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Abstract: Exposure surrogates, such as air quality measured at a fixed-site monitor (FSM) or residence,
are typically used for health estimates. However, people spend various amounts of time in different
microenvironments, including the home, office, outdoors and in transit, where they are exposed to
different magnitudes of particle and gaseous air pollutants. Health risks caused by air pollution
exposure differ among individuals due to differences in activity, microenvironmental concentration,
as well as the toxicity of pollutants. We evaluated individual and combined added health risks (AR)
of exposure to PM2.5, NO2, and O3 for 21 participants in their daily life based on real-world personal
exposure measurements. Exposure errors from using surrogates were quantified. Inter- and intra-
individual variability in health risks and key contributors in variations were investigated using linear
mixed-effects models and correlation analysis, respectively. Substantial errors were found between
personal exposure concentrations and ambient concentrations when using air quality measurements
at either FSM or the residence location. The mean exposure errors based on the measurements taken
at either the FSM or residence as exposure surrogates was higher for NO2 than PM2.5, because of the
larger spatial variability in NO2 concentrations in urban areas. The daily time-integrated AR for the
combined PM2.5, NO2, and O3 (TIARcombine) ranged by a factor of 2.5 among participants and by a
factor up to 2.5 for a given person across measured days. Inter- and intra-individual variability in
TIARcombine is almost equally important. Several factors were identified to be significantly correlated
with daily TIARcombine, with the top five factors, including PM2.5, NO2 and O3 concentrations at
‘home indoor’, O3 concentrations at ‘office indoor’ and ambient PM2.5 concentrations. The results on
the contributors of variability in the daily TIARcombine could help in targeting interventions to reduce
daily health damage related to air pollutants.

Keywords: air pollution; personal exposure concentration; health risk; variability; microenvironments

1. Introduction

Adverse health effects of air pollution are a major public health issue globally. The
World Health Organization (WHO) estimated that over 80% of the population living
in urban areas breathes where the air quality does not meet the WHO guidelines [1].
Exposure to air pollution is related to numerous types of health damage. Exposure to
daily PM2.5 concentrations has a causal relationship with cardiovascular illnesses and
premature mortality [2]. There is a causal relationship between short-term exposure to
1 h NO2 concentrations and respiratory disease outcomes [3]. Exposure to an 8 h daily
maximum ambient O3 concentration is causally associated with respiratory illness [4].

A number of epidemiological studies have estimated the health risk of air pollu-
tion based on fixed-site monitor (FSM) as a surrogate for exposure because of read-
ily available real-time data with high measurement accuracy [5–9]. People typically
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spend over 85 percent of their time in indoor environments where they are usually ex-
posed to different levels of concentrations than ambient concentrations [10]. For example,
Che et al. [11] demonstrated that, at school, the mean exposure error from using outdoor
PM2.5 concentrations at FSM as a surrogate was up to 30%. Some studies estimated ex-
posure based on static residence-based approach (e.g., land use regression approach) to
model people’s exposure to air pollution using nearby monitoring stations at residential
addresses [12–15]. However, exposure concentration varies among microenvironments
(e.g., ‘home indoor’, ‘office indoor’, ‘others indoor’, ‘outdoor’ and ‘transit’) [16,17]. For
example, Koehler et al. [17] demonstrated that PM2.5 exposure concentrations substantially
varied across different microenvironments with a geometric mean of 8.0 µg/m3 at home,
2.4 µg/m3 at work, 6.8 µg/m3 in transit, 8.4 µg/m3 at an eatery and 4.9 µg/m3 in other
microenvironments. The residence-based approach is unable to capture the variation in air
pollution exposure across different microenvironments because it ignores human mobility
and does not properly apprehend the space-time dynamics of air pollution [18]. Thus,
the residence-based approach as a surrogate may lead to a bias in the exposure-response
relationship. Little is known about the exposure error between a surrogate and real-world
exposure concentrations.

The health risk of exposure to air pollution depends on the exposure concentration
over time in a microenvironment that leads us to quantify time-integrated or personal
exposure across the microenvironments [19]. Personal exposure to air pollution is defined
as the product of the average personal exposure concentration in a microenvironment and
the total time spent in that microenvironment [16]. To date, some studies quantified the
variability of personal exposure to air pollution across different microenvironments for a
single pollutant [16,20–22]. For example, Mazaheri et al. [16] investigated the variability of
personal PM2.5 exposure across different microenvironments and activities among 14 adult
participants in Queensland, Australia. However, people are typically exposed to a mixture
of particle and gaseous pollutants simultaneously in the real world. Each air pollutant is
different in terms of health risk and toxicity, which leads us to quantify personal exposure
to combined particle and gaseous pollutants. To our best knowledge, no study has been
conducted to quantify overall exposure variability for combined personal PM2.5, NO2 and
O3 exposure concentrations across the microenvironments to date.

Because an individual’s mobility varies in location and time, exposure concentrations
may differ widely between individuals and over time for a given individual [23–25]. Pre-
vious studies have demonstrated the inter- and intra-individual variability in personal
exposure concentrations for single pollutants [25–28]. In Guangzhou, China, variance
component analysis demonstrated that the intra-individual variability was 90% in the daily
lognormal personal PM2.5 exposure concentrations measured in 16 adult subjects [26]. In
contrast, Chen et al. [27] reported that inter- and intra-individual variability in personal
PM2.5 exposure concentration were almost equal. For NO2, Lee et al. [29] demonstrated
that the intra-individual variability was higher than inter-individual variability in daily
exposure concentrations. Grivas et al. [30] reported that the inter- and intra-individual
variability were almost similar (51–56% intra-individual variability across the cities) in
weekly average O3 exposure concentrations among school children in two cities, Athens
and Thessaloniki, in Greece. However, because people are exposed to multiple pollutants
simultaneously, it is important to quantify inter- and intra-individual variability and the
key contributors of variability in the combined exposure to PM2.5, NO2 and O3 concen-
trations. No information is available on the inter- and intra-individual variability in the
combined exposure to PM2.5, NO2 and O3, and the key contributors affecting the variability.
Identifying and characterizing the key contributors of inter- and intra-individual variability
in combined PM2.5, NO2 and O3 exposure may help in targeting interventions to reduce
the health effects of exposure to a mixture of air pollutants.

The concentrations of different pollutants cannot be added directly to quantify com-
bined exposure due to their differences in sampling units and their toxicity in terms of
health risks. To overcome this limitation, an added health risk (AR) model had been applied
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in this study which was developed by Wong et al. [31] as the basis of the multipollutant
air quality health index (AQHI), considering local hospital admissions data for the 3 h
moving average of individual air pollutants. The AQHI approach is used by the Hong
Kong Environmental Protection Department (HKEPD) to provide advice to the public
regarding short-term health risks of air pollution [32] and was also used in our previous
study to evaluate the impacts of ambient concentration changes due to emission control
measures in Hong Kong [33]. In this study, we would use the same method to combine the
health risks from multiple pollutants and assess the inter- and intra- individual variability
in terms of the time-integrated health risk.

The objectives are to: (1) quantify the exposure error for PM2.5, NO2 and O3 between
personal exposure concentrations across the selected microenvironments and ambient
concentration from the FSM and residence location; (2) quantify the time-integrated AR
(TIAR) for the combined PM2.5, NO2 and O3 exposure concentrations for each participant on
each measured day and its contributions from selected microenvironments; and (3) identify
key contributors of inter- and intra-individual variability in TIAR.

2. Materials and Methods

This section describes: the study design for personal exposure concentration measure-
ments; the instrumentation for air quality measurements; the time-location record of the
participants; the exposure error estimation between personal exposure concentrations and
ambient concentrations; the calculation of health risk; time-integrated health risk; and inter-
and intra-individual variability in TIAR for PM2.5, NO2, and O3 and combined PM2.5, NO2,
and O3 exposure concentrations.

The supplementary material contains additional details on: (a) sensors specifications
that are used to measure personal exposure concentrations; (b) carbon dioxide as an indica-
tor of microenvironments to check the consistency of the recorded time-location patterns of
the individual; (c) sensitivity analysis of AR estimation based on 1 min exposure concentra-
tions of the pollutants instead of 3 h moving average concentrations; and (d) quantification
of inter- and intra-individual variability in the daily time spent in each microenvironment.

2.1. Study Design

To quantify the health risk of combined personal exposure to particle and gaseous
pollutants across the selected microenvironments, a longitudinal study was conducted
among twenty-one participants. All participants were recruited from faculty, staff, and
postgraduate students from the Hong Kong University of Science and Technology, Hong
Kong. The participants lived in different districts and areas across Hong Kong, including
urban and suburban areas. The air quality of Hong Kong is influenced by local emission
sources, including on-road motor vehicles, power plants and marine vessels [33], and
regional air pollution from mainland China [34]. Each participant performed the continuous
air quality measurement on multiple consecutive days based on their availability, with
an average of five days. Data were collected for 106 person-days. During the personal
monitoring campaigns, the outdoor air quality of residences was also measured for seven
participants. Demographic information (e.g., age, occupation, number of occupants at
home, living floor, smoking) and residential characteristics (e.g., type of ventilation status
at home, AC type, type of cooking stoves, cooking duration per day and frequency of floor
cleaning) were collected using a web-based structured questionnaire.

2.2. Instrumentation

The PM2.5, NO2, and O3 exposure concentration were measured across the microen-
vironments that were visited by the participants. As an indicator of indoor and outdoor
differences, CO2 concentrations were also measured. PM2.5 concentrations were measured
using a photometer Aerocet 831 Handheld Particle Counter (Metone, Grants Pass, OR,
USA) for personal exposure concentration across the microenvironments and a photometer
model 212 Ambient Particulate Profiler (Metone, Grants Pass, OR, USA) for outdoor air
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quality at residence locations. The concentrations of O3 and NO2 were measured using
electrochemical sensors that were the model B series from Alphasense, Braintree, UK. The
CO2 concentration was measured using a nondispersive infrared Premier CO2 sensor from
Dynament, Mansfield, UK. The sensors of all pollutants were integrated into a portable
system called Portable Air Station (PAS) and an outdoor portable system called a Mini Air
Station (MAS) [35,36]. The PAS was used to measure personal exposure concentrations
across the microenvironments (Figure 1). The PAS was able to store local data and transmit
data to a server in real-time.
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Figure 1. Real-time (24 h) personal air quality measurement using portable air sampler.

The sensors measured air pollution concentrations at 1 min resolution. The PAS
has 12 V Li-ion Battery inside for a standby capacity of more than 10 h. The PAS has
rolling wheels that make the 15 kg PAS convenient to move from one place to another with
participants. Participants were instructed to always carry the instrument and keep the
instrument within 1 m of them in indoor environments (e.g., home and office). Participants
were given some flexibility to keep the PAS in a nearby safe place while taking a bath.

Details of the quality assurance (QA) and quality control (QC) for the sensor mea-
surements are provided elsewhere [36–38]. The accuracy of the sensors used in PAS and
MAS were evaluated based on measurements with standard gas at known concentrations
in the laboratory and collocation with reference methods at the government operated
Air Quality Monitoring Station (AQMS) at Mong Kok. The differences in concentration
measurements between the reference methods and sensors were, on average, less than 1%
for PM2.5 and NO2, and about 4% for O3 over 350 sampling hours [38]. During air quality
measurements and post data analysis, QA and QC were maintained to obtain a high quality
of data. Detailed procedures regarding the QA and QC for air quality data are published
elsewhere [39].



Int. J. Environ. Res. Public Health 2022, 19, 565 5 of 19

2.3. Time-Location Records

Participants recorded the start and end times of each location that they visited and
categorized each location into one of the five predefined microenvironment categories
using the aTimeLogger app on their smartphone (Available online: http://atimelogger.com,
accessed on 20 December 2021). The five categories of microenvironments were: ‘home
indoor’, ‘office indoor’, ‘others indoor’, ‘outdoor’, and ‘transit’. Two participants recorded
their time-location information in open text on their smartphones. Participants were asked
to record their time-location immediately after changing each microenvironment to avoid
misclassification of time-location information.

CO2 is produced by human exhalation as a function of metabolic processes [40]. The
outdoor CO2 concentration level is lower than the CO2 concentration in indoor envi-
ronments because of human occupancy [41]. Based on our analysis, CO2 concentration
substantially varied between indoor and outdoor microenvironments and among different
indoor microenvironments depending on the occupancy number and ventilation condition,
provided in supplementary material. Therefore, we used real-time CO2 concentration time-
series (1 min resolution) in this study to check the consistency of the recorded time-location
patterns of the individual.

2.4. Quantification of Exposure Error between Personal Exposure Concentrations and
Ambient Concentrations

To compare personal exposure concentrations with the ambient concentration at the
residence location, the outdoor air quality was measured at seven participants’ residences.
The MAS was used to measure residences’ outdoor air quality. The MAS was placed on the
balcony or another outdoor space of the residence.

Hourly-average ambient concentrations of PM2.5, NO2 and O3 were retrieved from
FSM stations of the Hong Kong Environmental Protection Department (HKEPD). FSM
stations were selected based on the nearest distance to the participant’s resident address.

The exposure error between personal exposure concentrations and ambient concentra-
tions was estimated as below:

EEp,j,i =

∣∣∣∣∣PCp,j,i − ACp,j,i,l

PCp,j,i

∣∣∣∣∣× 100 (1)

where EEp,j,i is the exposure error (%) in daily average concentration between personal
exposure concentration and ambient concentration of pollutant p in each person-day j for
participant i. PCp,j,i is the daily average personal exposure concentrations of pollutant p
in each person-day j for participant i. ACp,j,i,l is the daily average ambient concentrations
of pollutant p in each person-day j for participant i at location l (i.e., nearest FSM or
residence location).

2.5. Calculation of Health Risk

For a mixture of PM2.5, NO2 and O3, AR of hospital admission for respiratory dis-
eases (International Classification of Disease codes 460-519) and cardiovascular diseases
(International Classification of Disease codes 390-459) for all ages were quantified [31].
Although AR in AQHI was quantified hourly based on a 3 h moving average of ambient
concentrations [31,32], we estimated AR based on continuous 1 min personal exposure
concentrations. This is because we quantified AR in each microenvironment across the
person-days, and participants spent less than 3 h in some of the microenvironments. Thus,
3 h moving average concentrations may cause misrepresentation of those microenviron-
ments by averaging before and after the microenvironmental concentrations. Based on
our analysis, the median differences of the daily average AR estimation between 1 min
exposure concentrations and 3 h moving average concentrations were less than 2% for each

http://atimelogger.com
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pollutant, regardless of the microenvironments. For each pollutant (ARp) in the mixture,
AR is quantified:

ARp = [exp(βp.Cpt) − 1] 100% (2)

where Cpt is the 1 min personal exposure concentration (µg/m3) of pollutant p at time t, and
βp is a regression coefficient in units of (µg/m3)−1 of pollutant p. Wong et al. [31] reported
the values of βp based on time series analysis, including βPM2.5 = 2.1 × 10−4 per µg/m3,
βNO2 = 4.5 × 10−4 per µg/m3 and βO3 = 5.1 × 10−4 per µg/m3.

The AR for a mixture of PM2.5, NO2, and O3 is quantified:

ARcombine = ARPM2.5 + ARNO2 + ARO3 (3)

where ARcombine is the sum of the AR for PM2.5, NO2 and O3 concentrations

2.6. Time-Integrated Health Risk

Because the health risk of air pollution depends on the exposure concentration over
time in a microenvironment, the contribution of each microenvironment to the daily health
risk was estimated based on TIAR. The TIAR for a mixture of PM2.5, NO2 and O3 across
the microenvironments for a participant was estimated as

TIARcombine,k,i,j = ∑n
i ARcombine, k,i,jtk,i,j (4)

where, TIARcombine,k,i,j is time-integrated ARcombine (%h) in microenvironment k in person-
day j exposed by participant i for the AR of combined PM2.5, NO2 and O3; ARcombine, k,i,j is
the average ARcombine (%) in microenvironment k for participant i in person-day j; tk,i,j is
the duration (hour) spent in microenvironment k by participant i in person-day j; and n is
the total number of microenvironments. This approach of estimating the TIAR in a given
microenvironment is similar to the method for estimating time-integrated exposure in a
microenvironment used by Klepeis [42].

We also quantified TIAR across the microenvironments for the individual pollutant,
i.e., PM2.5, NO2 and O3 exposure concentrations:

TIARp,k,i,j = ∑n
i ARp, k,i,jtk,i,j (5)

where, TIARp,k,i,j is time-integrated ARp (%h) in microenvironment k in person-day j
exposed by participant i for the pollutant p; ARp, k,i,j is the average ARp (%) in microenvi-
ronment k for participant i in person-day j for pollutant p.

To quantify which microenvironments contribute disproportionately, the health risk
relative intensity was estimated. Health risk intensity was calculated by dividing the
fraction of the health risk for a participant exposed in a microenvironment by the time
fraction of the day that the participant spent in that microenvironment. The approach of
calculating health risk intensity is similar to the approach for calculating the dose relative
intensity estimation used by Mazaheri et al. [43].

Ik,j,i =

TIARcombine,k,j,i
∑j TIARcombine,j,i

× 100
tk,j,i

∑j tj,i
× 100

(6)

where, Ik,j,i is the health risk intensity in microenvironment k in person-day j for participant i;
TIARcombine,j,i is the total time-integrated ARcombine (%h) on a given day of j for participant i;
tk,j,i is total time spent (hour) in microenvironment k in person-day j for participant i; and tj,i
is total spent on a given day of j for participant i. A relative intensity value greater than one
for a microenvironment suggests that the fraction of the TIARcombine was higher than the
time spent in that microenvironment. A value smaller than one indicates that the fraction
of the TIARcombine was less than the fraction of the time spent in that microenvironment.
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2.7. Quantifying Inter- and Intra-Individual Variability in Time-Integrated Health Risk

To quantify proportions of inter- and intra-individual variability in the daily total
TIAR, variance component analysis was used. Variance component analysis in the daily
total TIAR was performed separately for PM2.5, NO2 and O3, and combined PM2.5, NO2
and O3. To quantify the variance component, a linear mixed-effects model with only a
random intercept was developed [17,25]:

Zij = µ + bi + εij (7)

where Zij is the log-transformed daily total TIAR for PM2.5, NO2 and O3, and combined
PM2.5, NO2 and O3 in person-day j for participant i; µ is the fixed mean (logged) TIAR for
all subjects; and εij is the error. In linear mixed-effects models, a person-specific random
effect bi assumed to be normally distributed with zero mean and variance σ2

inter (the
inter-individual variability). The error εijp is assumed to have normal distribution with
zero mean and variance σ2

intra (the intra- variability). The variance components for inter-
and intra-individual were estimated using the method of restricted maximum likelihood
(REML) [44].

Intra-class correlation coefficients (ICC), i.e., the proportion of total variability at-
tributable to inter-individual variability, was estimated as [45]:

ICC = σ2
inter/(σ2

intra + σ
2
inter) (8)

To identify key contributors affecting the inter- and intra-individual variability in
daily TIARcombine, we performed correlation analysis between TIARcombine and selected
independent variables. The variables were the daily time spent at ‘home indoor’, ‘office
indoor’, ‘others indoor’, ‘outdoor’, and ‘transit’; the daily average PM2.5 concentrations at
‘home indoor’, ‘office indoor’, ‘others indoor’, ‘outdoor’, and ‘transit’; the daily average
NO2 concentrations at ‘home indoor’, ‘office indoor’, ‘others indoor’, ‘outdoor’, and ‘tran-
sit’; the daily average O3 concentrations at ‘home indoor’, ‘office indoor’, ‘others indoor’,
‘outdoor’, and ‘transit’; and the daily average ambient PM2.5, NO2 and O3 concentrations.
The variables were averaged daily and for each participant in order to analyze correlation
with the daily TIARcombine and participant-wise average TIARcombine, respectively.

2.8. Statistical Analysis

The normality of the distribution of data was checked using the Shapiro–Wilks test.
For non-normal distribution, the Mann–Whitney test was used to determine the statistical
significance of the difference between two independent groups. The Kruskal–Wallis test
was used to compare more than two independent groups.

3. Results

The results include study participants and the time-location pattern; exposure error
between personal exposure concentrations and ambient concentrations; time-integrated
health risk across the selected microenvironments; and inter-individual and intra-individual
variability in the time-integrated health risk.

The supplementary material contains additional results for (a) general characteristics
of the study participants; (b) inter- and intra-individual variability in the daily time spent
by participants in each microenvironment; (c) summary statistics of personal exposure
concentrations of PM2.5, NO2 and O3 in each microenvironment across the participants;
and (d) the relationship of ambient PM2.5, NO2 and O3 concentrations between FSM and
the residence location.

3.1. Study Participants and Time-Location Pattern

General characteristics of the participants are given in the supplementary material.
Twenty-one participants aged 21–60 years old participated in the longitudinal measurement



Int. J. Environ. Res. Public Health 2022, 19, 565 8 of 19

of the health risk of personal exposure study. All of the participants are non-smokers and
lived in non-smoking homes.

The mean daily percent of time spent by participants across the microenvironments
are provided in Table 1. Participants spent, on average, only 2.5% of their daily time in
an ‘outdoor’ environment. Among the five categories of microenvironments, participants
spent most of their daily average time in the ‘home indoor’ (range: 9.3–24.0 h), followed
by the ‘office indoor’ (range: 0–13.9 h), the ‘others indoor’ (range: 0–7.5 h), in transit
(range: 0–5.8 h) and in the ‘outdoor’ (range: 0–4.6 h) microenvironment. Based on variance
component analysis (given in supplementary material), intra-individual variability in daily
time spent in all selected microenvironments ranged from 59% to 91%. Inter-individual
variability was from 9% to 41% across the microenvironments. This indicates that the
day to day variability in the time spent for a given individual in a microenvironment is
higher than the differences in the average time spent in that microenvironment between
individuals during the whole measurement period.

Table 1. Daily time spent (hour) across the selected microenvironments (N = 106).

Microenvironment Min P25 Median Mean P75 Max SD

Home indoor 9.3 12.4 14.5 15.7 18.3 24.0 4.1
Office indoor 0 1.4 6.0 5.7 9.2 13.9 4.1
Others indoor 0 0.1 0.2 1.1 1.4 7.5 1.7

Outdoor 0 0.1 0.4 0.6 0.8 4.6 0.7
Transit 0 0 0.7 0.9 1.5 5.8 1.0

Definition of abbreviations: Min, Minimum; P25, the 25th percentile of the distribution, P75, the 75th percentile of
the distribution; Max, maximum; SD, standard deviation.

3.2. Exposure Error between Personal Exposure Concentrations and Ambient Concentration

The error percentage between the daily average personal exposure concentrations
and ambient concentration for PM2.5, NO2 and O3 are provided Figure 2, where Figure 2A
indicates the ambient concentrations from FSM and Figure 2B indicates the ambient con-
centrations from the residence location.

When ambient concentrations were based on FSM, the mean error percentage was
39% and 70% for PM2.5 and NO2 concentrations, respectively. In comparison, the mean
errors were 45% for PM2.5 and 87% for NO2 when ambient concentration was based on
the residence location. This exposure error is primarily because of the spatial variability of
the concentrations due to the daily movement of the participants across the microenviron-
ments. The mean exposure error of NO2 was higher than PM2.5 when based on either the
measurements at FSM and residence as exposure surrogates because of larger the spatial
variability in NO2 concentrations in urban areas. The coefficient of determination (R2)
values between daily average concentrations at FSM and the residence location was lower
for NO2 (0.25) than PM2.5 (0.87) (this is provided in the supplementary material), indicating
the larger spatial variability of NO2 concentrations.
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Figure 2. Percentage error in daily average exposure concentrations of PM2.5, NO2 and O3 between
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(B) ambient concentrations at residence location (N = 35).

For O3, the mean exposure error was 104% based on the air quality measurements at
FSM and 39% based on the measurements at the residence location. This is because people
are exposed to lower levels of personal exposure concentrations in different microenvi-
ronments than outdoors. For example, on a given person-day, the average personal O3
exposure concentrations were 27 µg/m3 in ‘home indoor’, 37 µg/m3 in ‘office indoor’,
25 µg/m3 in ‘others indoor’, and 17 µg/m3 in ‘transit’, while the daily average ambient O3
concentration on that day was 61 µg/m3 at FSM. The mean O3 exposure error using FSM
was higher than using the residence location. This is because FSM used in our study is gen-
eral FSM located at the top of the roof and not adjacent to busy roads. Thus, we measured
higher O3 concentrations at FSM. In contrast, the participants live in urban areas close
to busy roads, where an abundance of nitric oxide (NO) from on-road vehicles titrate O3
concentrations [33]. Thus, lower O3 concentrations were measured at residence locations.

The exposure errors based on FSM or residence locations were consistent for PM2.5
and lower than 50%, indicating small spatial variability in PM2.5 concentrations, similar to
the previous study [46,47]. For NO2, exposure errors were higher (≥70%) because of larger
spatial variability and were consistent throughout, based on FSM and residence locations.
This indicates that NO2 exposure concentrations based on a single location either FSM
or residence location cannot represent the large spatial variability in personal exposure
concentrations across the microenvironments. For O3, exposure errors were inconsistent
between FSM and residence locations because of O3 titration by NO. Thus, the results of
exposure errors in NO2 and O3 concentrations as a surrogate highlights the importance of
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real world personal exposure concentration measurements with the daily active lifestyle of
the individuals.

3.3. Contribution of the Selected Microenvironments in Time-Integrated Health Risk

The mean percent of the daily time-integrated health risk for combined PM2.5, NO2
and O3 exposure concentrations in each selected microenvironment are given in the supple-
mentary material. There were significant differences (p < 0.001) in the median TIARcombine
among the microenvironments. The daily highest TIARcombine (mean ± standard deviation,
SD) 64% (±19%) was in the ‘home indoor’ microenvironment, where participants spent an
average 66% (±17%) of their total daily time. The daily minimum TIARcombine 5% (±5%)
was in the ‘outdoor’ microenvironment, where participants spent an average of 3% (±3%)
of their daily time. Although ARcombine in ‘home indoor’ microenvironments was lower
than the ‘others indoor’, ‘outdoor’ and ‘transit’ microenvironments, TIARcombine in ‘home
indoor’ were found to be higher than those microenvironments due to the long dwelling
time of the participants in the ‘home indoor’ microenvironment.

Because TIARcombine is related to the duration spent in each microenvironment, health
risk intensities provide a clear picture of which microenvironment contributes dispro-
portionately to daily health risk. Figure 3 presents the average health risk intensities in
each microenvironment.
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The maximum average health risk intensity 1.64 (±0.52) was found in ‘outdoor’
followed in order by ‘transit’, ‘others indoor’, ‘home indoor’ and ‘office indoor’ microenvi-
ronments. Among the microenvironments, intensity values exceeded 1 for the ‘outdoor’,
‘transit’ and ‘others indoor’, which indicated the fraction of TIARcombine in those microen-
vironments was higher than the faction of time spent in the corresponding microenviron-
ments. This means that, although participants spent only a small fraction of their time in
these settings, these microenvironments contribute disproportionately to ARcombine because
of the elevated concentrations of pollutants. Thus, these microenvironments with large
health risk intensity could help to prioritize interventions to reduce the daily health risk.
Higher health risk intensity for combined PM2.5, NO2 and O3 exposure in the ‘transit’
microenvironment than in the ‘home indoor’ and ‘others indoor’ was because of the much
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higher NO2 concentrations in the vehicle’s cabin. Although PM2.5 and O3 concentrations in
‘transit’ were lower than ‘home indoor’ and ‘others indoor’ microenvironments, the higher
health risk posed by NO2 offset the lower health risk of PM2.5 and O3 concentration. Among
the two main microenvironments, ‘home indoor’ and ‘office indoor’ where participants
spend most of their daily time, health risk intensity in the ‘office indoor’ microenvironment
was much less than in the ‘home indoor’ microenvironment. This is because the average
concentration for PM2.5 and NO2 in ‘office indoor’ microenvironments were always encoun-
tered as lower than the ‘home indoor’ microenvironment. The ‘office indoor’ was operated
with a centralized mechanical ventilation and air-conditioned system with high-efficiency
filters for particles (Minimum Efficiency Reporting values of 13, MERV 13), whereas the
‘home indoor’ microenvironment was commonly ventilated by opening windows which
introduce more infiltration of outdoor pollution than the office. In addition, home is in-
tensely influenced by indoor emission sources, including cooking and cleaning inside of
the home. For example, Baxter et al. [48] found that cooking for more than an hour per
day was significantly associated with a 5.7 µgm−3 increase in indoor PM2.5 concentrations
compared to less than an hour per day.

3.4. Inter-Individual and Intra-Individual Variability in Time-Integrated Health Risk

Inter- and intra-individual variability of daily TIAR for PM2.5, NO2 and O3 and
combined PM2.5, NO2 and O3 exposure concentrations across the microenvironment is
given in Figure 4.

The results demonstrated that there was substantial inter-individual variability in
mean TIAR by a factor of 3.9 for TIARPM2.5, 3.0 for TIARNO2, 5.1 for TIARO3 and 2.5
for TIARcombine across the participants. Intra-individual variability indicates the daily
fluctuations of TIAR that vary temporally from day to day. Large intra-individual variability
in TIARPM2.5, TIARNO2, TIARO3 and TIARcombine was found in many participants. For
example, the daily total TIARcombine varied by a factor up to 2.5 across the person-days of a
given person. TIARPM2.5, TIARNO2 and TIARO3 varied by a factor of up to 7.8, 3.1 and 5.6
for a given person across the measured days, respectively.

Table 2 shows the variance component for inter- and intra-individual variability in
lognormal daily TIAR for each pollutant and for combined PM2.5, NO2 and O3. The inter-
and intra-individual variability between particle and gaseous pollutants was substantially
different from each other. For TIARPM2.5, intra-individual variability (78%) was substan-
tially higher than inter-individual variability (22%). This indicates that the daily personal
activities and lifestyle of the participants are more important than where the participants
live because of the small spatial variability in PM2.5 concentration. Thus, an individual has
the potential to reduce PM2.5-induced health risk by modifying their daily activities and
lifestyle. In contrast, for gaseous pollutants, inter- and intra-individual variance in both
TIARNO2 and TIARO3 were comparable. Because of the larger spatial variability of gaseous
pollutants than PM2.5, where participants live is important to reduce health risk for NO2
and O3 exposure. The larger inter-individual in TIARNO2 indicates that the health risk and
sources of NO2 concentrations are widely varied across the participants. For TIARcombine,
inter- and intra-individual variability is almost equally important. Thus, for combined
PM2.5, NO2 and O3 exposure, both daily personal activities and a participant’s location are
important to reduce health damages of air pollution exposure.
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Table 2. Proportion of inter- and intra-individual variability of time-integrated short-term health risk
for each individual and combined pollutants.

Pollutants a Inter-Individual Variance,
σ2

inter (% of Total)
Intra-Individual Variance,

σ2
intra (% of Total)

TIARPM2.5 22 78
TIARNO2 54 46
TIARO3 40 60

TIARcombine b 53 47

Notes: TIAR = time-integrated health risk; ICC = σ2
inter/(σ2

inter + σ
2
intra), indicates proportion of the total varia-

tions attributed to inter-individual variance. a log-transformed to ensure the normal distribution of residuals.
b ARcombine = ARPM2.5 + ARNO2 + ARO3.

Identified key contributors affecting inter- and intra-individual variability in TIARcombine
are provided in Table 3. For inter-individual variability, TIARcombine was significantly
(p < 0.05) correlated with PM2.5, NO2 and O3 exposure concentration at ‘home indoor’
microenvironments, PM2.5 and NO2 at ‘others indoor’ microenvironments, O3 at ‘office
indoor’ microenvironments and ambient PM2.5 concentrations. Based on an interpre-
tation of the correlation coefficient by Schober et al. [49], exposure to O3 concentration
at ‘home indoor’ microenvironments was strongly correlated (r = 0.74, p < 0.001) with
TIARcombine. There was a moderate correlation (i.e., 0.45 to 0.60, p < 0.05) of TIARcombine
with PM2.5 and NO2 concentration at ‘home indoor’ microenvironments, PM2.5 and NO2 at
‘others indoor’ microenvironments, O3 at ‘office indoor’ microenvironments and ambient
PM2.5 concentrations.

Table 3. Correlation between time-integrated health risk of combined PM2.5, NO2 and O3 exposure
concentrations (TIARcombine) and selected variables.

Variables a Participant Wise Average TIARcombine Daily TIARcombine

Correlation
Coefficient (r) p-Value Correlation

Coefficient (r) p-Value

Time spent at home indoor −0.09 0.70 0.20 0.04
Time spent at office indoor 0.14 0.54 −0.02 0.84
Time spent at others indoor −0.36 0.12 −0.07 0.54

Time spent at outdoor 0.05 0.84 0.17 0.13
Time spent at transit 0.41 0.09 0.17 0.15

PM2.5 (µg/m3) at home indoor 0.48 0.03 0.51 <0.001
PM2.5 (µg/m3) at office indoor 0.03 0.89 0.16 0.15
PM2.5 (µg/m3) at others indoor 0.45 <0.05 0.27 0.01

PM2.5 (µg/m3) at outdoor 0.40 0.07 0.33 0.002
PM2.5 (µg/m3) at transit 0.27 0.27 0.19 0.09

NO2 (µg/m3) at home indoor 0.60 0.004 0.56 <0.001
NO2 (µg/m3) at office indoor 0.12 0.60 0.15 0.18
NO2 (µg/m3) at others indoor 0.51 0.02 0.46 <0.001

NO2 (µg/m3) at outdoor 0.24 0.30 0.33 0.002
NO2 (µg/m3) at transit 0.46 0.06 0.40 <0.001

O3 (µg/m3) at home indoor 0.74 <0.001 0.76 <0.001
O3 (µg/m3) at office indoor 0.52 0.02 0.51 <0.001
O3 (µg/m3) at others indoor 0.29 0.22 0.22 0.05

O3 (µg/m3) at outdoor 0.14 0.53 0.28 0.01
O3 (µg/m3) at transit −0.08 0.76 −0.06 0.61

Ambient PM2.5 (µg/m3) 0.56 0.01 0.59 <0.001
Ambient NO2 (µg/m3) 0.04 0.86 0.06 0.52
Ambient O3 (µg/m3) 0.07 0.77 0.41 <0.001

a Variables were averaged daily and participant wise to analyze correlation with daily TIARcombine and participant-
wisely average TIARcombine, respectively.
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For intra-individual variability, TIARcombine was strongly correlated (r = 0.76, p < 0.001)
with O3 concentration at ‘home indoor’ microenvironments and moderately correlated
(i.e., 0.40 to 0.59, p < 0.05) with PM2.5 and NO2 concentration at ‘home indoor’ microen-
vironments, NO2 in ‘others indoor’ and ‘transit’ microenvironments, O3 at ‘office indoor’
microenvironments, and ambient PM2.5 and O3 concentration. There was also a weak but
statistically significant correlation (i.e., 0.20 to 0.33, p < 0.05) of TIARcombine with time spent
at ‘home indoor’ microenvironments, PM2.5 and O3 at ‘others indoor’ microenvironments,
PM2.5, and NO2 and O3 at ‘outdoor’ microenvironments. These key contributors of intra-
individual variability indicate that individual has great potential to reduce their health
damage related to combined exposure to mixed particle and gaseous pollutants.

4. Discussion

To our best knowledge, this study is new in that is quantifies the health risk for
combined personal PM2.5, NO2 and O3 exposure concentrations across different urban
microenvironments, including ‘home indoor’, ‘office indoor’, ‘others indoor’, ‘outdoor’
and ‘transit’ microenvironments. Because health risk intensities are greater than 1 in ‘others
indoor’, ‘outdoor’ and ‘transit’ microenvironments, these microenvironments contribute
disproportionately to the daily health risk for combined personal PM2.5, NO2 and O3
exposure concentrations. This indicates that there are potentials to reduce individual’s
daily health damage related to air pollution by minimizing exposure time in those microen-
vironments. The highest health risk intensity in ‘outdoor’ microenvironments indicates that
sensitive people should avoid outdoor exposure for a longer time during high air pollution
episode days. This is because the outdoor air quality in Hong Kong is contributed to by
both local emission sources (e.g., on-road vehicles, marine vessels, and power plants) and
regional air pollution [33,34]. People can use smart technology to check their health risk
associated with outdoor air pollution, such as the Hong Kong AQHI App (Environmental
Protection Department, Hong Kong) [32], Personalized Real-Time Air Quality Informatics
System for Exposure—Hong Kong (PRAISE-HK) App (Hong Kong University of Science
and Technology, Hong Kong) [50], AirVisual App (IQAir, Goldach, Switzerland) [51], Air
Quality Index, Pollen and Fires—BreezoMeter App (BreezoMeter, Haifa, Israel) [52], Air
Matters App (Air Matters Network Pty Ltd, Goldach, Switzerland) [53], ZephAir App
(United States Department of State, Washington DC, USA) [54] and Plume Labs Air Quality
App (Plume Labs, Paris, France) [55]. For example, the PRAISE-HK app offers real-time
and forecasted high-resolution (hourly) health risk information that is related to the air
pollution at a street-by-street level [50]. However, our recent study demonstrated that the
long-term trend in AR for a mixture of outdoor PM10, NO2, O3, and SO2 concentrations
from 2000 to 2018 has decreased over Hong Kong because of the various emission control
measures implemented by the Hong Kong government [33].

The longitudinal study design of the study provided an opportunity to quantify
the inter- and intra-individual variability and the contributors of variability in terms of
daily health risk. The results demonstrated that inter- and intra- individual variability
in TIARcombine is almost equally important. Among the identified key contributors for
intra-individual variability, PM2.5, NO2 and O3 concentration in ‘home indoor’, O3 in ‘office
indoor’ and ambient PM2.5 concentrations were significantly correlated with TIARcombine
by a correlation coefficient, r > 0.50. Thus, by reducing indoor sources and infiltrated
ambient concentrations of PM2.5, NO2 and O3 in the home, O3 concentration at the office,
and exposure to ambient PM2.5 concentrations, people can reduce health risk in their
daily life, such as hospital admissions and emergency room visits due to respiratory
and cardiovascular diseases. People can reduce the infiltrated ambient concentration at
home by changing ventilation operation (i.e., reducing window opening duration, air-
condition on) and using an air purifier (i.e., high-efficiency particulate air filter) [56–59].
Exposure concentration at home can be reduced from indoor sources by reducing cooking
duration, not smoking inside the home, using an exhaust fan during and after cooking
and using an electric stove [59–62]. At the office, people can reduce the indoor emission
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of O3 by not using the photocopier or printer and using an air purifier that produces
O3 [63–66]. Thus, this study argues that current air quality management strategies focusing
on single pollution emission sources and ambient air quality are not sufficient for effectively
mitigating the public health risk of air pollution. Intra-individual variability in TIAR shows
how health risk changes with changes in daily exposure concentrations and an individual’s
activities. People can use PRAISE-HK app, that provides personalized information on air
pollution exposure and health risk, to check their daily health risk and examine the effects
of different interventions by modifying their daily activities and lifestyle to reduce their
daily health risk [50]. This study provides an insight into the importance of capturing the
day-to-day fluctuation in health risk of a mixture of air pollutants within an individual
in future epidemiological studies. This study is new in terms of assessing the inter- and
intra-individual variability and the key contributors affecting variability in the daily time-
integrated health risk for combined personal exposure to particle and gaseous pollutants.

With the recent technological advancement, we measured high-resolution (1 min) air
quality concentrations simultaneously for both particle and gaseous pollutants using an
integrated portable sensor across the various microenvironments encountered by the partic-
ipants. High-resolution personal exposure concentrations and time-location patterns across
the various microenvironments provided a better representation of each microenvironment
for the health risk of combined personal PM2.5, NO2 and O3 exposure concentrations [20].
Overall, the method based on an epidemiological AR model has been proved to be effec-
tive in quantifying the health risk for combined personal PM2.5, NO2 and O3 exposure
concentrations across various urban microenvironments. This method provides a valuable
reference that can be applied in other cities of the world to estimate personal health risk for
a mixture of pollutants across the microenvironments.

The study has some limitations. The study subject sample was small because of: (1) the
cost of integrated portable sensors; and (2) participant’s burdens to carry the 15 kg portable
sensors all the time with them during the measurement campaign, which prevented the
implementation of a large number of samples. Our study subjects were only limited to those
who were affiliated to the university (i.e., students, faculty members, and staff). Hence, the
results may not be representative of the people who are housewives, unemployed, retired
or employed in refinery, chemical plants, and restaurants.

5. Conclusions

The exposure error of gaseous pollutants (i.e., NO2 and O3) based on either a fixed-site
monitor or residence location as a surrogate indicates the importance of real world personal
exposure concentration measurements with a daily active lifestyle. This study is new in
terms of quantifying the health risk for combined personal PM2.5, NO2 and O3 exposure
concentrations based on an epidemiological model for respiratory and cardiovascular-
related hospitalization across five different microenvironments. Despite a small fraction of
time spent, ‘others indoor’, ‘outdoor’ and ‘transit’ microenvironments contribute dispropor-
tionately to the daily health risk. Thus, there are potential ways to reduce an individual’s
daily health risk related to air pollution by minimizing their exposure time in these microen-
vironments. The inter- and intra-individual variability in daily time-integrated health risk
for PM2.5 was substantially different from the gaseous pollutants. The daily time-integrated
health risk for combined PM2.5, NO2, and O3 (TIARcombine) varied by a factor up to 2.5 for
a given person across measured days. Several factors were identified to be significantly
correlated with daily TIARcombine, with the top five factors including the PM2.5, NO2 and
O3 concentrations at ‘home indoor’ microenvironments, O3 concentrations at ‘office indoor’
microenvironments and ambient PM2.5 concentrations. The results on the key contributors
of variability in the daily personal health risk for combined PM2.5, NO2, and O3 exposure
concentrations can be used to guide developing strategies for reducing an individual’s
health effects of air pollution. This study highlights the importance of individual health
risk based on real-world exposure to a mixture of air pollutants that policymakers can
prioritize in future policy development. This study provides a reference for the method
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that can be applied in other cities of the world to quantify and evaluate the health risk for
combined personal exposure to a mixture of pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19010565/s1, File S1.

Author Contributions: Conceptualization, S.H. and W.C.; methodology, S.H., W.C. and A.K.-H.L.;
software, S.H.; validation, S.H.; formal analysis, S.H.; investigation, S.H.; resources, A.K.-H.L.; data
curation, W.C. and S.H.; writing—original draft preparation, S.H.; writing—review and editing,
W.C.; visualization, S.H.; supervision, W.C. and A.K.-H.L.; project administration, W.C. and A.K.-
H.L.; funding acquisition, A.K.-H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the HSBC 150th Anniversary Charity Programme through the
PRAISE-HK project and The APC was funded by the National Natural Science Foundation of China
41703104. The work of the first author was also supported by the Hong Kong PhD Fellowship Scheme.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Human and Artefacts Research Ethics Committee of The Hong Kong
University of Science and Technology (protocol code HAREC #595 and approved on 4 February 2021).

Informed Consent Statement: Informed consent was taken from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request to the corre-
sponding author.

Acknowledgments: We would like to thank Henry Christopher Frey at the United States Environ-
mental Protection Agency and North Carolina State University for his helpful comments on this work.
We also would like to thank all the participants for participating in this study. We like to thank to
aLoggers LLC (aTimeLogger app developer).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. WHO Global Urban Ambient Air Pollution Database (Update 2016), World Health Organization. 2016. Available online:

https://www.who.int/airpollution/data/cities-2016/en/ (accessed on 2 April 2021).
2. USEPA. Integrated Science Assessment for Particulate Matter; Center for Public Health and Environmental Assessment, Office of

Research and Development, United States Environmental Protection Agency: Research Triangle Park, NC, USA, 2019.
3. USEPA. Integrated Science Assessment for Oxides of Nitrogen-Health Criteria; National Center for Environmental Assessment-RTP

Division, Office of Research and Development, United States Environmental Protection Agency: Research Triangle Park, NC,
USA, 2016.

4. USEPA. Integrated Science Assessment for Ozone and Related Photochemical Oxidants (External Review Draft); National Center for
Environmental Assessment-RTP Division, Office of Research and Development, United States Environmental Protection Agency:
Research Triangle, NC, USA, 2019.

5. Li, S.; Batterman, S.; Wasilevich, E.; Wahl, R.; Wirth, J.; Su, F.-C.; Mukherjee, B. Association of daily asthma emergency department
visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: Time-series and
time-stratified case-crossover analyses with threshold effects. Environ. Res. 2011, 111, 1137–1147. [CrossRef]

6. Dauchet, L.; Hulo, S.; Cherot-Kornobis, N.; Matran, R.; Amouyel, P.; Edmé, J.-L.; Giovannelli, J. Short-term exposure to air
pollution: Associations with lung function and inflammatory markers in non-smoking, healthy adults. Environ. Int. 2018, 121,
610–619. [CrossRef] [PubMed]

7. Myung, W.; Lee, H.; Kim, H. Short-term air pollution exposure and emergency department visits for amyotrophic lateral sclerosis:
A time-stratified case-crossover analysis. Environ. Int. 2019, 123, 467–475. [CrossRef]

8. Tam, W.W.S.; Wong, T.W.; Wong, A.H. Association between air pollution and daily mortality and hospital admission due to
ischaemic heart diseases in Hong Kong. Atmos. Environ. 2015, 120, 360–368. [CrossRef]

9. Tam, W.W.S.; Wong, T.W.; Ng, L.; Wong, S.Y.-S.; Kung, K.K.L.; Wong, A.H.S. Association between Air Pollution and General
Outpatient Clinic Consultations for Upper Respiratory Tract Infections in Hong Kong. PLoS ONE 2014, 9, e86913. [CrossRef]

10. Habre, R.; Coull, B.; Moshier, E.; Godbold, J.; Grunin, A.; Nath, A.; Castro, W.; Schachter, N.; Rohr, A.; Kattan, M.; et al. Sources
of indoor air pollution in New York City residences of asthmatic children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 269–278.
[CrossRef]

11. Che, W.; Frey, H.C.; Li, Z.; Lao, X.; Lau, A.K.H. Indoor Exposure to Ambient Particles and Its Estimation Using Fixed Site Monitors.
Environ. Sci. Technol. 2018, 53, 808–819. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijerph19010565/s1
https://www.mdpi.com/article/10.3390/ijerph19010565/s1
https://www.who.int/airpollution/data/cities-2016/en/
http://doi.org/10.1016/j.envres.2011.06.002
http://doi.org/10.1016/j.envint.2018.09.036
http://www.ncbi.nlm.nih.gov/pubmed/30312964
http://doi.org/10.1016/j.envint.2018.12.042
http://doi.org/10.1016/j.atmosenv.2015.08.068
http://doi.org/10.1371/journal.pone.0086913
http://doi.org/10.1038/jes.2013.74
http://doi.org/10.1021/acs.est.8b04474
http://www.ncbi.nlm.nih.gov/pubmed/30398338


Int. J. Environ. Res. Public Health 2022, 19, 565 17 of 19

12. Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to
assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [CrossRef]

13. Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.;
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