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Abstract: Blood and/or urine levels of 27 heavy metals were determined by ICPMS in 41 patients 

with dilated cardiomyopathy (DCM) and 29 presumably healthy subjects from the Katanga Cop-

perbelt (KC), in the Democratic Republic of Congo (DRC). After adjusting for age, gender, education 

level, and renal function, DCM probability was almost maximal for blood concentrations above 0.75 

and 150 µg/dL for arsenic and copper, respectively. Urinary concentrations above 1 for chromium, 

20 for copper, 600 for zinc, 30 for selenium, 2 for cadmium, 0.2 for antimony, 0.5 for thallium, and 

0.05 for uranium, all in µg/g of creatinine, were also associated with increased DCM probability. 

Concurrent and multiple exposures to heavy metals, well beyond permissible levels, are associated 

with increased probability for DCM. Study findings warrant screening for metal toxicity in case of 

DCM and prompt public health measures to reduce exposures in the KC, DRC. 

Keywords: environmental exposures; heavy metals; idiopathic dilated cardiomyopathy;  

Katanga Copperbelt 

 

1. Introduction 

The Katanga Copperbelt (KC), with its significant copper and cobalt reserves, is a 

theater of intense mining and ore processing, producing more than half of DRC’s and 

about 6% of the world’s cobalt (the modern-day “oil” of a low-carbon economy) and cop-

per, respectively [1–3]. Low-grade mining infrastructures compounding with artisanal 

mining, environmental degradation, and poor regulation account for concurrent and mul-

tiple environmental exposures to heavy metals and metalloids including but not limited 

to arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), and zinc (Zn) [4,5]. 

Recent reports indicate that KC is one of the most polluted places in the world due to the 

contamination of water, soil, air, and food by toxic metals [6–17]. 

Previous studies in the KC have established an association between human exposure 

to toxic metals and disorders of neurodevelopment, decline in male and female fertility, 
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and an increased occurrence of birth defects [18–22]. Other studies have shown that expo-

sure to toxic metals confers a cardiovascular risk [23–25]. Toxic metals may have a direct 

effect on the functioning of cardiomyocyte membranes, ion channels, receptors, sarco-

mere, enzymes involved in the production of energy, and the antioxidant defense [26–35]. 

They may also lead to the dyshomeostasis of essential trace elements promoting adverse 

remodeling and ultimately dilated cardiomyopathy [36]. 

Recently in Lubumbashi, the largest mining city of the KC, severe cases of dilated 

cardiomyopathy burdened with high mortality were reported in relatively young pa-

tients, in contrast to findings in other populations. While risk factors such as hypertension, 

alcoholism, overweight and/or obesity, kidney dysfunction, atrial fibrillation, and difficult 

living conditions have been highlighted, the potential contribution of toxic metals to the 

high prevalence of idiopathic dilated cardiomyopathy (DCM) has been suspected previ-

ously [37]. Lubumbashi is growing in population with many challenges of urbanization 

and sanitation. There are many unpaved roads, dilapidated sewers dating from colonial 

times that are insufficient for draining of rainwater, and even effluents of mining compa-

nies that are located in the vicinity of homes. Garbage collection and recycling of danger-

ous products such as batteries and wrecks of vehicles is also a big challenge for the city. 

The majority of the population is poor, and artisanal mining is a major subsistence activ-

ity. Concurrent and multiple exposures to heavy metals, including some radioactive ele-

ments such as uranium, have been documented [14,38]. There is no universal health cov-

erage, and the burden of major chronic diseases, including cardiac morbidities, lies on 

individuals [3,16,39,40]. In such contexts, identification of preventable causes of chronic 

illness and/or disability is of the utmost importance. In this study, we unveiled associa-

tions between idiopathic DCM and multiple exposures to heavy metals. 

2. Subjects and Methods 

2.1. Subjects 

A total of 97 subjects seen prospectively for cardiovascular evaluations at the univer-

sity clinic and the Lubumbashi’s Centre of Cardiology were consecutively enrolled in the 

study between November 2017 through January 2019. They were at least 16 years old, 

male or female, living in the general population of the KC. Of these 97, 68 (70.1%) had 

symptoms and signs of heart failure, elevated NT-proBNP, and DCM on echocardiog-

raphy (either presumed idiopathic or postpartum cardiomyopathy). Twenty-nine subjects 

(29.9%) had no cardiovascular disease after cardiovascular check-up and were therefore 

kept as controls in the present study. They all have a normal 12-lead ECG. Of the 68 above 

subjects, those over 70 years, with known diabetes; renal failure with the need for dialysis; 

positive HIV test; and transthoracic echocardiography supporting rheumatic or degener-

ative valvular heart disease, pericarditis, cor pulmonale, congenital defects, suspected is-

chemic heart disease, or dilation attributed to hypertension, were excluded from the study 

(Figure 1). 
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Figure 1. Patient selection, heavy metals measured in total blood and urine. LV denotes left ventricle, HIV: human im-

munodeficiency virus positive test, RRT: renal replacement therapy, HTN: hypertension, DCM: dilated cardiomyopathy 

(idiopathic and postpartum cardiomyopathy). 

2.2. Readout Parameters and Measurements 

Demographic data, past medical history, signs, and symptoms of heart failure were 

collected using a standardized questionnaire. 

Fasting routine blood (total blood cells count, INR, HIV test, sodium, potassium, 

magnesium, calcium, chloride, total cholesterol, HDL, LDL, triglycerides, urea, creatinine, 

uric acid, glycemia, AST, ALT, direct bilirubin, and indirect bilirubin) and urine tests (strip 

and microscopy) were performed in all subjects. 

Transthoracic echocardiography was performed using a Vivid i ultraportable echo 

system (GE Medical Systems, Tirat Carmel, Israel). For each registration, five heartbeats 

were recorded. Cine loops were stored digitally and later analyzed in EchoPac version 113 

software (GE Vingmed, Horten, Norway). Simpson’s biplane method was applied for the 

assessment of left ventricle volumes and ejection fraction. 2D parameters and conven-

tional Doppler parameters were measured according to recommendations [41,42]. 

Electrocardiogram was obtained with Cardiax PC system (Imed, Budapest, Hungary) 

and interpreted according to The Minnesota code manual of electrocardiography[43] and 

a 24-h Holter-ECG was recorded by a DMS 300-4A Holter recorder (DM Software, Hun-

felden-Dauborn, Germany). Data from each Holter assessment were processed using Car-

dioScan software (Cardioscan GmbH, Hamburg, Germany). 

A spot sample of urine, which was voided directly into 40 mL polystyrene vials with 

screw caps, was obtained from each patient. A blood sample was drawn by a trained nurse 

from a brachial vein into a 4-mL BD Vacutainer tube with spray-coated K2EDTA. Blood 

and urine samples were obtained the day of the first visit or the morning of the following 

day. Levels of 27 heavy metals were measured: lithium (Li), beryllium (Be), aluminum 

(Al), titanium (Ti), vanadium(V), chromium (Cr), manganese (Mn), cobalt (Co), nickel 
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(Ni), copper (Co), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), palladium 

(Pd), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), tellurium (Te), barium (Ba), plat-

inum (Pt), mercury (Hg), thallium (Tl), lead (Pb), bismuth (Bi), and uranium (U). Palla-

dium and mercury were only measured in the blood, while titanium and indium were 

only measured in the urine. Urinary concentrations of metals were reported in µg/g of 

urinary creatinine. A value of half the urinary limit of detection (LOD) of beryllium, va-

nadium, manganese, and antimony was attributed to respectively 2, 7, 9, and 1 partici-

pants whose concentration was below the LOD. All measurements were carried out at the 

Louvain Centre for Toxicology and Applied Pharmacology (Université Catholique de 

Louvain, Belgium), using Agilent 7500 ce instrument (for urine) and Agilent 7500 cx in-

strument (for blood). The same techniques already widely described were used [14,38,44]. 

Samples were anonymized, and analyses were performed blind. 

2.3. Statistical Analysis 

Shapiro–Wilk normality test was used to determine the distributions of metals levels, 

which were right-skewed, therefore summary results are presented as geometric means 

with their 95% CIs. The Zn/Cu ratio was calculated and included in the statistical analysis 

as previously of interest in other studies [45,46]. For the association studies, generalized 

linear models were used to obtain adjusted estimates, 95% confidence interval, and p-

value. Graphs of the fitted models showing DCM probability were produced using 

genmod procedure with SAS 9.4 TS Level1 M5 2016 (SAS Institute Inc., Cary, NC, USA). 

The level of statistical significance was set at p < 0.05 (two-sided). 

3. Results 

3.1. General Characteristics of Study Participants 

Table S1 (Supplementary Material) gives the general characteristics of patients with 

DCM. On average, participants were 48 ± 14 years old. Three-quarters (78%) of them were 

hospitalized for an average of 14(8) days. As comorbidities and risk factors, 39% of them 

regularly consumed clay and 27% misused alcohol at the time of diagnosis. They were 

symptomatic with fatigue (93%), breathlessness (83%), orthopnea (83%), and early satiety 

(85%). Several of them were congested with pulmonary rales (49%), hepatomegaly (63%), 

sacral (66%), and legs edema (71%). They were functioning in NYHA classes III and IV in 

71% with a severely reduced ejection fraction (21 ± 8 %). The initial treatment was essen-

tially made of furosemide (95%) and ACE-i (85%). 

Table S2 (Supplementary Material) compares patients with controls according to de-

mography, anthropometry, education level, and routine biology. On average, patients 

were less educated, had elevated glycemia (108 vs. 88 mg/dL), uric acid (11 vs. 6 mg/dL), 

and C-Reactive protein (45 vs. 7 mg/L). They also had more renal dysfunction (41% vs. 

7%), electrolytes imbalance (sodium, potassium, and calcium), hepatic dysfunction (ele-

vated ALT, bilirubin, and INR) and more hematologic disorders (WBC, red cell indices). 

3.2. Blood Concentrations of Heavy Metals and Dilated Cardiomyopathy 

Geometric means of cobalt, copper, and arsenic were significantly higher in patients 

than in controls, and beyond the reference values. Conversely, vanadium, zinc, antimony, 

and barium were significantly higher in controls than in patients, and also beyond the 

reference values. Higher Zn/Cu ratio was found in controls (Table 1).  
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Table 1. Concentrations (µg/dL) of blood heavy metals in patients compared to controls. 

Metal 

(Reference 

Value) 

Controls (n = 29) 

GM (95%CL) 

Mean ± SD 

Median (IQR) 

DCM (n = 41) Ø 

GM (95%CL) 

Mean ± SD 

Median (IQR) 

GM Ratio 

(95% CL) 
p 

Mn 

0.77 ¥ 

1.59(1.41–1.81) 

1.69 ± 0.61 

1.59(0.58) 

1.56 (1.39–1.76) 

1.67 ± 0.69 

1.64(0.80) 

1.02  

(0.86–1.22) 
0.8094 

Co 

0.03 ¥ 

0.06(0.04–0.08) 

0.09 ± 0.08 

0.05(0.07) 

0.12 (0.08–0.16) 

0.22 ± 0.31 

0.09(0.14) 

0.50  

(0.31–0.82) 
0.0063 

Cd 

0.04 ¥ 

0.16 (0.15–0.17) 

0.17 ± 0.04 

0.16(0.04) 

0.13 (0.08–0.21) 

0.21 ± 0.28 

0.14(0.09) 

1.24 

(0.86–1.31) 
0.3636 

Hg 

0.26 (0.22–0.31) 

0.29 ± 0.15 

0.27(0.13) 

0.26 (0.22–0.31) 

0.31 ± 0.24 

0.26(0.13) 

0.99 

(0.77–1.28) 
0.9663 

Tl 

0.002 ¥ 

0.0027 (0.0024–0.0031) 

0.0029 ± 0.0012 

0.0027(0.0008) 

0.0028 (0.002–0.0039) 

0.0050 ± 0.0082 

0.0036(0.0027) 

0.96 

(0.67–1.38) 
0.8273 

Pb 

1.88 ¥ 

5.65 (4.83–6.61) 

6.13 ± 2.59 

5.83(2.81) 

6.99 (5.94–8.22) 

8.02 ± 4.94 

6.76(2.93) 

0.81 

(0.64–1.02) 
0.0686 

Li  

0.21 (0.08–0.61) 

1.11 ± 1.05 

1.22(1.89) 

0.10 (0.07–0.16) 

0.26 ± 0.54 

0.10(0.11) 

2.08 

(0.67–6.45) 
0.1981 

V 

0.005 * 

0.02 (0.01–0.05) 

0.07 ± 0.07 

0.52(0.13) 

0.006 (0.004–0.01) 

0.02 ± 0.31 

0.007(0.008) 

3.5 

(1.40–8.98) 
0.0086 

Cr 

0.04 

0.20 (0.18–0.22) 

0.21 ± 0.06 

0.19(0.04) 

0.18 (0.15–0.21) 

0.20 ± 0.13 

0.17(0.07 

1.12 

(0.94–1.33) 
0.2136 

Cu 

70–140 ‡ 

110.6 (105–116.4) 

111.51 ± 14.83 

109.71(20.50) 

143.7 (135.1–153) 

145.88 ± 25.74 

146.84(31.15) 

0.77 

(0.71–0.83) 
<0.0001 

Zn 

580.5 ¥ 

1196.9 (992.1–1444) 

1331.38 ± 577.13 

1509.84(906.91) 

823.4 (740.3–915.8) 

864.21 ± 307.60 

797.38(230.11) 

1.5 

(1.2–1.8) 
0.0009 

Zn/Cu 

10.8 (8.8–13.2) 

12.18 ± 5.44 

13.33(8.02) 

5.7 (5.1–6.4) 

6.08 ± 2.47 

5.39(1.95) 

1.9 

(1.5–2.4) 
<0.0001 

As 

0.17 ¥ 

0.23 (0.20–0.26) 

0.25 ± 0.09 

0.22(0.09) 

0.39 (0.32–0.49) 

0.47 ± 0.33 

0.38(0.23) 

0.58 

(0.46–0.74) 
<0.0001 

Se 

12.5 ** 

12.6 (11.8–13.4) 

12.78 ± 2.12 

13.12(3.34) 

11.9 (11.1–12.8) 

12.20 ± 2.51 

11.82(3.28) 

1.05 

(0.9–1.2) 
0.2820 

Mo 

0.1–0.3 ‡ 

0.18 (0.16–0.21) 

0.20 ± 0.11 

0.17(0.07) 

0.21 (0.18–0.25) 

0.25 ± 0.23 

0.19(0.08) 

0.87 

(0.69–1.09) 
0.2385 
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Sb 

0.005 

1.11 (0.96–1.29) 

1.19 ± 0.46 

1.18(0.47) 

0.56 (0.49–0.64) 

0.61 ± 0.29 

0.57(0.27) 

1.98 

(1.63–2.42) 
<0.0001 

Ba 

0.05–0.25 

0.31 (0.2–0.48) 

0.53 ± 0.53 

0.33(0.68) 

0.13(0.09–0.16) 

0.18 ± 0.29 

0.11(0.05) 

2.45 

(1.50–4.01) 
0.0006 

Ø: Lithium, vanadium, chromium, copper, zinc, arsenic, selenium, molybdenum, antimony, and barium were measured 

in only 33 patients with DCM. ‡: WHO. Trace elements in human nutrition and health. 1996. ¥: Nisse C et al., Blood and 

urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008-

2010. Int J Hyg Environ Health. 2017;220(2 Pt B):341-63. *: Agency for Toxic Substances and Disease Registry (ATSDR). 

2012. Toxicological Profile for Vanadium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health 

Services. **: Agency for Toxic Substances and Disease Registry (ATSDR). 2003. Toxicological Profile for Selenium (Update). 

Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 

DCM prediction models with adjustment for age, sex, education, and renal function 

(Table 2) revealed that higher blood levels of arsenic and copper were independently as-

sociated with DCM. However, a high Zn/Cu ratio, and high concentrations of vanadium, 

zinc, antimony, and barium, were not associated with DCM. 

Table 2. Adjusted models of DCM as a function of blood metal levels. 

Variable Coefficient SE Wald 95% Confidence Limits Wald X2 p-Value 

Arsenic Model 

Intercept −2.84 1.65 −6.06 0.39 2.97 0.0850 

As 9.04 3.44 2.28 15.79 6.88 0.0087 

Age −0.001 0.03 −0.06 0.06 0.00 0.9639 

Male sex 0.48 0.70 −0.89 1.85 0.47 0.4909 

EducationX −1.14 0.74 −2.59 0.29 2.43 0.1192 

GFR < 60 2.21 1.00 0.24 4.17 4.83 0.0279 

Copper model 

Intercept −13.49 3.98 −21.29 −5.68 11.48 0.0007 

Cu 0.09 0.02 0.04 0.14 13.07 0.0003 

Age 0.02 0.03 −0.04 0.09 0.50 0.4776 

Male sex 1.46 0.87 −0.24 3.15 2.85 0.0915 

Education −0.79 0.80 −2.37 0.77 0.99 0.3195 

GFR < 60 1.18 1.15 −1.07 3.44 1.06 0.3042 

Vanadium model 

Intercept 1.39 1.49 −1.53 4.31 0.87 0.3517 

Vanadium −23.91 8.93 −41.42 −6.40 7.16 0.0074 

Age −0.01 0.03 −0.08 0.05 0.22 0.6394 

Male sex 0.30 0.68 −1.04 1.65 0.19 0.6589 

Education −1.18 0.70 −2.55 0.19 2.83 0.0925 

GFR < 60 2.75 1.13 0.54 4.96 5.95 0.0147 

Zinc model 

Intercept 3.36 1.86 −0.28 7.00 3.28 0.0701 

Zinc −0.003 0.0009 −0.005 −0.001 9.53 0.0020 

Age −0.02 0.03 −0.08 0.05 0.21 0.6437 

Male sex 0.79 0.73 −0.63 2.22 1.18 0.2769 

Education −1.39 0.74 −2.84 0.06 3.54 0.0598 

GFR < 60 3.32 1.31 0.75 5.88 6.43 0.0112 

Antimony model 

Intercept 4.89 2.16 0.66 9.13 5.12 0.0236 

Antimony −4.65 1.25 −7.09 −2.20 13.87 0.0002 
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Age −0.02 0.04 −0.09 0.05 0.40 0.5284 

Male sex 0.58 0.82 −1.01 2.19 0.52 0.4720 

Education −1.42 0.84 −3.07 0.22 2.89 0.0892 

GFR < 60 3.58 1.66 0.33 6.83 4.65 0.0310 

Barium model 

Intercept 1.32 1.40 −1.43 4.06 0.89 0.3459 

Barium −2.73 1.24 −5.17 −0.29 4.81 0.0284 

Age −0.01 0.03 −0.07 0.05 0.15 0.6997 

Male sex 0.19 0.65 −1.09 1.48 0.09 0.7673 

Education −1.18 0.67 −2.49 0.13 3.13 0.0769 

GFR < 60 2.54 1.01 0.57 4.51 6.36 0.0117 

Ratio Zinc/Copper 

Intercept 3.63 2.03 −0.35 7.61 3.20 0.0738 

Zinc/copper −0.46 0.14 −0.74 −0.19 11.01 0.0009 

Age −0.01 0.04 −0.09 0.07 0.06 0.8053 

Male sex 1.44 0.89 −0.31 3.20 2.59 0.1077 

Education −1.31 0.81 −2.89 0.27 2.63 0.1050 

GFR < 60 3.73 1.71 0.38 7.07 4.76 0.0291 

X: Being highly educated (university or post-university) often correlates with higher socio-economic status in the KC set-

tings. 

Probability curves of the likelihood of developing DCM as a function of heavy metals 

blood concentrations are shown in Figure 2. A sharp rise of DCM probability at levels of 

blood copper between 100 and 150 µg/dL was observed. Above 150 µg/dL, the probability 

was almost 100%. The same trend was seen with arsenic above 0.75 µg/dL. In contrast, 

DCM probability decreases as blood concentrations of vanadium (C), zinc (D), antimony 

(E), and the Zn/Cu ratio increase. 
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Figure 2. Illustrative predicted probabilities of DCM as a function of blood heavy metal 

concentrations: arsenic (A), copper (B), vanadium (C), zinc (D), antimony (E), and 

zinc/copper ratio (F). 
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3.3. Urine Concentrations of Heavy Metals and Dilated Cardiomyopathy 

As summarized in Table 3, the concentrations of beryllium, chromium, manganese, 

cobalt, copper, zinc, selenium, cadmium, tin, antimony, thallium, and uranium were well 

beyond the reference values and significantly higher in patients than in controls. 

Table 3. Concentrations (µg/g creatinine) of metals in urine from DCM patients and controls. 

Metal 

(Reference 

Value) 

Controls (n = 25) 

GM(95%CL) 

Mean ± SD 

Median (IQR) 

DCM (n = 32) 

GM(95%CL) 

Mean ± SD 

Median (IQR) 

GM Ratio  

(95% CL) 
p 

Li 

21.5 

13.93 (11.98–16.19) 

14.92 ± 6.14 

13.44(6.04) 

16.06 (12.55–20.57) 

20.52 ± 18.51 

15.25(13.44) 

0.87 

(0.65–1.15) 
0.3189 

Be 

0.0009 (0007–0.0012) 

0.0011 ± 0009 

0.0008(0004) 

0.0029 (0.0015–0.0056) 

0.041 ± 0.15 

0.0022(0.0059) 

0.31 

(0.16–0.62) 
0.0015 

Al 

2.04 

10.62 (7.97–14.15) 

14.23 ± 15.39 

9.59(6.42) 

15.62 (10.22–23.88) 

97.42 ± 438.12 

11.25(10.62) 

0.68 

(0.41–1.12) 
0.1292 

Ti 

30.87 (25.19–37.82) 

34.49 ± 16.15 

29.40(25.48) 

31.13 (23.07–42.02) 

39.95 ± 25.09 

34.43(29.65) 

0.99 

(0.69–1.41) 
0.9612 

V 

0.22 

1.46 (0.73–2.93) 

3.33 ± 3.49 

2.07(3.24) 

1.53 (0.91–2.57) 

2.95 ± 3.08 

1.92(2.67) 

0.96 

(0.42–2.19) 
0.9178 

Cr 

0.11 

0.18 (0.14–0.22) 

0.20 ± 0.13 

0.16(0.08) 

0.36 (0.24–0.54) 

1.00 ± 2.91 

0.29(0.39) 

0.49  

(0.32–0.78) 

 

0.0033 

Mn 

<0.043 

0.12 (0.06–0.21) 

0.28 ± 0.37 

0.11(0.27) 

0.39 (0.19–0.81) 

3.36 ± 8.65 

0.29(1.05) 

0.29 

(0.11–0.78) 
0.0145 

Co 

0.2 

1.18 (0.73–1.92) 

2.45 ± 3.58 

0.97(1.84) 

2.75 (1.98–3.82) 

4.31 ± 5.08 

2.24(3.46) 

0.43 

(0.25–0.75) 
0.0034 

Ni 

1.79 

1.19 (0.94–1.51) 

1.39 ± 0.75 

1.18(1.24) 

1.49 (1.16–1.92) 

1.87 ± 1.33 

1.57(1.44) 

0.79 

(0.57–1.13) 
0.1967 

Cu 

6.84 

7.38 (6.45–8.43) 

7.78 ± 2.81 

7.06(2.48) 

25.76 (19.93–33.29) 

32.48 ± 23.22 

28.52(25.87) 

0.29 

(0.22–0.38) 
<0.0001 

Zn 

246 

221.10 (176.70–276.07) 

250.38 ± 116.76 

256.67(167.09) 

1033.80 (818.5–1305.7) 

1256.08 ± 820.55 

1007.14(821.22) 

0.21 

(0.15–0.29) 
<0.0001 

As 

13.7 

20.36 (14.99–27.65) 

27.19 ± 24.59 

19.97(20.48) 

27.06 (20.41–35.89) 

35.21 ± 24.55 

29.06(29.68) 

0.75 

(0.49–1.13) 
0.1689 

Se 

21.6 

17.42 (15.48–19.59) 

18.09 ± 5.07 

18.54(5.63) 

24.53 (21.70–27.73) 

25.98 ± 9.23 

22.85(12.10) 

0.71 

(0.59–0.84) 
0.0001 

Mo 60.46 (41.95–87.13) 55.17 (38.23–79.60) 1.09 0.4882 
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29.8 84.94 ± 74.05 

65.18 ± 38.00 

92.35 ± 137.29 

49.98(54.58) 

(0.65–1.83) 

Cd 

0.22 

0.61 (0.48–0.76) 

0.72 ± 0.54 

0.57(0.41) 

1.48 (1.15–1.90) 

1.94 ± 1.96 

1.44(1.29) 

0.41 

(0.29–0.58) 
<0.0001 

Sn 

0.35 

0.23 (0.19–0.29) 

0.26 ± 0.14 

0.21(0.11) 

3.59 (1.79–7.19) 

11.24 ± 14.55 

6.86(16.66) 

0.07 

(0.03–0.13) 
<0.0001 

Sb 

0.04 

0.05 (0.04–0.06) 

0.05 ± 0.04 

0.046(0.019) 

0.08 (0.05–0.11) 

0.11 ± 0.09 

0.08(0.14) 

0.64 

(0.42–0.97) 
0.0351 

Te 

0.14 

0.23 (0.19–0.27) 

0.25 ± 0.09 

0.21(0.14) 

0.23 (0.19–0.28) 

0.27 ± 0.17 

0.21(0.24) 

1.01 

(0.78–1.32) 
0.9417 

Ba 

1.86 

1.27 (0.94–1.72) 

1.61 ± 1.19 

1.16(0.74) 

1.65 (1.04–2.57) 

3.54 ± 4.96 

1.89(3.98) 

0.77 

(0.45–1.33) 
0.3442 

Tl 

0.18 

0.14 (0.11–0.17) 

0.16 ± 0.11 

0.13(0.05) 

0.23 (0.18–0.29) 

0.29 ± 0.19 

0.25(0.16) 

0.59 

(0.42–0.83) 
0.0031 

Pb 

1.78 

1.76 (1.38–2.26) 

2.09 ± 1.28 

1.68(1.28) 

1.24 (0.90–1.69) 

1.91 ± 2.50 

1.24(1.22) 

1.42 

(0.95–2.15) 
0.0888 

U 

<0.007 

0.008 (0.006–0.0105) 

0.11 ± 0.01 

0.007(0.004) 

0.02 (0.016–0.031) 

0.03 ± 0.04 

0.02(0.03) 

0.37 

(0.24–0.55) 
<0.0001 

DCM prediction models with adjustment for age, sex, or educational level showed 

that higher levels of chromium, copper, zinc, selenium, cadmium, antimony, thallium, 

and uranium in urine were significantly associated with DCM (Table 4). At concentrations 

(in µg/g) of creatinine above 1 for chromium, 20 for copper, 600 for zinc, 30 for selenium, 

2 for cadmium, 0.2 for antimony, 0.5 for thallium, and 0.05 for uranium, the probability of 

DCM was almost maximum (Figure 3). Significant correlations were seen between blood 

and urinary concentrations of several of the heavy metals of interest (Table S3 and Figure 

S1). 
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Figure 3. Illustrative predicted probabilities of dilated cardiomyopathy as a function of heavy met-

als concentrations in urine: chromium (A), copper (B), zinc (C), selenium (D), cadmium (E), anti-

mony (F), thallium (G), and uranium (H). 
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Table 4. Adjusted models of DCM prediction by urine metal concentrations (N = 57). 

Variable Coefficient SE Wald 95% Confidence Limits Wald X2 p-Value 

Chromium model 

Intercept −2.32 1.29 −4.85 0.21 3.24 0.0717 

Chromium 4.69 2.09 0.60 8.78 5.05 0.0246 

Age 0.02 0.02 −0.02 0.07 0.90 0.3435 

Male sex 1.04 0.69 −0.32 2.40 2.24 0.1344 

Education X −0.86 0.65 −2.13 0.41 1.76 0.1847 

Copper model  

Intercept −5.87 2.15 −10.10 −1.65 7.44 0.0064 

Copper 0.32 0.11 0.10 0.54 8.32 0.0039 

Age 0.03 0.04 −0.04 0.10 0.69 0.4058 

Male sex 0.88 0.95 −0.98 2.74 0.85 0.3556 

Education 0.08 0.94 −1.76 1.93 0.01 0.9313 

Zinc model 

Intercept −4.88 2.65 −10.07 0.29 3.41 0.0648 

Zinc 0.02 0.01 0.01 0.03 9.45 0.0021 

Age −0.05 0.06 −0.17 0.07 0.67 0.4146 

Male sex −0.81 1.26 −3.28 1.67 0.41 0.5231 

Education 0.95 1.31 −1.62 3.52 0.53 0.4684 

Selenium model 

Intercept −7.39 2.41 −12.13 −2.66 9.38 0.0022 

Selenium 0.24 0.08 0.09 0.39 9.84 0.0017 

Age 0.05 0.03 −0.01 0.10 3.11 0.0780 

Male sex 1.51 0.78 −0.02 3.05 3.74 0.0533 

High education −1.28 0.74 −2.73 0.16 3.03 0.0818 

Cadmium model 

Intercept −2.19 1.35 −4.83 0.46 2.63 0.1051 

Cadmium 2.47 0.87 0.78 4.17 8.19 0.0042 

Age −0.01 0.03 −0.07 0.05 0.16 0.6850 

Male sex 1.39 0.77 −0.11 2.91 3.29 0.0697 

Education −0.83 0.70 −2.20 0.55 1.38 0.2401 

Antimony model 

Intercept −2.39 1.33 −4.99 −0.22 3.23 0.0723 

Antimony 14.59 6.11 2.61 26.56 5.70 0.0170 

Age 0.03 0.02 −00.1 0.08 1.97 0.1602 

Male sex 0.56 0.64 −0.69 1.82 0.78 0.3785 

Education −0.77 0.65 −2.04 0.51 1.39 0.2380 

Thallium model 

Intercept −3.13 1.40 −5.88 −0.38 4.96 0.0259 

Thallium 8.51 3.32 2.01 15.01 6.58 0.0103 

Age 0.03 0.03 −0.02 0.08 1.43 0.2324 

Male sex 1.36 0.74 −0.08 2.80 3.42 0.0645 

Education −1.25 0.69 −2.59 0.09 3.33 0.0681 

Uranium model 

Intercept −3.78 1.62 −6.95 −0.61 5.48 0.0193 

Uranium 85.43 35.37 16.11 154.74 5.83 0.0157 

Age 0.04 0.03 −0.01 0.09 2.62 0.1055 

Male sex 1.59 0.78 0.07 3.10 4.19 0.0408 

Education −0.92 0.71 −2.32 0.47 1.68 0.1944 
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X: Being highly educated (university or post-university) often correlates with higher socio-economic status in the KC set-

tings. 

4. Discussion 

This is the first study to look at estimated Glomerular Filtration Rate (eGFR)-adjusted 

associations between idiopathic DCM and high blood or urinary concentrations of several 

heavy metals in a rarely documented context of concurrent and multiple exposures. Blood 

and urinary concentrations for most of the metals of interest were above reference values 

[38,44,47]. In addition, significant correlations were found between blood and urine con-

centrations of metals, underlining complex interactions in the biology of heavy metals in-

cluding those with known beneficial biological properties strengthening the validity of 

study procedures and measurements [48,49]. 

Blood and/or urinary concentrations of several metals were above reference values 

both in subjects with DCM and those presumably healthy though significantly higher in 

subjects with DCM when considering metal concentrations in urine. In the DRC contexts 

of poorly regulated mining and consistent with previous studies [14,19,38], our findings 

possibly reflect community-wide concurrent and multiple exposures to toxic compounds. 

We also showed that DCM probability almost reaches the maximum beyond specific 

thresholds for blood arsenic and copper concentrations or urinary concentrations of chro-

mium, cadmium, antimony, thallium, and uranium. 

The blood arsenic concentration found in our subjects (0.39 µg/dL) far exceeds what 

has been reported in the general population of France (0.17 µg/dL) [47], Brazil (0.11 µg/dL) 

[50], Pakistan (0.21µg/dL) [51], and China (0.23µg/dL) [52]. Whether the association be-

tween DCM probability and higher blood levels of arsenic implies the later may contribute 

to the etiology of DCM is not known, but remains a possibility. Experimental studies in 

rodents, however, have demonstrated the toxic effect of arsenic on myocardial tissue 

through the inhibition of anti-oxidative stress defense enzymes [53,54]. Arsenic exposure 

has been associated with cardiopathologic effects, including ischemia, arrhythmia, and 

heart failure [55]. Possible mechanisms include increased oxidative stress, depletion of 

antioxidant status, DNA fragmentation, apoptosis by mitochondrial disruption, caspase 

activation, MAPK signaling and p53, functional changes in ion channels, and dyshomeo-

stasis of trace elements [55]. It has also been revealed that arsenic can induce all kinds of 

diseases, including heart diseases through epigenetic modifications associated with hy-

permethylation of genes coding for ion channels and diverse proteins of oxidative stress 

and energy production [56,57]. 

Exposure to copper is associated with increased cardiovascular risk [58]. High copper 

concentrations had been associated with heart failure incidence [36,59–63] and bad out-

comes such as re-hospitalizations and deaths over a one-year follow-up [64]. Copper is an 

important trace element in humans that is incorporated in several enzymes of vital func-

tions. However, at high concentrations due to permanent exposure or in Wilson’s disease, 

for example, its free fraction increases in such manner that its infiltrates the myocardial 

tissue, induces cellular toxicity, and promotes harmful free radical formation [65–68]. Alt-

hough the blood concentration of copper reported in this study was slightly higher than 

the upper limit of the reference value (143.7 vs. 140 µg/dl) [69], the urine concentration far 

exceeds levels reported as reference value [44,70] and in a very high-exposure environ-

ment [38]. This high urinary concentration, which, moreover, was strongly correlated with 

blood concentration (r = 0.73235, p <0.000), was precisely such an indication of a strong 

recent exposure. It was also an indication of a permanent exposure to this metal, which, 

ironically, is the great wealth of the KC. Because of copper and cobalt, the KC has been 

invaded by many mining companies that are the main polluters in the region. 

The association between zinc deficiency and dilated cardiomyopathy is well docu-

mented [45,59,60,71–73]. Urinary concentrations of Zn in subjects with DCM was 4 times 

the reference value denoting very high excretion [47], a commonly noted phenomenon 

during heart failure. Aldosteronism and activation of atrial natriuretic peptides increase 
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urinary excretion of zinc and loss in feces [74,75]. Aldosteronism also causes intracellular 

calcium overload, with the consequent induction of oxidative stress leading to necrosis of 

myocardial cells. Increasing intracellular calcium is coupled with zinc entry into cells to 

counteract the prooxidant effect of calcium overload. Aldosteronism causes acidification 

of the urine and a state of alkalosis, which are conducive to the urinary excretion of zinc. 

The inverse effects of acetazolamide would therefore be beneficial to curb this excretion 

[76]. Competition with heavy metals, especially with copper and cadmium, also explains 

its blood deficit and high urine excretion [77]. As zinc serves to maintain normal cell struc-

ture and function by its anti-oxidant and anti-inflammatory properties [71,78], both abso-

lute and relative deficiency would impact negatively the proper function of the heart. 

We found a strong correlation between blood copper and urinary zinc that illustrated 

the intimate relationship between the two metals. Indeed, the increase in blood copper 

leads to increased excretion of zinc and consequently its deficit. The copper-zinc intimacy 

is also illustrated by the Zn/Cu ratio. The fact that the highest Zn/Cu ratios were associated 

with a zero probability of DCM is in line with previous findings [62]. 

Urinary levels of chromium, cadmium, antimony, thallium, and uranium were sig-

nificantly higher in DCM patients than controls. These toxic metals have all been impli-

cated in cardiovascular disease. For example, the concept of chromium cardiomyopathy 

is discussed in a study in rats that were treated with potassium dichromate, and later 

showed changes in cardiac muscle and interstitial fibrosis. In addition, there was vacuoli-

zation, hemorrhages, and cell necrosis [79]. Accumulation of chromium in the myocardial 

tissue of patients with idiopathic DCM [33] has also been reported. Cadmium exposure 

may increase the prevalence of stroke and heart failure [80]. At lower concentrations than 

those of this study, cadmium was associated with idiopathic dilated cardiomyopathy [81]. 

These cadmium concentrations being obtained in essentially non-smoking patients argues 

in favor of exogenous (environmental) exposure. 

Leishmaniasis treatment with antimony can cause serious arrhythmias such as tor-

sade-de-pointe or, reportedly, an alteration of myocardial contractility through oxidative 

stress and disruption of intracellular calcium handling [34,35,82,83]. In our study, higher 

urinary concentrations of antimony were associated with DCM, supporting the above the-

sis on putative cardiotoxicity, and this was possibly due to yet-to-be-fully-documented 

environmental exposures. 

Thallium, an extremely toxic metal, has the same ionic radius as potassium. Thallium 

follows the distribution of potassium in the cellular and extracellular compartments. The 

cell membrane cannot differentiate between these two ions. The Na+/K+-ATPase pump 

has ten times more affinity for thallium than for potassium. Thus, all potassium-depend-

ent biological processes are altered in the presence of thallium. Through this, thallium can 

have immediate cardiovascular effects such as tachycardia, hypertension, ventricular fi-

brillation, and other electrocardiographic abnormalities. Thallium can also directly stim-

ulate chromaffin cells and lead to a significant release of catecholamines that are deleteri-

ous for the myocardium [84–87]. Measurement of urinary thallium is a simple way to de-

tect exposure to thallium [88]. The fact that thallium was found in greater concentration 

in the patients’ urine relative to controls suggests a participation of this metal in DCM 

morbidity. 

Known studies in animal models exposed to uranium have not shown a cardiovas-

cular effect [89,90]. However, numerous signs have been reported in the course of acute 

uranium poisoning, including myocarditis resulting in episodic atrial flutter [91]. Patients’ 

urinary uranium was approximately 2.5 times that of controls and reference values. This 

may suggest a harmful effect of this metal on the myocardium. 

It is difficult to determine whether blood and/or urinary concentrations of all the 

above culprits contribute to DCM morbidity due to challenges in analytical methods for 

multiple exposures and because of mutual influences heavy metals exert on each other 

biology in concurrent exposures. A relatively small sample size and the lack of normal 

reference for the KC population are the main limitations of the present study. A larger 
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sample size would have allowed studying the interactions between metals and controlling 

for other important clinical and/or biological features including but not limited to inflam-

mation and/or liver functions. Nevertheless, our findings are consistent with those from 

previous studies that have shown ubiquitous and concurrent exposures to potentially car-

diotoxic metals in the KC mining area. GFR-adjusted associations between DCM and con-

centrations of several of the above-mentioned heavy metals warrant public health 

measures to mitigate exposures to the toxic culprits. In addition, we recommend screening 

for heavy metals in contexts of cardiac morbidity and obvious environmental pollution 

from mining and/or ore processing activities. Chelation therapies and/or supplementation 

with elements with beneficial benefits to cellular homeostasis should also be thoroughly 

assessed as direct options to prevent cardiotoxicity in such contexts. 

Supplementary Materals: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Illustrative correlations between concentrations of copper or arsenic in the blood and concentrations 

of zinc, selenium, cadmium, and copper in the urine., Table S1: Clinical features of subjects with 

dilated cardiomyopathy , Table S2: Comparison of heart failure patients to controls according to 

demography, education level, and routine biology , Table S3: Correlations between blood and urine 

metal concentrations  
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