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Abstract: The constituents and content of dissolved organic matter (DOM) in the Qilian Mountain
watershed were characterized with a spectroscopic technique, especially 3-DEEM fluorescence as-
sisted by parallel factor (PARAFAC) analysis. The level of DOM in the surrounding area of Qinghai
lake (thereafter the lake in this article specifically refers to Qinghai Lake)was highest at 9.45 mg C·L−1

and about 3 times less (3.09 mg C·L−1) in a cropland aquatic regime (the lowest value). In general,
DOM was freshly autochthonously generated by plankton and plant debris, microorganisms and
diagenetic effects in the aquatic environment (FI > 1.8). Component 1 (humic acid-like) and 3 (fulvic
acid-like) determined the humification degree of chromophoric dissolved organic matter (CDOM).
The spatial variation of sulfate and nitrate in the surrounding water regime of the lake revealed that
organic molecules were mainly influenced by bacterial mediation. Mineral disintegration was an
important and necessary process for fluorescent fraction formation in the cropland water regime.
Exceptionally, organic moiety in the unused land area was affected by anespecially aridclimate
in addition to microbial metabolic experience. Salinity became the critical factor determining the
distribution of DOM, and the total normalized fluorescent intensity and CDOM level were lower in
low-salinity circumstances (0.2–0.5 g·L−1) with 32.06 QSU and 1.38 m−1 in the grassland area, and
higher salinity (0.6~0.8 g·L−1) resulted in abnormally high fluorescence of 150.62 QSU and absorption
of 7.83 m−1 in the cropland water regime. Climatic conditions and microbial reactivity controlled
by salinity were found to induce the above results. Our findings demonstrated that autochthonous
inputs regulated DOM dynamics in the Qilian Mountains watershed of high altitude.

Keywords: dissolved organic matter; Qilian Mountains watershed; spectroscopic technique; au-
tochthonous generation; mineral disintegration

1. Introduction

Fresh water is an essential resource for modern civilization. The human interven-
tion scarcity of water was driven by land use land cover change, as well as population
increases [1]. Global water scarcity is driven by water quality issues (water temperature,
salinity, organic pollution and nutrients), and polluted return flows degrade water quality
and exacerbate water scarcity. Technical and economic constraints of expanding desali-
nation and treated wastewater reuse across the world still exist and water purification
treatment is confronted with more challenges [2]. Natural organic matter (NOM, which
includes DOM and particulate organic matter) is a key material in sustaining all biogeo-
chemical processes and phenomena in ecosystems [3]. NOM originates from two primary
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sources, i.e., plant materials in terrestrial ecosystems and plankton in aquatic systems [4].
Dissolved organic matter (DOM) is the largest pool of organic matter in the sea and it
plays an important role in carbon biogeochemical cycles of aquatic environments. DOM is
composed of a series of organic compounds resulting from the release of bacteria, phyto-
plankton and macrophytes and their continuous transformation through photochemical
and microbial processes [5]. Chromophoric dissolved organic matter (CDOM) is the pri-
mary DOM in aquatic environments, and it is one of the major determinants of optical
descriptors of natural waters and can affect the availability and spectral quality of DOM in
the water [6]. DOM is a diverse mixture of compounds forming gradients of composition,
structure and biogeochemical reactivity derived from allochthonous, autochthonous and
microbial sources [7]. Thus, probing biogeochemical processes of NOM are critical for
water quality evolution, and water quality monitoring and analysis are the crucial point
between DOM and land use in watersheds.

Optical measurements (absorbance and fluorescence) have been extensively used for
characterizing DOM due to rapid sample throughput, low analytical cost and ability to
trace DOM composition. The operationally defined humic and fulvic acids have long
been credited as a major source of red-shifted fluorescence from allochthonous sources.
Excitation–emission matrix (EEM) fluorescence is obtained by successive emission spectra
at a series of excitation wavelengths and widely is used to characterize CDOM in aquatic
environments [6,8]. In the previous research, microbial-like byproducts from increased
microbiological activity formed during nitrification, whereas the terrestrial humic-like
compounds predominated in the non-nitrified water samples [9].

To date, reports on the dynamics of individual fluorophores in the water of the region
of the Qilian Mountains that have been identified by PARAFAC are limited. Accordingly,
this study aimed to (1) apply the PARAFAC model to characterize the fluorescent con-
stituents and properties of CDOM in water samples; (2) study the source and distribution
of identified fluorescent components and (3) further cognize the process and factors that
control the origins of CDOM and decipher the pressure on water quality from land use
pattern change.

2. Materials and Methods
2.1. Description of the Study Sites

The Qilian Mountains (36–40◦ N, 93–104◦ E), located on the border between Qinghai
Province in the northeast and Gansu Province in the west, are one of the major mountain
ranges in China. The range is composed of series of parallel mountains and valleys with a
northwest trend in the northeastern margin of the Tibetan Plateau [10]. It is 800 km long
from east to west and 200–400 km wide from north to south. It is 4000–6000 m above sea
level and covers an area of 2062 square kilometers, and the altitude range for the sampling
activities was 1170–3780 m. The Qilian Mountains are the transition zone from the Loess
Plateau to the Mongolian–Xinjiang Plateau and the Qinghai–Tibet Plateau, belonging to an
important part of the Qinghai–Tibet Plateau. The climate of this river basin is dry and has
little rainfall, attributed to the interaction of the Siberian high and East Asia monsoon in
the northwest part, whereas the warm moist flow from the southeast provides abundant
rainfall and moisture [11]. The annual precipitation ranges from 2.27–74.41 mm in the
watershed, with a maximum of 110 mm occurring in the east part concentrated from July
to August [12]. The Qilian Mountains are so densely covered with rivers and wetlands
that they deserve the title of “China’s Wet Island”, and they nourish the thirsty western
land with their special ecological status and climatic conditions [13] (Figure 1). The Qilian
Mountains are rich in glacial resources, under the action of glaciers, snow melt water and
precipitation, and large areas of forests, grasslands and wetlands have been formed in the
Qilian Mountains, which play a role in water conservation [14]. The eco-environment has
not been protected well around the Qilian Mountains through the ages, e.g., overstocking,
severe riverbed damage, Heihe River cutoff and even drying up.
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Figure 1. Map of the study watershed and the sampling locations.

2.2. Analytical Studies

Water samples were collected from the Qilian Mountain region and around Qinghai
Lake, which covers an area from 36.3◦ N to 40.6◦ N and from 94.3◦ E to 102.9◦ E (Figure 1).
A total of 55 stations (n = 55) were randomly selected to sample in the snow season, 2019.

High-density polypropylene bottles were used to collect samples using the standard
method (APHA-AWWA-WEF, 1998). For hydro-chemical analysis, 0.45 µm membrane
filters (Millipore, Boston, MA, USA) were used for filtering samples to characterize DOM.
The samples were kept in the lab using cooler boxes and preserved in a freezer for analysis.
The physical and chemical parameters of wetland water samples, including temperature (T),
electrical conductivity (EC), pH, oxidation and reduction potential (Eh), dissolved oxygen
(DO) and salinity (SAL), were measured in the field using portable pH/EC/DO meters
(WTW 3430, Munich, Germany). Further laboratory analysis items included dissolved
organic carbon (DOC) concentration, UV absorption and fluorescence. All the portable
meters were calibrated using appropriate standards. Cl−, NO3

− and SO4
2− were measured

by ion chromatography (Dionex ICS-90 system, Thermo Scientific Company, Waltham,
MA, USA) equipped with a 4 mm ASRS-ultra II suppressor and a DS-5 conductivity
detector. Triplicate analysis was carried out on samples for selected spectrum to provide
accuracy and precision of investigation and represented data were the average results.
Water quality parameters are ordinarily used to explain water status and expound the
biogeochemical processes on organic matter. Sample excitation–emission matrix (EEM)
spectroscopy fluorescence spectra were made using a fluorescence spectrophotometer
(F-7000, Hitachi, Japan) with the help of FL solution software. The PARAFAC modeling
was investigated employing the N-way toolbox of MATLAB version 3.1. The data EEMs
of the tested samples were made with excitation wavelengths varying from 220–400 nm
every 5 nm and emission wavelengths ranging from 280–500 every 1 nm in this research.
The sampling datasets were run in the PARAFAC model in three consecutive phases. The
variability elucidated by the PARAFAC analysis was 90.3% for water samples from the
Qilian Mountains.

2.3. Absorbance and Fluorescence Spectroscopy

The water samples were allowed to reach room temperature and the instrument was
switched on for 30 min before the sample analysis. Absorption spectra were obtained
between 190 and 700 nm at 0.5 nm intervals using a Persee Analytics T9cs double-beam UV-
Vis spectrophotometer equipped with a 1 cm path length quartz cuvette (volume of 4 mL),
and Milli-Q water was used as the blank. The data were corrected for scattering and baseline
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fluctuations by subtracting the absorption coefficients at 700 nm. The absorption coefficients
(a) were calculated from the absorbances (A) obtained from the spectrophotometer using:

a(λ) = 2.303 × A(λ)/l

where A(λ) is the absorbance at the wavelength λ, and l is the path length in meters.
For carbon-specific UV absorbance at 254 nm (SUVA254), the absorption coefficient

at 355 nm was calculated as an index for the abundance of CDOM and the spectral slope
over 275–295 nm (S275–295) was calculated as an index for the average molecular weight
of organic matter [15]. A shoulder peak at 280 nm in the absorption spectra of CDOM
was mainly associated with primary production and algal debris [16]. Thus, ∆a280 was
calculated to assess the intensity of the shoulder peak [17]. Briefly, the absorbance over
300–400 nm was fitted with the exponential function (R2 = 0.882–0.999), which was extrap-
olated to 280 nm to obtain the fitted value of a280. ∆a280 was the difference between the
measured and the fitted values of a280. Excitation–emission matrices (EEMS) were collected
using an F7000 fluorospectrophotometer. Scans were collected over 5 nm increments with
excitation wavelengths from 200–400 nm and emission wavelengths from 280–500 nm.
The fluorescence spectrum of each sample was corrected for inner-filter effects based on
the absorption spectrum, the blank signals of Milli-Q water were subtracted and it was
normalized by the fluorescence intensity of 1 µg/L quinine sulfate. Spectral indices, such
biological index (BIX), fluorescence index (FI) and humification index (HIX), and parallel
factor analysis (PARAFAC), were used to analyze the optical data. SUVA254 and HIX
reflect aromaticity and unsaturation, as well as the humic character or autochthonous DOM
component [18], and higher values often indicate terrestrial sources. Conversely, high
BIX and FI are often related to higher microbially produced DOM. PARAFAC analysis
was conducted using the drEEM toolbox in MATLAB and decomposed the signal of three
fluorescence components. The three-component model explained 90.30% of the variance,
and we did not consider a four-component model based on visual inspection of the fourth
component because the four-component model had a low core consistency (44.8%). The
percent contribution of each component to the sum of the Fmax values (maximum fluo-
rescent intensity of each component) was calculated for each component and is reported
as component C1–C3 (Table 1). Basic optical indexes (HIX, BIX, SUVA, FI, a355) are used
to characterize the organic nature. PARAFAC analysis should be noted as a difficulty of
this study. sources, components and distribution, as well as drop degree of water quality
influenced by human intervention, are reflected by fluorescence analysis of DOM assisted
by analysis of hydrochemical and UV optical parameters.

Table 1. Indices of fluorescence and UV detection in water regimes of different land-use types.

Lake
Surrounding

Water
Cropland Water Grassland

Water
Unused

Land Water

C1 (QSU) 231.99 ± 164.18 127.03 ± 169.59 146.26 ± 98.45 69.80 ± 91.73
C2 (QSU) 55.99 ± 32.96 63.58 ± 110.95 36.18 ± 18.66 265.96 ± 619.33
C3(QSU) 514.91 ± 345.80 170.48 ± 123.61 322.97 ± 233.78 142.69 ± 162.66

a355 (m−1) 3.02 ± 1.88 1.19 ± 2.00 1.38 ± 1.15 0.72 ± 0.57
S275–295 (nm−1) 0.02 ± 0.01 0.02 ± 0.01 0.02 0.02

HIX 4.28 ± 2.09 2.92 ± 1.47 4.18 ± 1.50 1.41 ± 0.52
BIX 0.93 ± 0.13 1.00 ± 0.1 0.91 ± 0.06 1.35 ± 0.80

QSU: Quinine sulfate unit, 1 µg·L−1 quinine sulfate is used as 1 QSU. a355 is the absorbance coefficients at
355 nm. S275–295 denotes the absorption slope from 275–295 nm. HIX is the humification index. BIX is the
biological index.

2.4. Data Management and Statistical Analysis

All data generated or analyzed during this study are included in the main text.
PARAFAC modeling, calculation of optical indices and fluorescent plots were conducted in
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MATLAB, using the drEEM toolbox. Correlation analysis, a t-test and principal component
analysis (PCA) were performed using the spectroscopic indices by IBM SPSS 23. PCA
factor-number appropriateness was determined by the eigenvalue (>1) and the captured
variance (>75%). Correlations were examined using Pearson correlation coefficients to
assess the relationships between the physicochemical parameters and spectroscopic in-
dices. The relative abundances of PARAFAC components and spectroscopic indices were
compared using a one-way ANOVA for all water samples.

3. Results
3.1. Hydro-Chemical Characteristics of the River and Lake Water Samples
3.1.1. Inorganic Parameters

Fifty-five water samples were collected from water regimes of forest/grassland, lake
surrounding area, cropland and unused land, as illustrated in Figure 1. The sampling
period was the snow season, in mid- to late October of 2019. The pH of the water is
slightly acidic to alkaline, ranging from 6.24 to 8.90 with an average value of 8.59, in-
dicating that the water of the study region is weakly alkaline. The concentrations of
EC ranged from 0.31 to 1126 µS·cm−1 with a mean value of 539.73 µS·cm−1. The oxida-
tion reduction potential (ORP) ranged from −166.00 to 85.18 mV, detected at station 22
and 55, respectively, reflecting the huge difference in the oxidation–reduction property
in water samples scattered across lands of different types of utilization. As illustrated
in Figure 1, station 22 and 55 are located at a water regime in grassland/forest land and
unused land. The concentrations of Cl−, NO3

−, SO4
2− ranged from 12.61~43.85, 4.39~13.99,

18.56~58.06 mg·L−1, and averaged 25.73 ± 14.35, 6.96 ± 4.03 and 33.56 ± 15.64 mg·L−1 in
the lake surrounding area. They ranged from 4.76~85.33, 1.02~13.45, 19.43~250.6 mg·L−1,
and averaged 20.33 ± 19.23, 5.98 ± 2.40, 115.19 ± 73.82 mg·L−1 in the water of the grassland
area. In the cropland area, they ranged from 6.31~86.57, 3.08~22.57, 43.47~222.05 mg·L−1,
and averaged 32.66 ± 26.28, 8.76 ± 5.59, 149.01 ± 61.32 mg·L−1. They ranged from
12.23~127.42, 3.06~7.99, 93.10~212.62 mg·L−1, and averaged 62.66 ± 35.26, 4.58 ± 1.75,
160.44 ± 49.36 mg·L−1 in the unused land area. The values fall within the range of basic
levels of human health according to the Quality Standard for Groundwater GB/T 14848-93.
Cl− in the water regime of the grassland and cropland area was much lower than that in
the unused land area (independent t-test, p < 0.05). NO3

− in the water of different land-use
types did not show any significant discrepancies. SO4

2− in the lake surrounding area
differed a lot from the levels of other land-use patterns (independent t-test, p < 0.05), but
differed little for grassland, cropland and unused land areas.

3.1.2. Organic Parameters

DOC concentrations of water samples showed high spatial heterogeneity and varied
from 2.53~17.89, 1.60~16.34, 0.95~8.40, 1.63~7.60 mgC·L−1 in water of the lake surround-
ing area, grassland, cropland and unused land watershed, respectively, with the mean
values 9.45 ± 6.20 (mean and standard deviation, m ± std), 6.14 ± 3.95, 3.09 ± 2.23,
4.13 ± 2.49 mgC·L−1. The absorption coefficient a355 ranged from 0 to 7.83 m−1, with an
average value of 1.46 ± 1.56 m−1. a355 was higher in the lake area without a striking
difference compared to cropland (1.19 ± 2.00 m−1) and grassland (1.38 ± 1.15 m−1) areas
(independent t-test, p > 0.05), but it was significantly higher than that of the unused land
(0.72 ± 0.57 m−1) area (independent t-test, p < 0.05).

The spatial distribution of component 1, 2, 3 in this river basin showed notable spatial
variations (Figure 2). Comprehensively, the Fmax values of C1–C3 were 16.99~687.18,
12.68~1669.80, 0~1318.45 QSU, with average values of 142.61 ± 131.05, 74.23 ± 224.79,
286.31 ± 244.44 QSU, respectively. The fulvic-like component was dominant, and the
intensity order is generally C3 > C1 > C2. The gross of the three components showed
a similar trend to FCDOM(355) along the transect, with four abnormal prominent values
appearing at QL-3, 5, 54, 62 with a gross of Fmax 1934.71, 1763.84, 2444.52, 1132.75 QSU,
and 629.60~1941.37 QSU higher than the average (503.15 QSU) for all samples.
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Sum of fluorescent intensity).

With an exception, the component C2 in the water of the unused land area was the
highest and its fluorescence intensity averaged 265.96 ± 619.33 QSU, although compared
to other types of land the difference is not significant (paired t-test, p > 0.05). The com-
ponents C1 and C3 averaged 69.80 ± 91.73 and 142.69 ± 162.66 QSU in the unused land
area. According to land-use types, the gross Fmax of the three components ranked as the
area surrounding Qinghai Lake > grassland > unused land > cropland with the concrete
data of 802.89 ± 523.97, 505.42 ± 342.93, 478.45 ± 868.08, 361.10 ± 279.57 QSU. The gross
Fmax in the water around Qinghai Lake was much higher than that in cropland (indepen-
dent t-test, p < 0.05), but not very significant when compared with the gross amount in
grassland and unused land water regimes (independent t-test, p > 0.05) (Figure 2). Influx,
along with river water of high mineral content (TDS = 932.96 mg·L−1 KCl) plus atmo-
spheric deposition, resulted in the area around Qinghai Lake becoming the collection
location of DOM. Generally, CDOM absorption (fluorescence at 355 nm) increased from
a low of 0.72 ± 0.57 m−1 (15.30 ± 20.10 QSU) in unused land water regimes to a high of
3.02 ± 1.88 m−1 (50.85 ± 35.98 QSU) of the Qinghai Lake surrounding water regime, with
mean values of 1.38 ± 1.15 m−1 (32.06 ± 21.58), and 1.19 ± 2.00 m−1 (27.84 ± 37.17 QSU)
in the grassland area and cropland water regime fell in the middle range.

Water samples exhibited SUVA values (m ± std) of 2.64 ± 1.78, 1.98 ± 1.45, 2.64 ± 1.61,
1.13 ± 0.52 L·m−1·mg C−1 (Table 1). S275–295 values (m ± std) of 0.02 ± 0.01, 0.02, 0.02 ± 0.01,
0.02 nm−1 in water samples of the abovementioned four categories of land use were found,
fluctuating at 0.02 nm−1. Throughout the sampling transect, the SUVA254 values ranged
from 0.21 to 5.92 L·m−1·mg C−1, with an average value of 2.12 ± 1.51 L·m−1·mg C−1. The
spectral slope S275~295 ranged from 0.01~0.048 nm−1, with an average value of 0.02 ± 0.006 nm−1.
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The S275~295 showed no significant difference for different land use types (independent
t-test, p ≥ 0.05). However, in terms of SUVA254 values, it showed significant difference
between cropland and unused land area (independent t-test, p < 0.05).

A two-dimensional fluorescence index (FI) is also used to identify the sources of DOM,
and was calculated as a ratio of emission fluorescence intensities at 450 to 500 nm, which
were excited at 370 nm [19]. The mean FI value in this study is recorded at 1.92 with
maximum and minimum values of 2.29 and 1.53, respectively.

The humification index (HIX) was calculated as the ratio of the fluorescence peak area
over the emission wavelengths of 435–480 nm to those over 300–345 nm at the excitation
wavelength of 255 nm [20]. In this study, the humification index ranged between 0.78
and 6.96, with an average value of 3.23 ± 1.73. Only twenty water samples (QL-1, QL-2,
QL-3, QL-5, QL-9, QL-10, QL-15, QL-20, QL-22, QL-23, QL-24, QL-27, QL-29, QL-30, QL-31,
QL-32, QL-33, QL-34, QL-46, QL-75) showed a humification index ranging from 4 to 7,
situated in the forest and grassland area. More than half of the samples provided HIX
values from 0.78 to 3.9. HIX values of the water around Qinghai Lake and in the grassland
region averaged 4.28 ± 2.09 and 4.18 ± 1.50, respectively, which were significantly higher
than that of the unused land of 1.41 ± 0.52 (independent samples t-test, p < 0.05), and higher
than the value of 2.92 ± 1.47 for cropland, but without a significant difference (independent
samples t-test, p > 0.05).

The biological index (BI) was calculated by the ratio of fluorescent intensity at emission
wavelength 380 nm to 430 nm and at excitation wavelength 310 nm [8]. In this study, the
BIX values were within the range of 0.79–3.13 with a mean value of 0.99 ± 0.31. The highest
BIX appeared in the unused land area, 1.35 ± 0.8, but there was no obvious difference
between this type of land use and the lake surrounding area, cropland and grassland area
(independent samples t-test, p > 0.05).

4. Discussion
4.1. Fluorescent Indices

An FI value less than 1.2 (FI < 1.2) indicates a terrestrial origin and high aromaticity of
FDOM whereas FI > 1.8 corresponds to a microbial DOM source and lower aromaticity [19,21].
Nearly all of the examined water samples in this study have FI values above 1.8, which
indicates the predominantly microbial-derived origin of FDOM and low aromaticity. This
index expresses the shifting of fluorescing molecules to larger wavelengths as humification
of dissolved organic matter continues, resulting from lower H/C of the emission spectra.
High values of the humification index are an indication of increased humification [19]. The
HIX for the humic content of DOM has low values (<4) for non-humified DOM of biological
or aquatic bacterial origin, but high values (>10) for DOM with a strong humic character
or with an important terrigenous contribution [22]. The results indicate a wide range of
humification degree and mainly mixed sources of biological and allochthonous DOM,
reflecting the presence of a labile fraction of low HIX. Higher FI values at the forest and
grassland stations revealed that decomposed plants contributed much to humus. Lower
FI values of cropland and unused land demonstrated a significant non-humic character
of DOM with an important contribution from strong autochthonous sources and weak
terrigenous components. BIX indicates the comparative influence of biologically produced
dissolved organic matter. The BIX values range from 0.6 to 0.7 and 0.7 to 0.8 and are an
indication of low and intermediate autochthonous components, respectively [23]. The
results indicate strong autochthonous components in this study. HIX and BIX have been
used to identify the source and fate of CDOM in estuarine water and enumerated changes
in fluorescence characteristics of DOM [22]. Indices have been used to understand various
ecosystem processes, including changes in DOM.

4.2. CDOM Absorption and Fluorescence Variability in Different Water Regimes

The absorption coefficient of CDOM generally decreased with increasing wavelength
from 300–600 nm. Different regions of the Qilian Mountains usually show different concen-
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trations of CDOM components. The CDOM and fluorescence at 355 nm (F355) in different
water regimes are shown in Figure 3. The variation with salinity (Figure 3) showed similar
increasing–decreasing fluctuation in the cropland and lake surrounding water regime. It
was preliminarily inferred that the organic fraction was relevant with salinities of wa-
ter [8,24]. Comparatively, a conservative distribution of CDOM optical descriptors (a355 of
1.38 m−1 and F355 of 32.06 QSU) occurred in grassland water regimes within the salinity
range of 0.2–0.5 g·L−1, and higher salinity (0.6~0.8 g·L−1) resulted in abnormally high
absorption and fluorescence in cropland (7.83 m−1 and 150.62 QSU) and unused land
(1.96 m−1 and 60.64 QSU) regions. This result was consistent with those reported by
Parlanti et al. (2000) [25], but contrary to a previous study that found decreased FDOM
intensity with increasing salinity gradients. Salinity played important roles in shaping the
microbial community at phylum and genus levels, as different species of bacteria favored
discriminatory xenobiotic metabolism and signal transduction of high or low salinities,
thus impacting the generation or degradation of DOM [26]. Once the salinity arrived at the
highest value of around 8, the activation of organic materials attenuated, as illustrated in
Figure 3, in the region around the lake.
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4.3. Component Variability along the Transect

The FDOM components in this investigation were characterized with three-dimensional
excitation–emission matrix spectroscopy (3DEEM) coupled with the parallel factor anal-
ysis (PARAFAC) technique [27,28]. A total of 55 EEMs were modeled with PARAFAC
using MATLAB R2016b with the DOMFluor toolbox 1.7. The reliability of the PARAFAC
model was verified and the number of individual fluorescent components was determined
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by split-half validation and residual analysis [29], and the fluorescence intensity of each
component was represented with Fmax (QSU, quinine sulfate unit).

Table 2 shows the three components of EEM spectra that were identified by the
PARAFAC model. The spectral characteristics of the component that were identified in
this study were extremely similar to those characteristics of CDOM in other aquatic envi-
ronments that were previously identified [6,27,28]. The excitation and emission pairs of
the main peak positions for each component were summarized and compared with those
pairs that were found in earlier studies, as shown in Table 2. Based on the fluorescence
features, the components can be distinguished as one humic-acid (HA)-like component
C1 and one protein-like component C2 as well as ultraviolet fulvic-acid (FA)-like C3. The
three-dimensional fluorescence spectra of three kinds of fluorescent components and the
maximum are shown in Figure 4. Although three individual components were identified
for this dataset using the PARAFAC model, it does not suggest that only three types of
fluorophores were present in these samples. C1 had a primary fluorescence peak at Ex/Em
wavelengths of 265/425, 315/425 nm, which was similar to samples covering a wide range
of the spectrum of DOM molecular composition, encompassing modern, highly aromatic
allochthonous DOM, to aged DOM with low aromaticity, dominated by autochthonous
production. Component 1 is defined as a combination of the classically described terres-
trial and marine humic-like fluorescence at an excitation maximum of 265 nm (secondary
at 315 nm) and an emission maximum at 425 nm [30], and the tryptophan-like peak at
Ex/Em wavelengths 265/334 nm, namely, C1 originating from terrestrial inputs and au-
tochthonous production (e.g., exudation of phytoplankton and biological contribution). C1
(ex: 230/300 nm, em: 418 nm) was reported to include a microbially derived humic-like
peak, due to the contribution of authigenic humic-like matter [31,32]. C1 reflected the
fluorescence properties of the long-wave humus, representing fluorescence components
with the maximum excitation and emission wavelength. Component 2 includes two flu-
orescent peaks, the first group of Ex/Em wavelengths 240/363 nm, which is typical of
protein fluorescence and similar to what is classically described as tryptophan-like fluores-
cence. Another peak 265/363 nm, also a kind of protein-like material, is representative of
dissolved metabolic materials by microbes. C2 was a biodegradable protein-like substance,
and was related to an aromatic ring amino acid structure in DOM, and the fluorescence
peaks occurred in the region with a short emission wavelength. Ultraviolet fulvic acid-like
C3 (ex: 225; em: 332; 408; 417; 423; 431) is assigned to autochthonously produced tyrosine
(225/332 nm) and fulvic acid (225/408, 417, 423, 431 nm) materials with a single excitation
wavelength. Stedmon et al. (2000) found it in sewage and agricultural wastewater, which
contained a large number of phenolic hydroxyl, carbonyl and other functional groups [33].
C1 and C3 were humic-like humic acids and fumaric acids, related to hydroxyl and carboxyl
groups in the structure of humus.

Table 2. Characteristics of the three fluorescence components from the water regimes of the Qilian-
shan region.

Components Ex/Em Description References

Component 1
Humic acid-like 265/334; 275/425; 315/425 Terrestrial humic-like material

Marine humic matter

C3: 310/380 [28]; C2: 265/475, C4:
275(355)/450 [34,35]; C3: <250/434 [18]; C1:

322/407 [36]; M: 310–320/380–420 [30]

Component 2
Protein 240/363; 265/363

Tryptophan-like substances
free or bound in proteins
Tyrosine-like materials

C5: 240/368 [27]; C8: 275/360 [28]; C3:
≤230(285)/340, C5: 275(≤230)/305 [37];

C4: 274/340 [18]
Component 3

Fulvic acid-like
225/332; 225/408;

225/417; 225/423; 225/431
Microbial

humic-like substances C1: ≤230(300)/418 [34,35]
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4.4. Relationship between the Spectral Indices of DOM and Other Parameters

Correlation analysis between the spectral indices of DOM and water quality parame-
ters was carried out to infer the factors underlying the dynamics of DOM. a355 (CDOM)
in the lake surrounding area did not show any correlations to fluorescent components
(p > 0.05), while some strong correlations were found in other types of land use. For ex-
ample, a355 correlated positively with C1 and C2 in cropland (r = 0.992, p < 0.01), and
correlated positively with C1, C2 and C3 (r = 0.956, p < 0.01) in grassland and unused land
(r = 0.965, p < 0.01). This implied that CDOM and C1–C3 had an overall similar spatial
change and fluorescent moiety formation and consumption influenced the distribution
trend of CDOM. ∆a280, the index for the intensity of the shoulder peak in the CDOM
absorption spectra, correlated strongly with C1 and C2 in cropland (r = 0.768, r = 0.67,
p < 0.01), and with C1 in grassland (r = 0.39, p < 0.05). It did not show any correlations
with fluorescent components in the lake surrounding area and unused land area. Total
normalized fluorescence intensity, as suggested by Kowalczuk et al. (2009) [38], was found
by summing fluorescence intensities of all the three identified components in each land-use
type and is plotted against HIX an FI for the grassland water regime in Figure 5. A decrease
in HIX as a function of total fluorescent intensity from southeast to northwest in grassland
water regimes suggested the role of in situ plankton production at these locations and then
FI values increased. The denser the grass/forest, the more endogenous it was. Otherwise,
obvious correlations between HIX/FI and total normalized fluorescence intensity were not
observed for water regimes in other land-use types.

Principal component analysis was performed using the Fmax of C1–C3, HIX, BIX, a355,
DOC, etc. Three principal factors were identified in the lake surrounding area, which
explained 54.7% (PC1), 26.6% (PC2), 10.33% (PC3) of the total variance of the dataset,
respectively (Figure 6a). PC1 correlated positively with HIX, C1 and C3 but negatively
with C2 and DOC. Generally, microbial metabolic activities (zoo- and phytoplankton).
such as decomposition and synthesis, assimilation and dissimilation, were strengthened
with increasing FI values. However, a significant anti-correlation between BIX and FI was
observed in the lake surrounding area (r = −0.898, p ≤ 0.01), which resulted from the intense
bioactivities and strong terrestrial input at QL-4. The highest BIX of 1.21 and the lowest FI
of 1.53 at this sampling station indicated that allochthonous DOM was bioavailable. PC1
represented the autochthonous organic matter which was biorecalcitrant and dominated by
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humic-like components. The plant debris and algal sources of DOM were reflected in the
absorbing spectral parameter ∆!280, and the autochthonous (∆!280, BIX) and allochthonous
(HIX) indices showed strong negative correlations (r = −0.852, p ≤ 0.05). This was similar
to that reported by Lee et al. (2018), that the degree of the shoulder peak over 240–290 nm
for algal DOM decreased with an increasing proportion of allochthonous sources in the
DOM samples mixed with two contrasting sources [39]. The positive correlation between
BIX and S275–295 (r = 0.847, p ≤ 0.05) revealed that molecular weight decreased gradually
with strengthening of microbial activities. Meanwhile, aromatic DOM showed a decreasing
proportion in the DOM reservoir with elevated DOC content (SUVA254 and DOC, r = −0.809,
p ≤ 0.05), probably due to the added part of DOM being dependent on microbial generation
or photochemical processing which induced the CDOM composition to change [40]. C1
correlated most strongly with C3 (r = 0.987, p ≤ 0.01) in water samples surrounding the
lake, and SO4

2− was reduced when particulate organic matter was oxidized to produce
dissolved fluorophores (C1, C3 vs. SO4

2−, r = −0.857, p ≤ 0.05; SO4
2− vs. DOC, r= −0.768,

p ≤ 0.05) that resulted in a decrease in oxidation reduction potential (ORP) (SO4
2− vs.

ORP, r = 0.895, p ≤ 0.05), indicating sulfate-reducing bacteria mediated much during this
process. This phenomenon was accordant with reports in groundwater thatSO4

2− in this
aquatic environment suggested a positive correlation with HA, FA and degraded FA [8].
There is a sign that a protein-like substance was influenced by nitrate-reducing bacteria, as
nitrate was reduced when bioavailable C2 was oxidized into inorganic carbon (NO3

− vs.
C2, r = 0.915, p ≤ 0.05). Nitrate-reducing bacteria probably directly assimilated C2 (carbon
substrate) which promoted the microbial reactivity of dissimilatory reduction on NO3

−.
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Figure 5. Humification indices and fluorescence indices versus the total normalized fluorescence
intensity in grassland water regime.

Three principal factors were identified which explained 50.61% (PC1), 15.08% (PC2)
and 11.29% (PC3) of the total variance of the dataset in the water of grassland, respectively
(Figure 6b). PC1 significantly and negatively correlated with DOC, indicating that DOM
content was not the main factor for controlling the aromaticity and humification degree
of DOM. Molecular size and aromaticity were observed to inversely correlate with HIX
vs. S275–295 and HIX vs. SUVA254 (r = −0.58, p ≤ 0.01), clarifying that molecular weight
increased and the number of double bonds was reduced with the deepening of humification
for DOM in the grassland area. Similar to the circumstance of the lake surrounding area,
the increasing trend of DOC instead resulted in the weakening of aromaticity (SUVA254
and DOC, r = −0.546, p ≤ 0.01). The increased portion of DOM may have been mainly
lower aromatic content. HIX and BIX in the grassland area negatively correlated mutually
(r = −0.527, p ≤ 0.01), and the molecular weight of DOM increased with higher HIX
(HIX and S275–295, r = −0.483, p ≤ 0.01). The horizontal distribution trend of CDOM was
influenced greatly by C1 and C3, and these two components (humic-like and fulvic-like)
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of CDOM became the determinants for humification degree of DOM (CDOM or C1/C3
and HIX, r = 0.651, p ≤ 0.01). C1, C2, C3 showed significant positive correlations mutually
(r = 0.98, p ≤ 0.01) in the grassland area. C1, C2, C3 scores significantly anti-correlated with
pH and DO (r = −0.797, p ≤ 0.01) in grass/forested land, suggesting that DOM was related
to synthesis and mineralization of particulate organic matter (POM), namely, the primary
productivity. Undoubtedly, stronger biological behavior resulted in higher FI values. The
recalcitrant CDOM, including humic-like C1 and fulvic-like C3, inhibited the microbial
behavior (Figure 6b) (C1 or C3 vs. BIX, r = −0.673, p ≤ 0.01), C1 and C3 were dominant in
CDOM by absolute contents of 146.26 and 322.97 QSU over C2 with a value of 36.18 QSU.
Plant debris or algal contributions predominated in the grassland water regime (∆!280 vs.
a355, r = 0.463, p ≤ 0.05).
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Different from the abovementioned two types of land use, HIX values in the water of
the cropland and unused land area were generally less than 4, whereas BIX values at the two
sampling areas were more than 1. This result indicated a remarkable autochthonous source
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of DOM which was freshly produced from metabolic activities of plankton and plant debris
degradation. Likewise, three principal factors were identified, which explained 49.36%
(PC1), 28.31% (PC2) and 10.92% (PC3) of the total variance of the dataset in the cropland
area, respectively. Specifically, C1 correlated significantly with C2 (r = 0.953, p ≤0.01)
in the water of the cropland area. Both were correlated to EC and salinity (r = 0.856,
p ≤ 0.01), which indicated that the fluorescent components were released from the mineral
substrate of aquifers with extended residence time of water [18]. Negative oxidation
reduction potential (ORP) was concerned with oxygen consumption, and S was one of the
mineral elements that was oxidized and liberated as SO4

2− into dissolution phase. SO4
2−

multiplied gradually and contributed much to increasing EC and salinity (SO4
2− vs. EC, r

= 0.869, p ≤ 0.01; SO4
2− vs. ORP, r = −0.621, p ≤ 0.05). The observed positive relationship

between BIX and EC indicated that microbial behavior stimulated minerals to be liberated
or disintegrate in the cropland area, e.g., extracellular polymeric substances encapsulated
in particulates which promoted mineral disintegration, ascribed to the diagenetic effects
of aquatic organism metabolism [18,41]. As for as PC1, HIX and DOC were the primary
negative contributors. DOC and BIX were the significantly negative contributors for PC2
(Figure 6c). A higher molecular weight of DOM constituted the major factor for PC2. This
result indicated that DOM was characteristic of the weak humification and autochthonous
source of DOM by the active biological behaviors. Fluorescent component 3 in cropland
had a more obvious characteristic of humification relative to other organic moieties (HIX
and C3, r = 0.819, p ≤ 0.01). The significant correlation between a355 and ∆a280 further
expounded the rich endogenic DOM of a phytoplankton and algal source (a355 and ∆a280,
r = 0.729, p ≤ 0.01), and the fluorescent components C1 and C2 of CDOM behaved the
same (C1 and ∆a280, r = 0.768, p ≤ 0.01). Protein-like substance C2 was not limited in
associating with aquatic vegetation [30], and was undoubtedly also derived from microbial
excretion, degradation/synthesis and assimilation/dissimilation, etc. metabolic activities
(C2 and BIX, r = 0.742, p ≤ 0.01). When the organic molecules aggregated into large ones,
humification was strengthened and aromaticity increased (HIX and SUVA254, r = 0.601,
p ≤ 0.05; SUVA254 and S275–295, r = −0.676, p ≤ 0.01), and the bioavailability of DOM
was attenuated (HIX and BIX, r = −0.574, p ≤ 0.05) during the metabolic processes by
microbes (FI > 1.9, microbial/phytoplankton metabolism predominated in the various
transformations of DOM). Rich freshly produced autochthonous DOM primarily resulted
from or in microbial/phytoplankton metabolism greatly (BIX and FI, r = 0.736, p ≤ 0.01),
which could be ascribed to the combined diagenetic effects of aquatic organism metabolism
and sunlight degradation [42].

Unused land was relatively smaller area, and CDOM and its fluorescent components
(C1-C3) were predominantly recently produced by biological activities (BIX and CDOM,
r = 0.983, p ≤ 0.01). Three principal factors were identified, which explained 52.70% (PC1),
22.57% (PC2) and 12.84% (PC3) of the total variance of the dataset, respectively (Figure 6d).
PC2 correlated negatively with FI, indicating that stronger microbial metabolic behavior
resulted in quota shrinkage of PC2. At the same time, the recently produced richer au-
tochthonous DOM could create a larger size of organic molecules (FI and S275–295, r = −0.791,
p ≤ 0.05). It was inferred that DOM of low humification (HIX averaged at 1.41) mainly
originated from the microbial metabolic process of autogenous materials, and the common
plants found in wetlands are a source of CDOM when they decompose [30]. Fluorescent
components (C1, C2, C3) in the water regime of the unused land region displayed consistent
variation along the axal transect (r = 0.99, p ≤ 0.01), and intimately correlated with Cl−

(r = 0.831, p ≤ 0.05), which was attributed to the dry climate in the northwest part where the
water table declined and gradients narrowed, as described by Kabir et al. (2021) [8]. FDOM
increased with increasing salinity constituents and long residence times. This proposed
mechanism was supported by the increasing concentrations of Cl− and DOC in Swan
Coastal Plain wetlands [43]. Corresponding to the abovementioned contents, salinity was
another regulator constraining microbial reactivity and FDOM distribution [26].
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5. Conclusions

In this work, the occurrence of different types of autochthonous FDOM, that can
be freshly produced by phytoplankton and microbial metabolic behavior, in river and
lake waters has been ascertained. DOM was the richest in the lake surrounding area, as
well as CDOM. Fluorescent materials were divided into three components, humic acid-
like, protein-like and fulvic acid-like. DOM originated from plankton, macrophyte, etc.
autochthonous freshly produced materials according to FI and BIX values. ∆a280 further
proved that DOM in the lake surrounding area, cropland and grassland was associated
with phytoplankton and algal sources. In the grassland area, total normalized fluorescent
intensity was evidently characteristic of decreasing humification and increasing authigenic
production from phytoplankton, macrophytes and microorganisms. High molecular weight
of DOM that was humified with low aromaticity was ascribed to microbial intermediation
or photochemical processing. Formation and consumption of three components in the
water regime surrounding the lake were mediated by sulfate—(C1 and C2) and nitrate-
reducing bacteria (C3). Fluorescent components in cropland were derived from mineral
dissolution by bacterial interruption. The large size of molecules was produced along with
features of high humification and aromaticity. Atmospheric transportation and glacial melt
in the unused land water regime created the platform for organic molecules.
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