2) Although this study investigated the impact of China’s overall energy structure on
carbon emissions based on provincial panel data from 1997 to 2019, these varied
by province. Owing to the significant presence of spatial autocorrelation in carbon
emissions, geographically weighted regression model analyses are essential, the
results of which will be discussed in a forthcoming paper.

(3) The present study confirmed the significant negative impacts of natural gas and
petroleum on the reduction in carbon emissions; however, since both are high-carbon
energy sources, there should be a boundary for such negative impacts, which has yet
to be determined.

Accordingly, this study proposes a few essential directions for future research:

(1) By analyzing energy flow under the whole life cycle, and energy exchanges between
provinces, specific details of energy consumption can be identified to explore the
specific factors driving the impacts of energy structure on carbon emissions.

(2) The impacts of energy structure on carbon emissions in different provinces can be
studied using geographically weighted regression models, so as to propose more
targeted strategies for energy transitioning in each region.

(3) Strengthen research on the cost of energy transition; the current renewable energy
(zero carbon emissions) reserves are large, but are limited by technology and cost
constraints, and cannot be quickly large-scale promotion, which is also the direction
of future research [44,45].

(4) Strengthen the study of sectoral carbon emissions, combined with the analysis of
sector-specific energy use and carbon emissions in the “China Energy Sector Carbon
Neutral Roadmap” released by the International Energy Agency in September 2020;
there is also a need to explore the relationship between energy structure and carbon
emissions from different sectors in the future, especially key carbon-emitting sectors
and enterprises, such as cement, iron and steel, chemical industry, transportation
sector [46,47], etc.

5. Conclusions

(1) China’s energy structure primarily consists of coal, petroleum, natural gas, nuclear,
hydro, wind, and solar power. Notably, coal accounts for the highest proportion of the
country’s energy infrastructure; however, its share has generally declined with time.
Alternatively, petroleum constitutes the second-highest proportion of the country’s
energy structure, but its share has also generally decreased with time. Non-fossil fuel
energy resources maintain the third-largest share of energy infrastructure, and exhibit
a rapidly increasing trend. Lastly, natural gas accounts for the lowest proportion of
the country’s energy infrastructure; although, its share has been increasing steadily
over time.

(2) Since 1997, there has been a continuous increase in China’s total and per capita CO2
emissions, albeit at a slower pace in recent years. The epicenters of peak emissions
have shifted from the eastern region to the central and western regions. Conversely,
CO2 emissions per unit GDP have exhibited a continuous decreasing trend at a slightly
slower pace, while its peak emissions have shifted in identical geographic directions.
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(3) According to the results of the spatial autocorrelation analyses, there were signifi-
cant spatial relationships between China’s total, per capita, and per unit GDP CO2
emissions, with the high-high cluster being dominant.

(4) The results of the spatial regression model showed that in China’s energy infras-
tructure, coal has a positive impact on carbon emissions; whereas natural gas and
non-fossil fuel energy sources have a negative impact. The impact of petroleum on
carbon emissions, however, turned from positive to negative over the analysis period.
Simultaneously, the impact of energy sources on different carbon emissions indicators
varied by energy source type, where coal had the greatest impact on total and per
capita CO2 emissions, while non-fossil fuel energy sources and natural gas maintained
the greatest impact on CO2 emissions per unit GDP.
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Appendix A

Table A1. Conversion factors of each energy source type based on tons of coal equivalent (tce).

Energy Number Energy Products
ECCi

Conversion
Factor Unit

Coal

1 Raw coal 0.7143 tce/tn

2 Cleaned coal 0.9000 tce/tn

3 Other Washed coal 0.5400 tce/tn

4 Briquettes 0.6072 tce/tn

5 Coke 0.9714 tce/tn

6 Coke oven gas 5.9285 tce/108 m3

7 Other gas 1.3390 tce/108 m3

8 Other coking products 1.1540 tce/tn

http://www.stats.gov.cn/
http://www.nea.gov.cn/
https://www.ceads.net.cn/
https://www.ipcc.ch/
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Table A1. Cont.

Energy Number Energy Products
ECCi

Conversion
Factor Unit

Petroleum

9 Crude oil 1.4286 tce/tn

10 Gasoline 1.4714 tce/tn

11 Kerosene 1.4714 tce/tn

12 Diesel oil 1.4571 tce/tn

13 Fuel oil 1.4286 tce/tn

14 LPG 1.7143 tce/tn

15 Refinery gas 1.5714 tce/tn

16 Other petroleum products 1.3300 tce/tn

Natural gas 17 Natural gas 12.1500 tce/108 m3

Non-fossil
energy

18 Electricity 1.2290 tce/104 kWh

19 Other types of
energy source 1.0000 tce/tn

ECC, Standard conversion factor for energy sources based on the tce; i, Type of energy source, including coal,
petroleum, natural gas, or non-fossil energy; tn, ton of physical quantity.
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