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Abstract: The Water–Food Nexus (WF) has been proposed to reach equitable, balanced, and sustain-
able access to water and food resources in the face of the growing population demand. Therefore,
developing models to assess them has become more relevant. This work systematically reviews the
literature on the tools used to evaluate water and food resources between 2002 and 2020. Furthermore,
it reports a critical analysis of the software used to assess the WF Nexus quantitatively. The models
analyzed were Life Cycle Assessment (LCA), Common Agricultural Policy Regional Impact (CAPRI),
Global Food and Water System (GFWS), Soil and Water Assessment Tool (SWAT), Water Evaluation
And Planning system (WEAP), and Soil Water Atmosphere Plant (SWAP). We deduced that the
following are necessary in evaluating the WF Nexus: (1) the capacity to generate future scenarios,
(2) a global application, and (3) the application in case studies. The present paper is the first review
to provide an overview of the software applied to evaluate WF Nexus, including the advantages and
disadvantages of the tools found. They can help build sustainability criteria when designing policies
that reduce water and food security risks and promote efficient water and food use.

Keywords: crops; CAPRI; GFWS; LCA; SWAT; WEAP; WF Nexus

1. Introduction

Water and food resources worldwide are necessary to human life, whose demands
are sharply rising in recent years due to the growing population [1–3]. The demand for
these resources is estimated to increase by over 50% by 2050 compared to 2015 [4]. Water
resources assessment has become one of the leading global focuses. It is fundamental to
ensure food supply and reach a global sustainable development in the face of population
growth and climate variability [5–7]. In this context, the WF Nexus arises from an approach
that promotes natural resource management’s interconnection and the importance of
guaranteeing universal rights to these resources [8]. Therefore, new methods are designed
for scenario predictions such as adaptation and mitigation simulating water and food
security proposals for good governance [9–13].

1.1. The Water–Energy–Food Nexus (WEF)

The WEF Nexus’ popularity dates back to 2011 when the relationship of global chal-
lenges was acknowledged [14]. During the last two decades, this concept has been used to
strengthen the synergic integration of the sectors covering a nexus and sustainable water
use [14,15], which merge with Sustainable Development Goals (SDG) [16,17].

After WEF Nexus was launched in Bonn [14], many papers arose about a deep insight
on the concept, interactions, the sustainable use of resources. Table 1 gathers selected
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published reviews about the WEF Nexus concerning hydric and food security in its political
and social dimension.

Table 1. Some relevant reviews about the Water–Energy–Food Nexus (WEF).

Focus Description Reference

Sustainability
Strengths to develop “environmental livelihood security”. [18]

Transdisciplinary research, public politics, and strategies for environmental management. [17]
Challenges for integrating and optimizing the nexus components. Four case studies

were analyzed. [19]

Current state

WEF Nexus in regions. Keywords and research for stakeholders’ understanding. [20]
Initiatives frame with involved actors. Challenge to achieve disciplinarity and

boundary-crossing endorsed by the 2030 Agenda. [21]

State-of-the-art review on the concepts, research questions, and methodologies [22]
WEF Nexus analytical methods for knowledge-based approaches and promotion for

further approaches. [23]

How the nexus approach has academically and geographically expanded [24]

Social, political,
and economic

The emerging literature on the WEF Nexus in the policy context [25]
Modeling tools to integrate policies. [26]

A modeling platform for the efficiency assessment of technologies, policies, and resources
management planning. [15]

Circular economy approach for understanding the WEF Nexus interdependencies. [27]

The WEF Nexus convenience has been controversial [28,29]. However, all authors
agree on its usefulness as an approach for decision-making, policy creation, and integra-
tion of resources management [26,30]. Several government organizations have declared
the need for establishing measures that can lead to SDG compliance and guarantee the
necessary resources for the present and future generations.

1.2. The Water–Food Nexus (WF)

In recent years, the WF Nexus has become an essential issue for the scientific com-
munities due to the future uncertainty regarding safe access to resources that are essential
to life [31]. The interconnection between water and food resources has led to a growing
impulse to change management approaches [26]. The WF Nexus attracts the attention to
ensure those resources, and to do so; quantitative models should allow its evaluation.

In the WF Nexus’s context, Figure 1 shows the relationship with 10 of the 17 United
Nations’ Sustainable Development Goals [32]. According to this approach, the WF Nexus
is key to the SDG’s fulfillment due to emerging challenges of hydric and food availability.

Some SDGs present an obvious connection with WFN (2, 3, 6, and 13), but the others
have an indirect relation such as (1, 8, 11, 12, 14 and 15) because cities are resources’
consumers, agriculture creates jobs, unsustainable husbandry and agrochemicals affect life
on land and underwater, and wellness is improved by agriculture goods.

The WF Nexus is a complex concept often used in the comprehensive study and
management of global resource (water and food) systems [10,33]. The complexity of the
nexus promoted several models to understand its scope better [22,34].

Figure 2 shows the importance of the WF Nexus relevance, but few documents
quantify it. As more research looks to sustainably satisfy human needs, regulating water
and food resources is fundamental. It is essential to use a tool that promotes the WF
Nexus evaluations and helps introduce new policies and resource management. The WF
Nexus evaluation models are helpful to predict future scenarios in light of the shortage
and demand of both resources.
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Figure 1. Interaction between the Water–Food Nexus and United Nations’ Sustainable Develop-
ment Goals.

Figure 2. Published documents about Water–Energy–Food (WEF), Water–Energy (WE), Water–Food (WF), and others.
SCOPUS analysis in 2002–2020.
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Most of the published WF Nexus studies provide qualitative analyses, and few present
a quantitative assessment, as observed in Figure 2. Then, analyzing those documents
and their evaluation with a successful software could provide useful information for the
scientific community, promoting this kind of research.

This work aims to provide a systematic review of the literature on the tools used
to evaluate the WF Nexus that quantify these natural resources’ use to diagnose their
sustainability degree. It will also allow for decision-making to create public policies. Then,
we analyzed the models reported in the joint evaluation for water and food resources. We
discuss the advantages and disadvantages of every software quantifying the WF Nexus.
This article is the first review to deal with this topic.

The article is structured as follows: Section 1 introduces the WEF and WF Nexus.
Section 2 provides the methodology and criteria to select the documents for this review.
Section 3 presents the mathematical approaches used in its quantification on reported
case studies, and discusses the advantages and disadvantages of used software. Finally,
Section 4 briefs the conclusions.

2. Materials and Methods

A search on SCOPUS with the keywords’ water and Nexus yielded 1329 publications
in 2002–2020.

Figure 2 shows the pie chart of published documents about the Water–Energy–Food
(WEF) Water–Energy (WE), WF Nexus, interactions, and other variants. Research on WEF
accounts for 29.8% (blue); WE gets the highest percentage, with 49.8% of papers (red),
and WF reaches only 2.4% (green), which includes its interactions with land use, security,
agriculture, climate, economy, and health. Pure WF accounts for 0.7%.

The documents’ selection follows the methodology scheme represented in Figure 3.
Preferred Reporting Items for Systematic Reviews and Meta-Analyses–Extension for Scop-
ing Reviews (PRISMA-ScR) methodology was used to evaluate the quality of the individual
studies and score the body of evidence (BOE) [35]. Scientific engines were SCOPUS and
Web of Science databases. The search terms were water, food, evaluation, Nexus, and
quantification. Boolean phrases and words were ((KEY (water) AND KEY (Nexus) AND
NOT TITLE (enamel or criminal or curing or extract* or therapy or dental or ceramic*
or cement* or Westinghouse or urea or bio-chem*)) AND PUBYEAR > 2001), while the
research date was 23 June 2020.

2.1. Review Process

The process consisted of a comprehensive search of keywords across databases, com-
pleted in three steps: identification, detection, and eligibility [35]. EndNote managed
and organized the information by creating intelligent groups to identify the number of
publications eligible for evaluation (see Figure 3).

2.2. Inclusion and Exclusion Criteria

The review includes published documents about hydric and food resources between
2002 and 2020. The inclusion criteria were (1) case studies of the WF Nexus; (2) the
WF Nexus with any interaction; (3) use of tools to evaluate hydric, food, and agricultural
resources; and (4) quantification of the Nexus; (5) theses, chapters, and books were admitted
despite PRISMA recommendations. The exclusion criteria were energy, hydric resources,
qualitative, and social issues.

2.3. Data Extraction

Full-text reading identified relevant papers about quantitative approaches and se-
lected documents compiled into an information matrix that comprises the review’s body,
including those about hydric and food resources assessment software (standardized and
computational methods).
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Figure 3. PRISMA according to [35] methodology criteria of the literature 2002–2020.

3. Results and Discussion

In this study, 74 articles met the eligibility criteria (see Figure 3) to review the WF
Nexus tools described below.

3.1. Evaluation Models of the WF Nexus

The review compiles six reported models to evaluate water and food resources. Still,
they were first created for purposes different from the evaluation of the WF Nexus. Table 2
shows the six leading tools found and their characteristics adapted for WF assessment.

As observed in Table 2, some models were designed around 50 years ago, and in time,
they have been improved, and their current application is diverse. Six models are relevant,
based on the review of the literature.
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Table 2. Background of models adapted in case studies to assess the Water–Food Nexus.

Tools Developer Application Advantages Limitations Reference

Life Cycle Assessment
(LCA)

Harry E.
Teasley, 1969

Environmental
impacts Identify hotspots Interpretation can be

subjective [36]

Water Evaluation And
Planning system

(WEAP)

Jack Sieber, SEI
1988

Assessment of water
resources

Dynamic simulation
of scenarios

Does not separate
ground and surface

water demands
[37]

Soil & Water
Assessment Tool

(SWAT)
Jeff Arnold,
USDA 1991

Assess of water
resources and
hydrological
simulation

Simulates the
transport of

nutrients in water
and sediment

Restriction for
simulate future

scenarios of water
availability

[38,39]

Common Agricultural
Policy Regional Impact

Analysis (CAPRI)
ILR, UE 1997 Impact of

agricultural policies

Analysis of
agricultural

scenarios

Global average
coverage [18]

Soil, Water,
Atmosphere, and Plant

(SWAP)

Reinder
Feddes, WUR

1978
Use of water in crops

Simulates water
transport in

interaction with
vegetation

It does not have a
graphical user

interface
[40]

Global Food and
Water System (GFWS)

Quentin
Grafton, 2014 Simulation platform Simulation platform Simulation platform [41]

Life Cycle Assessment (LCA). This was developed in 1969 by Harry E. Teasley to
evaluate a product or service’s environmental impact throughout its life cycle [42]. It
represents an opportunity to improve product design, providing information to decision-
makers in industry and government and non-governmental organizations (NGOs) [43].
Nevertheless, the LCA stage can be subjective, and its precision might be limited by the
accessibility or quality of data. The standard ISO 14040/14044 LCA currently regulates
LCA and involves economic, social, and environmental processes [44,45].

Water Evaluation and Planning system (WEAP). The model was designed in 1988
by Sieber and collaborators of the Stockholm Environment Institute (SEI-US) as software
for integrating water resources, sustainability evaluation, and scenario design [37]. Its
main feature is the integrated water resources analysis, modeling demand, and availability
under different management and weather conditions [42,46]. WEAP is available by an
online platform [47].

Soil & Water Assessment Tool (SWAT). This program was developed by Arnold
and collaborators of the Agricultural Research Service-US Department of Agriculture
(ARS-USDA) [38], based on a scaled model drainage basin to simulate the superficial
and underground water amounts. It helps predict the environmental impact of land use,
management practices, climate change, and the transportation of chemical products and
nutrients in water and sediments [39]. Still, there are restrictions to simulate future water
availability scenarios [46].

Common Agricultural Policy Regional Impact (CAPRI). This platform was designed
by Wolfgang Britz, and the project is supervised by Thomas Heckelei, with the Bonn
team’s contribution (U Bonn, EuroCARE), Thünen, SLU JRC-Sevilla, and JRC–Ispra [18].
It is a global partial equilibrium model for the agricultural sector, mainly focused on the
European Union (EU). Used in evaluating the ex-ante impact of agricultural, environmental,
and commercial policies, CAPRI was created to analyze agricultural scenarios [48]. In 2010,
the CAPRI water module provided a scientific evaluation of agricultural water use in the
EU and explored regional pressures on water resources [49].

Soil–Water–Atmosphere–Plant (SWAP). This program is the successor of SWATR, de-
veloped by Feddes and colleagues at the Wageningen University and Research (WUR) and
published in 1978 [40]. It is a model designed to simulate flow and transport processes at a
field scale during growing seasons and long-term time series [50]. The regional application
within a geographical information system (GIS) environment demands additional features
that are not currently included with the model.
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The Global Food and Water System (GFWS). It is a platform created by the Food–
Energy–Environment–Water (FE2W) Network, a group of 40 leading experts from universi-
ties, multilateral organizations, and NGOs [51]. The GFWS platform is designed to explore
the relationship between the land surface and crop yield, water use, and fertilizers in the
gap between production, demand, and water and food supply until the year 2050. Training
and technical knowledge are needed using each of the programs above.

Comparing the models in Table 2, WEAP, SWAP, and SWAT provide the most out-
standing advantage to evaluate water and food resources due to the ability to assess water’s
influence on crops and the generation of scenarios. The connection of these models is the
long-awaited software for the quantitative evaluation of the WF Nexus.

The literature review provided the case studies compiled in Table A1 Appendix A, in
which the WF was calculated by any of the described models.

3.1.1. Common Agricultural Policy Regionalized Impact (CAPRI)

CAPRI is a quantitative agricultural modeling system in the European Union whose
primary goal is to analyze the farming policies’ economic impacts to safeguard food sup-
plies at reasonable prices. The databases included in the model cover around 50 agricultural
products for the EU [48]. Most of the studies that have used CAPRI are focused on evaluat-
ing climate change’s impact on agriculture, greenhouse gas (GHG) emission mitigation,
and political-economic issues. As observed in Table A1, the use of CAPRI in evaluating
hydric resources in crops is limited. The irrigation model included in CAPRI provides
an evaluation of water used in agriculture and its pressures on the hydric resource in the
EU [48,49]. According to the crop’s theoretical water demand, dry land, and crop irrigation
and yield, the case study presented estimates the crop’s actual irrigation water use (CAWU)
per irrigation area. Regional irrigation water use (IRWU) is calculated by adding those of
each irrigated crop. This water model’s addition to CAPRI poses difficulties since it is not
homogeneous and lacks precise EU data. Nevertheless, it represents a crucial step, and
CAPRI is one of the main tools for the WF Nexus’s quantitative assessment.

3.1.2. Global Food and Water System (GFWS)

GFWS is a platform available online to explore the relationships between crop yield,
water use, food demand, and water supply, among others, for agricultural use with
projections available up to 2050 [41]. The platform includes forecasts of population growth,
calorie demand, diet changes, international commerce, and irrigation techniques. Data for
the scenarios are available on the Organization for Economic Cooperation and Development
(OECD), the United Nations (UN), and the Food and Agriculture Organization (FAO). The
scenarios include 19 countries (Argentina, Australia, Bangladesh, Brazil, Canada, China,
Egypt, France, India, Indonesia, Mexico, Pakistan, Poland, Russia, Thailand, Turkey, United
States, Ukraine, and Vietnam) and their main crops: wheat, rice, corn, sorghum, barley, oat,
and soybean [51].

GFWS forecasts the national agricultural water use (Wkj) in terms of the existing
climate and using irrigation rates and land use areas, as shown in Equation (1):

Wkj = Rkj LIkj × Ekj (1)

Wkj is the irrigation rate for crop k in country j, LI is the area of irrigated land for crop
k in country j, and E is the efficiency rate of water use identified through the irrigation
method for crop k in country j.

GFWS is an open access platform where the user can estimate the water supply so
that agriculture can meet the national food requirements [52]. Until now, the use of GFWS
is limited, as shown in Table A1; still, it is the basis to create indexes that allow reducing
conflicts in the WF Nexus.



Int. J. Environ. Res. Public Health 2021, 18, 4983 8 of 14

3.1.3. Life Cycle Assessment (LCA)

The LCA analysis has been used to evaluate the environmental impacts attributable to
all stages of the practical lifetime-use of products, services, or activities related [53]. Strate-
gic management and decision-making models improve goods and services’ environmental
performance. The ISO 14,040 standards the methodology based on the resource use and
emissions associated with a production system and evaluates possible environmental im-
pacts. In recent years, LCA’s environmental impact assessment in the production of several
crops has increased [54,55]. LCA is suitable to endorse the optimal water management
measures in food [56].

As shown in Table A1, LCA evaluates crops like corn, wheat, organic rice, tomato,
cherry tomato, bell pepper, zucchini, melon, and soybean. The improved LCA methodology
includes indicators as water use (WU) m3 year–1 and land use (LU) m2 year–1 [54]. This
model is valuable within the WF Nexus context when used to assess water resources in
agriculture.

Some studies reported the LCA’s performance in agriculture environmental impact
assessment, mainly in Asia and Europe. The method to calculate water use impact, defined
in ISO 14046, has been included [43]. This methodology provides for the water life cycle
inventory considering water scarcity [55], evaluating water risks and potential impact on
a crop’s life cycle. As a result, appropriate design of strategies and plans can minimize
impact and provide information to decision-makers in the industry, NGOs, and government
organizations.

LCA is also helpful for producers, consumers, and politics by adding reference values
of water consumption in agriculture [57]. Nevertheless, there are no reports for scenario
forecasting in water and food availability resources. LCA is more likely to be considered
the WF Nexus assessment to evaluate the water use impact in a life cycle crop.

3.1.4. Soil and Water Assessment Tool (SWAT)

This tool is used for river basins, predicts management practices’ convenience [58],
hydrologic impact studies, even where data are limited [59]. It demands specific informa-
tion on climate, soil properties, topography, vegetation, and soil management practices. It
is a large-scale model used to simulate river basins, water quality, water balance, and crop
yield, among others [60,61].

SWAT aims to predict agricultural practice management’s long-term impacts (crop ro-
tation, planting date, harvesting, irrigation, fertilizers, and pesticide application times) [62].

Uniyal, Dietrich, Vu, Jha, and Arumí (2019) reported the application of SWAT to
evaluate the water footprint of field-scale crop production. In 2019, Uniyal (2019) used
SWAT simulating the irrigation needs in four river basins (Chile, Germany, India, and
Vietnam) and predicted a significant amount of water to save [63]. On the other hand,
some authors have demonstrated that SWAT is ideal in the simulation of hydrologic and
agricultural processes [31,64].

In general, SWAT is a valuable program to manage hydric resources in agriculture. In
response to the forecasts indicating an increase in food production and decreased hydric
resources, SWAT focuses on assessing irrigation systems in agriculture. The aim is to ensure
a high yield in crop production, improve water productivity, and sustainably distribute
hydric resources. SWAT is a public domain model and valuable for assessing the WF Nexus.

3.1.5. Soil Water Atmosphere Plant (SWAP)

SWAP is a hydrologic model to simulate vertical water flow processes in soil, solute
transportation, and evaporation during the growing seasons for crops at a field scale [65,66].
Table A1 shows the SWAP-related case studies are based on the Richards equation [67], this
shown in Equation (2):

∂θ/∂t = C(h) ∂h/∂t = ∂[K(h)(∂h/∂z + 1)]/∂z − S(h) (2)
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C is the water capacity (∂θ/∂h) (cm−1), θ is volumetric water content (cm3), t is time
(day), S is soil water extraction, K is hydraulic conductivity (cm d−1), h is soil water
pressure head (cm), and z is the vertical coordinate (cm), taken positively upward.

SWAP was used to evaluate the water cycle under water deficit in a double-cropping
system in Beijing, China. This study indicated that SWAP is suitable for simulating
the water cycle and evaluating irrigation practices [65]. Further research used SWAP to
simulate the optimal irrigation schedule and groundwater load across hydrologic years
in a double-cropping system [68]. This model is also valuable for evaluating the optimal
practices for crops on saline soils [65].

This review identifies the SWAP model as the best for managing and optimizing
irrigation practices in crops. Then, it would be helpful in the evaluation of the WF Nexus
by managing sustainable water and food allocation.

3.1.6. Water Evaluation and Planning (WEAP)

The Water Evaluation and Planning (WEAP) software simulates the demand, supply,
runoff, streamflow, water storage, and pollution discharge and creates water quality [69].
The system allows for model adaptation and variable definition according to the user’s
information [26].

Table A1 shows case studies using WEAP to analyze water needs reduction, evapo-
transpiration analysis, and water availability evaluation in crops. It includes equations,
functions, and variables for hydric resource planning and models for crop requirements
and yields.

WEAP is an efficient software to improve irrigation techniques and evaluate their
impact on hydric resources globally [70]. According to the WF Nexus, the most significant
advantage is creating agricultural scenarios that allocate resources and make integrated
management plans to balance supply and demand and guarantee sustainable development.

4. Conclusions

This paper presents a systematic review of the quantitative approach to assess the
Water Food Nexus. From 1329 documents, only 2.4% are about the Water–Food Nexus
evaluation in case studies, which evidences the need for further research.

The WF quantitative assessment in those papers was carried out by different ap-
proaches and software: LCA, CAPRI, GFWS, SWAT, SWAP, and WEAP, allowing calculation
of hydric and/or food resources simultaneously.

According to the present review analysis, the Water–Food Nexus quantitative ap-
proach presents three principal characteristics: (1) facility to create future scenarios, (2) ap-
plied globally, and (3) useful for evaluating case studies.

LCA is based on the ISO 14040/14044 standard and meets two out of three desirable
features to evaluate the Water–Food Nexus; still, it does not provide future projections
regarding resource availability and accessibility. GFWS and CAPRI allow global future
scenario simulation, but not in case studies. While GFWS provides a country database
worldwide, CAPRI evaluates food economically and hydric balance is only affordable to
Europe. Notably, SWAT is particularly useful in case studies, assessing the impact of the
hydric resource in agriculture, but it is limited for scenario simulations. Finally, WEAP
and SWAP allow the assessment of hydric resources in crop production from worldwide to
local studies and the scenarios simulation about water allocation and availability in crops.

Because of the above, WEAP and SWAP are the most comprehensive models to
evaluate the Water–Food Nexus and all its features, in the present. WEAP is recommended
for scenario projections in sectors such as industry, agriculture; or regions from basins to
urban settlements, and includes the cost–benefit calculation for food production. On the
other hand, SWAP considers the water transportation system in crops, soil, and atmospheric
characteristics, including water quality.

Despite the fact that there is no software dedicated to evaluate and rate the WF Nexus,
WEAP and SWAP were adapted and afforded the best possibilities to do it.
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This paper is the first review to provide an overview of the models used in the Water–
Food Nexus quantitative assessment and the pros and cons of each software used in
the literature.

Future Directions for Nexus Research

The published documents evaluating the Water–Food Nexus are scarce; therefore, the
Nexus analysis’s quantitative approach is demanding. Consequently, an indicator scale is
convenient to rate the Nexus, giving sustainability criteria for policy-makers to minimize
hydric and food security risks, promoting the efficient use of both resources. Water and
Food are evaluated separately, and no software does it simultaneously. Furthermore, the
Nexus does not have specific indices to rank the sustainability or scale-based classifica-
tion. Consequently, an index scale is convenient to rate the Nexus, giving sustainability
criteria for policies to minimize hydric and food security risks, promoting both resources’
efficient use.
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Appendix A

Table A1 compiles the models used for the evaluation of water and food resources.
The models’ selection demands an understanding of the main goal, application area, time
analysis, space scales, complexity, and information data to feed them.

Table A1. Assessment programs for the Water–Food Nexus: case studies.

Software Objective Indicator Crop Reported Value Country Reference

Common
Agricultural

Policy
Regionalized

Impact (CAPRI)

Agricultural and
water modeling

IRWUri = Σwact
CAWUri,wact ×

LEVLri,wact
1

50 agricultural
products IRWU: 3633.93 E6 m3 United States [48,49]

Global Food and
Water System

(GFWS)

Assessment of
food and water

availability
Wkj = Rkj × Llkj × Ej

2

wheat, rice, corn,
sorghum, barley,

oats, and
soybeans

water consumed by
crop: 4 × 10−7 m3/ha

20 countries [51]

Life Cycle
Assessment

(LCA)

Water
consumption Crop-rotation wheat grain

maize grain
437.5 m3/t of grain
232.2 m3/t of grain

China [54]

Water
consumption

Water scarcity footprint
(rice) = Irrigation water

use (rice) × WSI 3
paddy rice 1.24 m3 H2Oeq/kg

paddy rice
Thailand [55]



Int. J. Environ. Res. Public Health 2021, 18, 4983 11 of 14

Table A1. Cont.

Software Objective Indicator Crop Reported Value Country Reference

Water
consumption

Environmental
performance

tomatoes
cherry tomatoes

peppers
zucchinis
melons

147.8 m3

111.8 m3

172.4 m3

88.9 m3

77.7 m3

Italy [57]

Irrigated with
groundwater and
reclaimed water

GW: irrigated crops
with groundwater and
RW: reclaimed water

corn
soybean
wheat

GW:0.44, RW: 0.37
GW: 0.39, RW: 0.37
GW: 0.64, RW: 0.56

China [71]

Soil and Water
Assessment Tool

(SWAT)

Water footprint
SWt = SW0 + Σ (Rday −
Qsurf − Ea − Wseep −

Qgw) 4

wheat
corn

sunflower

1.036 m3/kg
0.774 m3/kg
1.510 m3/kg

China [39]

Water
requirement

wstr = 1 − Et,act/Et = 1
− Wacualup/Et

5

rice, potato, sugar
beet, winter
wheat, oats

Deficit irrigation
(25–48%) Reduced

yield (0–3.3%)

India,
Germany,
Chile, and
Vietnam

[63]

Evaluation of
change in

irrigation systems

CPD = ΣYi × Ai/ΣVi ×
Ai

6

wheat, apple,
potato, tomato,

sugar beet, alfalfa,
and barley

Base scenario
CPDip: 0.87 kg/m3

CPDET: 1.78 kg/m3

Increasing irrigation
CPDip: 1.25 kg/m3

CPDET: 2.06 kg/m3

Irán [31]

Basin-scale
hydrological

model

WYSF: lower harvest
index

HVSTI: harvest index
for optimal growing

conditions

grain sorghum
sweet sorghum

HVSTI: 0.45
WYSF: 0.25

HVSTI: 1.0 WYSF: 1.0
EE.UU. [64]

Soil–Water-
Atmosphere-

Plant
(SWAP)

Water cycle
assessment

∂θ/∂t = ∂/∂z [K(h)
(∂h/∂z + 1)] − S(h) 7 corn and wheat

saving water: 190
mm/yr

groundwater
recharge: 16.1 mm/yr

China [72]

Land
management and

water use

Sp(z) = Lroot

(z)/
∫

0-
Droot Lroot(z)dz 8

grassland and
corn Holland [73]

Irrigation
scheduling and

groundwater
recharge

C(h) ∂h/∂t = ∂/∂z
[K(h)(∂h/∂z + 1)] −

Sa(z) 9
corn and wheat

optimal irrigation of
130, 260 y 390 mm in
hydrological years of
25%, 50%, and 75%,

respectively

China [68]

Performance and
water use
evaluation

∂θ/∂t = ∂/∂z [K(h)
(∂h/∂z + 1)] − S(h) 7 corn irrigation:

229 mm–460 mm China [65]

Water Evaluation
And Planning

(WEAP)

Reduction of crop
water

requirements

ADW: Alternate
Wetting and Drying
Ten years’ average

rice 54.88 Mm3 Philippines [70]

Evapotranspiration
analysis

1981–2008 and
2011–2014

corn
rice

wheat

114mm
164mm
38mm

California [74]

Assessment of
water availability

Average annual
irrigation demand for

water

yams, cassava,
cocoa, rice, maize

and tomatoes.
~690–748 Mm3/year Africa [42]

1 IRWU: Irrigation Regional Water Use. CAWU: Crop actual irrigation water use. LEVL: hectares cropped. ri: regions with irrigation.
wact: total irrigated area. 2 Wkj: agricultural water for crop k in country j. R: irrigation rate for crop k in country j. LI: area of irrigated
land for crop k in country j. E: water use efficiency in country j. 3 WSI: Water Stress Index. 4 SWt: final soil water content in time t. SW0:
initial soil water content. Rday: the amount of precipitation on a day i. Qsurf: the amount of surface runoff on a day i. Ea amount of actual
evapotranspiration on a day i. Wseep: the amount of percolation and bypass flow exiting the bottom of the soil profile in one day i. Qgw: the
amount of return flow on a day i. 5 wstr: water stress. Et: maximum plant transpiration Et,act: the actual amount of transpiration. Wactualup:
total plant water uptake. 6 CPD: Crop index per drop. i: crop number. n: number of cultivated crops. Yi: yield of crop i. Ai: area of crop i.
Vi: consumed water volume of crop i. 7 θ: soil water content in time t. dz: the vertical coordinate taken as positive upwards (cm). K(h):
is the hydraulic conductivity specified by Van Genuchten–Mualem model (cm/d). S(h): represents the water extraction by plant roots
(1/d). 8 Sp(z): Stresses due to dry or wet conditions and/or high salinity concentrations may reduce. Lroot: the root length density (cm−2).
Droot: the root layer thickness (cm). 9 C(h): differential soil water capacity in soil water pressure head h. t: time. Z: vertical coordinate. K:
hydraulic conductivity. Sa: soil water extraction rate by plant roots
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