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Abstract: Dysbiosis, associated with barrier disruption and altered gut–brain communications, has
been associated with multiple sclerosis (MS). In this study, we evaluated the gut microbiota in
relapsing–remitting patients (RRMS) receiving disease-modifying therapies (DMTs) and correlated
these data with diet, cytokines levels, and zonulin concentrations. Stool samples were used for 16S
sequencing and real-time PCR. Serum was used for cytokine determination by flow cytometry, and
zonulin quantification by ELISA. Pearson’s chi-square, Mann–Whitney, and Spearman’s correlation
were used for statistical analyses. We detected differences in dietary habits, as well as in the gut
microbiota in RRMS patients, with predominance of Akkermansia muciniphila and Bacteroides vulgatus
and decreased Bifidobacterium. Interleukin-6 concentrations were decreased in treated patients, and
we detected an increased intestinal permeability in RRMS patients when compared with controls.
We conclude that diet plays an important role in the composition of the gut microbiota, and intestinal
dysbiosis, detected in RRMS patients could be involved in increased intestinal permeability and
affect the clinical response to DTMs. The future goal is to predict therapeutic responses based on
individual microbiome analyses (personalized medicine) and propose dietary interventions and the
use of probiotics or other microbiota modulators as adjuvant therapy to enhance the therapeutic
efficacy of DMTs.

Keywords: autoimmunity; multiple sclerosis; gut microbiota; dysbiosis; inflammation; cytokines;
intestinal permeability; disease modifying drugs

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory, neurodegenerative disease, medi-
ated by autoimmune reactions against myelin proteins and gangliosides in white and grey
matter of the brain and spinal cord, promoting physical disability, cognitive impairment,
and decreased quality of life in young adults, aged between 20 and 40 years [1,2]. The in-
cidence of MS is increasing worldwide and estimated to range from 5 to 300 per 100,000
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individuals, affecting females three times more and having a significant socioeconomic
impact, with financial burden to patients and to developed and developing economies [2,3].

The MS onset is clinically characterized as relapsing–remitting (RRMS), diagnosed
in 85 to 90% of patients [1,4]. The relapses are due to blood–brain barrier breakdown
and infiltration of T and B cells and myeloid cells into the central nervous system (CNS)
parenchyma, which induces acute inflammation, detected as gadolinium-positive lesions
in magnetic resonance imaging (MRI) [3]. Permanent neurological lesions and clinical
disability evolve to a secondary progressive form, and few patients present a primary
progressive course from disease onset [1]. Complex genetic–environmental interactions
are hypothesized to be involved in MS development, including human leukocyte antigen
(HLA) genes, Epstein–Barr virus infections, tobacco exposure, obesity, vitamin D deficiency,
and alterations of the gut microbiota [1,5,6].

In homeostatic or eubiosis conditions, the gut microbiota is dominated by microor-
ganisms that contribute to food digestion and fermentation, nutrient absorption, vitamin
synthesis, epithelial cell maturation, gut barrier integrity, development and education of
the immune system, protection against pathogens and inflammation, and regulation of host
metabolism and CNS physiology [7–10]. Recently, it has become evident that the gut mi-
crobiota can affect neurologic processes through bidirectional communications, involving
the enteric nervous system, the endocrine/immune systems, the gut microbiota, and their
metabolites [10–13]. Neurotransmitters and short-chain fatty acids (SCFAs), derived from
microbiota fermentation, can shape immune responses and impact behavior, memory, and
neurodegenerative diseases [10,12,14,15]. Thus, alterations in function and diversity of the
gut microbiota, known as dysbiosis, are associated with a dysregulation in these gut–brain
connections, increased gut and blood–brain barrier permeability and neuroinflammation
and can contribute to the development of inflammatory autoimmune diseases, including
MS [16–19].

In MS animal models, when experimental autoimmune encephalomyelitis (EAE) was
induced in germ-free mice, a decrease in inflammatory interferon-gamma (IFN-γ) and
interleukin-(IL)-17A levels in the CNS was detected, as well as an increase in regulatory
T cells (Treg) in the gut mucosa [20]. On the other hand, the colonization of EAE mice
with segmented filamentous bacteria induced Th17 differentiation in the lamina propria
and migration to the CNS, increasing neuroinflammation and disease severity [20,21].
The disease score ameliorated when germ-free EAE mice were colonized by Bacteroides
fragilis containing polysaccharide A, which induces IL-10-secreting Treg cells and suppress
the T-helper (Th)-17 subpopulation [22,23]. Moreover, when fecal samples from MS patients
were transferred to germ-free mice, genetically susceptible to EAE, the mice developed the
disease and significantly produced less IL-10 than mice colonized with feces from healthy
subjects [24]. These data suggest that the gut microbiota is linked to disease severity and
immune response during MS development [10].

In humans, the gut microbiota from untreated RRMS patients, from different popu-
lations (China, Japan, Germany, USA), differs from that of healthy controls, and patients
with active disease present decreased microbiota diversity. Intestinal dysbiosis in MS was
predominantly characterized by decreased Firmicutes, Clostridia clusters XIVa and IV,
Faecalibacterium, Butyricimonas, Prevotella, and Lactobacillus species, and increased abun-
dance of Pseudomonas, Mycoplasma, Haemophilus, Streptococcus,Akkermansia muciniphila, and
Methanobrevibacter smithii [24–33]. In addition, MS patients with increased peripheral Th17
lymphocytes and higher disease activity presented an increased Firmicutes/Bacteroidetes
ratio, Streptococcus amounts, and decreased relative abundance of Prevotella species [34].
Interestingly, the taxonomic composition during remission showed richness and evenness
similar to those of healthy individuals, and even the frequency of relapses seemed to be
influenced by the intestinal microbiota [29,35].

There are few studies evaluating the effect of disease-modifying therapies (DMTs),
used to treat MS patients on intestinal microbiota composition. Some studies suggest that
these therapies are capable of reversing dysbiosis and restore a “healthy” gut microbiota,
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similar to that of control subjects [19]. Patients on IFN-β or glatiramer acetate treatment
showed increased abundance of Prevotella, Sutterella, and Prevotella copri and decreased
Sarcina species and gut microbiota richness [29,36,37]. Besides that, evidence from animal
models and human studies demonstrated that gut microbes and their metabolites can
influence drug bioavailability, pharmacokinetics, clinical response, as well as adverse
events, supporting the importance of studies on the interaction of the gut microbiota with
DMTs [38,39]. The future goal is to predict therapeutic responses based on microbiome
analyses and propose diet interventions and the use of probiotics or other microbiota
modulators as adjuvant therapy to enhance the therapeutic efficacy of DMTs [40,41].

On the basis of this background and the fact that there are no studies evaluating the
gut microbiota in Brazilian MS patients, the aim of the present study was to evaluate the
gut microbiota in RRMS patients receiving DMTs and correlate these data with dietary
habits, clinical parameters, cytokines, and zonulin concentrations.

2. Materials and Methods
2.1. Selection of Relapsing–Remitting MS Patients and Controls

Relapsing–remitting multiple sclerosis (RRMS) patients, diagnosed according to the
Poser and colleagues criteria [42], were selected by the Neurologist from the School of
Health Sciences Dr. Paulo Prata, Barretos, Sao Paulo, Brazil. The Ethics Committee on
Human Research from the Barretos Educational Foundation approved the present study
(Process number 1522.762/2016), and all subjects signed the informed consent in accordance
with the Declaration of Helsinki.

A total of 18 RRMS patients, 16 females and 2 males (mean age − standard deviation
(SD) = 46.06 − 11.83 years), were included in this study. Eighteen control subjects, age-
and-sex-matched, were included as a control group (mean age − SD = 45.50 − 11.03 years).
After the consent, all of subjects answered a food frequency questionnaire (FFQ) that was
designed by specialized nutritionists. The FFQ included questions concerning dietary
habits, such as consumption of vegetables, fruits, carbohydrates, animal-derived proteins,
saturated and trans fats, dairy products, and canned products. The options for frequency
of consumption in the FFQ was classified as (1) Never consumes; (2) Less than once a
month; (3) One to three times a month; (4) Once or twice a week; (5) Three to five times
a week; (6) Six to seven times a week. Data were expressed in percentages based on the
responses of patients and controls. Thereafter, peripheral blood (8 mL) was collected, and
stool samples were requested and delivered within five days.

At enrollment, exclusion criteria for patients and controls included use of antibiotics
and laxatives and vaccination in the last 60 days. Chronic diarrhea and gastrointestinal
surgeries, such as bariatric, cholecystectomy, and appendectomy, were also considered as
exclusion criteria for both groups.

Clinical data from MS patients, such as body mass index (BMI), disease duration,
Expanded Disability Status Score (EDSS), presence/absence of gadolinium (Gd)-enhanced
brain magnetic resonance imaging (MRI) lesions, and disease-modifying therapies (DMTs)
were recorded. The mean body mass index of the MS patients was 26. Three patients re-
ported having systemic arterial hypertension, and two patients reported taking vitamin D .
All other patients included in this study reported no other comorbidity. Demographic
characteristics and clinical data from RRMS patients are summarized in Table 1.

2.2. Bacterial DNA Extraction, Real-Time PCR, and 16S Sequencing

DNA was extracted from 200 mg of stool samples by using QIAamp DNA Stool Mini
Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. DNA was
quantified by Nanodrop and adjusted to 5 ng/mL. Primers were specific for Bacteroides, Bi-
fidobacterium, Lactobacillus, Prevotella, and Roseburia species [43]. Reactions were performed
by using Power SYBR Green PCR Master Mix (Applied Biosystems, Life Technologies,
Carlsbad, CA, USA), 2 uM of forward/reverse primers, and 5 ng of DNA. For relative quan-
tification, DNA copy numbers from target primers were normalized for the copy numbers
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of universal primer. The relative abundance was calculated by using the cycle-threshold
(Ct) values and was expressed by the relative expression units method (REU) [44], per 200
mg of stool.

Table 1. Demographic and clinical data of the relapsing–remitting multiple sclerosis patients.

Patients Gender/
Age BMI Ethnicity Disease

Duration EDSS MRI DMT

MS01 F/59 23.11 Caucasian 21 years 5.0 Gd- IFN-β-1b

MS02 F/62 19.65 Asiatic 22 years ND ND IFN-β-1b

MS03 F/50 23.33 Afrodescendent 26 years ND ND AZA

MS04 F/26 24.44 Caucasian 3.2 years 4.5 Gd+ GA

MS05 F/69 23.42 Caucasian 7 years 3.0 Gd- GA

MS06 F/45 34.41 Caucasian 9 years 3.0 Gd+ TER

MS07 F/37 26.67 Caucasian 7 years 4.0 Gd- IFN-β-1b

MS08 F/33 34.42 Caucasian 10 years 3.0 ND GA

MS09 F/30 22.98 Caucasian 6 years 3.0 Gd+ FTY720

MS10 F/57 25.39 Caucasian 15 years ND ND FTY720

MS11 M/44 28.40 Caucasian 18 years 4.5 Gd- IFN-β-1a

MS12 F/37 23.05 Caucasian 13 years ND ND GA

MS13 F/50 23.22 Caucasian 7 years 3.5 Gd+ IFN-β-1a

MS14 F/33 28.00 Caucasian 3 years 4.0 Gd+ IFN-β-1a

MS15 F/47 27.05 Caucasian 7 months 2.5 Gd+ IFN-β-1b

MS16 F/49 23.82 Caucasian 2 years 4.0 Gd+ NAT

MS17 F/56 29.41 Caucasian 12 years ND ND FTY720

MS18 M/45 29.66 Caucasian 7 years 3.0 Gd- IFN-β-1b

F: Female; M: Male; BMI: Body Mass Index; EDSS: Expanded Disability Status Score; MRI: Magnetic resonance imaging; Gd+: Presence of
gadolinium-enhanced brain lesions; ND: not determined; Gd-: Absence of inflammatory active lesions; DMT: Disease-modifying therapy;
IFN-β-1b: Interferon-β-1b; AZA: Azathioprine; GA: Glatiramer acetate; TER: Teriflunomide; FTY720: Fingolimod; NAT: Natalizumab.

For bacterial 16S sequencing, DNA was quantified by Quantus fluorometer and
adjusted to 5 ng/mL using Tris buffer (10 mM, pH 8.5). V3 and V4 regions of the bacterial
16S [45] were amplified by using bacterial DNA, V3/V4 primers, and the 2X KAPA HiFi
HotStart Ready Mix (Kapa Biosystems, MA, USA). PCR purification was performed using
AMPure XP Beads Kit (BD Biosciences, San Jose, CA, USA). DNA libraries were constructed
according to the Illumina protocols, and sequencing was conducted by an Illumina MiSeq
platform system.

2.3. Cytokine Determination by Cytometric Bead Array

After peripheral blood collection (8 mL) in gel tubes with clot activator, samples were
incubated for 50 min and then centrifuged at 1372 g for 5 min, 25 ◦C. Isolated serum samples
were stored until cytokine determination. Cytokine detection was performed by using
a cytometric bead array (Human Th1/Th2/Th17 Cytokine Kit, BD Biosciences, Franklin
Lakes, NJ, USA). Serum levels of IL-2, IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor (TNF),
and IFN-γ were determined by flow cytometer FACSCanto™ II (BD Biosciences). Analyses
were performed by BDFCAP array™ software, and data were expressed in pg/mL.

2.4. Zonulin Serum Quantification by Sandwich ELISA

Serum samples were isolated from peripheral blood collected in gel tubes with clot
activator. After collection, samples were incubated for 50 min, centrifuged at 1372 g for
5 min, and stored until zonulin determination. A human Zonulin ELISA Kit (Elabscience,
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MD, USA) was used to quantify zonulin concentrations. Plates were pre-coated with
antibodies to human zonulin, and serum samples and standards were incubated for 1 h,
37 ◦C. Then, incubation with biotinylated detection antibodies and avidin–horseradish
peroxidase conjugate was performed for 30 min. Three washing steps followed to remove
unbound and free molecules. The substrate solution was added to each well and incubated
for 15 min. The enzyme–substrate reaction was blocked by a stop solution, and the color
turned yellow. The optical density was measured in a spectrophotometer at 450 nm. A stan-
dard curve was constructed, and zonulin concentrations were calculated by converting the
obtained optical density in ng/mL.

2.5. Statistical Analyses

Data extracted from the FFQ were analyzed by Pearson’s chi-square. Comparisons
between relative expression units and cytokines’ concentrations in MS patients and controls
were performed by a nonparametric Mann–Whitney U test. Zonulin concentrations were
analyzed by unpaired t test with Welch’s correction, since the data presented < Gaussian
distribution. Correlations among the read percentages of the gut microbiota, cytokines,
and zonulin concentrations were performed by Spearman’s correlation.

We performed analyses of variance and obtained rarefaction curves and diversity
indexes by using annotated operational taxonomic units (OTUs). Alpha diversity summa-
rizes the microbial diversity within each sample, and beta diversity measures differences
between samples. Sequencing analysis of bacterial 16S was conducted as described in a
previous study [46]. p values less than 0.05 were considered statistically significant.

3. Results
3.1. Dietary Habits and Correlations with the Gut Microbiota in RRMS Patients

Since diet plays a significant role in gut microbiota composition, we used an FFQ in
order to detect differences in dietary habits between RRMS patients and healthy controls.
The interviewees reported daily consumption of vegetables (patients (Pt) = 77.8%; controls
(Ct) = 61.1%), fruits (Pt = 44.4%; Ct = 27.8%), carbohydrates (Pt = 61.1%; Ct = 61.1%), animal-
derived proteins (Pt = 50.0%; Ct = 27.8%), saturated/trans fats (Pt = 5.5%; Ct = 16.7%), dairy
products (Pt = 55.6%; Ct = 72.2%), and canned products (Pt = 0.0%; Ct = 5.5%). We observed
significant differences (p < 0.05) among intake of vegetables, fruits, carbohydrates, animal-
derived proteins, and dairy products when we compared patients and controls. Table 2
summarizes the data obtained from the FFQ, with the frequencies of food consumption per
patient and controls and the p values.

To find correlations between dietary habits and gut microbiota composition in RRMS
patients, we used the consumption frequencies and the reads percentages detected in
stool samples from RRMS patients. We detected significant moderate/strong correlation
between vegetables consumption by patients and relative abundance of Roseburia (p = 0.010;
r = −0.60). We also found negative correlations between animal-derived protein intake
and relative abundance of Verrucomicrobiae/Verrucomicrobiales (p = 0.041; r = −0.50) and
Bacteroides vulgatus (p = 0.014; r = −0.58).

3.2. Detection of Intestinal Dysbiosis and Prevalence of Gram-Negative Bacteria in RRMS Patients

For the purpose to detect intestinal dysbiosis in RRMS patients receiving DMTs,
we sequenced the V3/V4 regions from bacterial 16S and determined the alpha and beta
diversities by using the annotated operational taxonomic units (OTUs). According to
the rarefaction curves, we observed no significant differences (p = 0.38) in richness and
evenness between samples obtained from RRMS patients and controls (Figure 1A,B).
However, when we used the unweighted UniFrac metric with Bonferroni correction, we
detected a significant difference (p = 0.01) between microbial communities found in RRMS
patients and controls (Figure 1D). Figure 1C shows the PcoA plot regarding the weighted
UniFrac metric with Bonferroni correction.



Int. J. Environ. Res. Public Health 2021, 18, 4621 6 of 17

Table 2. Description of the dietary habits of multiple sclerosis patients and controls.

Consumption Frequency N RRMS (%) N Controls (%) p Value

Vegetables

Once or twice a week 2 11.1% 2 11.1%
p < 0.001Three to five days a week 2 11.1% 5 27.8%

Six to seven days a week 14 77.8% 11 61.1%

Fruits

One to three times a month 0 0 4 22.2%

p = 0.047Once or twice a week 0 0 5 27.8%
Three to five days a week 10 55.6% 4 22.2%
Six to seven days a week 8 44.4% 5 27.8%

Carbohydrates

Never consumes 1 5.55% 0 0

p < 0.001

Less than once a month 2 11.1% 0 0
One to three times a month 0 0 1 5.5%

Once or twice a week 1 5.5% 3 16.7%
Three to five days a week 3 16.7% 3 16.7%
Six to seven days a week 11 61.1% 11 61.1%

Animal-derived proteins

Never consumes 0 0 1 5.5%

p < 0.001
One to three times a month 1 5.5% 0 0

Once or twice a week 6 33.4% 8 44.5%
Three to five days a week 2 11.1% 4 22.2%
Six to seven days a week 9 50.0% 5 27.8%

Saturated/trans fats

Never consumes 6 33.4% 2 11.1%

p = 0.444

Less than once a month 2 11.1% 6 33.4%
One to three times a month 3 16.7% 1 5.5%

Once or twice a week 4 22.2% 5 27.8%
Three to five days a week 2 11.1% 1 5.5%
Six to seven days a week 1 5.5% 3 16.7%

Dairy products

Never consumes 3 16.7% 1 5.5%

p < 0.001Once or twice a week 1 5.5% 2 11.1%
Three to five days a week 4 22.2% 2 11.1%
Six to seven days a week 10 55.6% 13 72.2%

Canned products

Never consumes 7 38.9% 3 16.7%

p = 0.083
Less than once a month 5 27.7% 3 16.7%

One to three times a month 3 16.7% 4 22.2%
Once or twice a week 3 16.7% 7 38.9%

Six to seven days a week 0 0 1 5.5%

The consumption of dairy products by patients correlated with the presence of the Bacteroidetes phylum (p = 0.015; r = −0.58), Bac-
teroidia/Bacteroidales (p = 0.011; r = −0.60), Bacteroidaceae/Bacteroides (p = 0.016; r = −0.57), Bacteroides rodentium (p = 0.044; r = −0.49),
and Bacteroides uniformis (p = 0.049; r = −0.48). Furthermore, we reported a positive correlation between saturated/trans fat consumption
and the abundance of Firmicutes (p = 0.044; r = 0.49), Clostridia (p = 0.039; r = 0.50), and Clostridiales (p = 0.035; r = 0.51).

To compare the microbiota composition in treated RRMS patients and controls, we se-
quenced the bacterial 16S in stool samples and analyzed specific bacterial groups by real-time
PCR. The prevalent phyla in RRMS patients were Firmicutes (patient reads (Pr) = 43.78%;
control reads (Cr) = 50.12%) and Bacteroidetes (Pr = 30.52%; Cr = 14.47%), and the prevalent
classes were Clostridia (Pr = 39.29%; Cr = 41.15%) e Bacteroidia (Pr = 25.96%; Cr = 11.99%)
(Figure 2A,B). The prevalent orders were Clostridiales (Pr = 35.80%; Cr = 37.16%) and Bac-
teroidales (Pr = 25.96%; Cr = 11.99%), and the prevalent families were Bacteroidaceae
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(Pr = 18.86%; Cr = 9.25%), Ruminococcaceae (Pr = 11.35%; Cr = 16.74%), and Lachnospiraceae
(Pr = 10.19%; Cr = 6.24%) (Figure 2C,D). The prevalent genera in RRMS patients were Bac-
teroides (Pr = 18.86%; Cr = 9.25%), Akkermansia (Pr = 7.35%; Cr = 6.95%), Blautia (Pr = 5.18%;
Cr = 2.16%), and Faecalibacterium (Pr = 4.31%; Cr = 9.91%). The prevalent species in stool
samples from RRMS patients were Akkermansia muciniphila (Pr = 7.35%; Cr=7.27%), Bac-
teroides vulgatus (Pr = 4.68%; Cr = 1.07%), Methanobrevibacter smithii (Pr = 2.99%; Cr = 10.01%),
Bacteroides rodentium (Pr = 1.95%; Cr = 3.43%), Blautia coccoides (Pr = 1.33%; Cr = 2.05%), and
Prevotella copri (Pr = 1.28%; Cr = 1.09%) (Figure 2E,F). Additionally, we found significant
differences (p < 0.05) in the relative abundances of Bacteroidetes and Actinobacteria phyla,
Bacteroidia, Gammaproteobacteria and Actinobacteriia classes, Bacteroidales, Lactobacillales,
and Bifidobacteriales orders, Bacteroidaceae, Ruminococcaceae, Flavobacteriaceae, Porphy-
romonadaceae, and Bifidobacteriaceae families, Bacteroides, Flavobacterium, Parabacteroides,
Streptococcus, Bifidobacterium genera, Bacteroides vulgatus and Bifidobacterium stercoris between
samples derived from patients and controls (Figure 2). Interestingly, the Parabacteroides genus
(Pr = 1.31%; Cr = 0%) was detected only in stool samples from RRMS patients, and the
Bifidobacterium (Pr = 0%; Cr = 4.59%) and Enterobacter (Pr = 0%; Cr = 1.12%) genera were
found exclusively in stool samples from controls (Figure 2E).

Figure 1. Alpha and beta diversity in the gut microbiota of RRMS patients receiving DMTs and that of healthy controls.
Rarefaction curves are a representation of species richness for a given number of individual samples: (A) Observed and
(B) Chao 1-estimated OTUs. Principal component analysis (PcoA) is a transformation of weighted or unweighted Unifrac
distance, a pair-wise distance between samples based on the calculation of the shared branches of the phylogenetic tree of
the representative rRNA genes from OTUs present in at least one sample: (C) PcoA plot with weighted and (D) unweighted
UniFrac metric with Bonferroni’s correction.
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Figure 2. Relative abundances of bacterial taxa in stool samples from RRMS patients and controls. Predominant phyla (A),
classes (B), orders (C), families (D), genera (E), and species (F). Bars represent the reads percentages found in metagenomics
analyses. * p < 0.05.

Regarding the characterization of the gut microbiota by real-time PCR, we observed
similar relative expression units (p > 0.05) of Bacteroides, Lactobacillus, Prevotella, and Rose-
buria species when we compared patients’ and controls’ samples (Figure 3). In contrast,
we found a significant decrease (p = 0.036) in relative expression units of Bifidobacterium
species detected in stool samples derived from RRMS patients (median = 239.7) compared
to controls (median = 7791) (Figure 3B). Moreover, when we classified MS patients based on
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different DMTs, there were no significant differences (p > 0.05) in relative expression units
of Bacteroides, Bifidobacterium, Clostridium coccoides, Clostridium coccoides-Eubacterium rectale,
Clostridium leptum, Lactobacillus, Prevotella, and Roseburia in stool samples from MS patients.

Figure 3. Relative abundance of bacterial community in stool samples from RRMS patients and controls. (A) Bacteroides
species, (B) Bifidobacterium species, (C) Lactobacillus species, (D) Prevotella species, and (E) Roseburia species. Bars represent
the median with interquartile range of relative expression units (REU) per 200 mg of stool.

3.3. Detection of Decreased Pro-Inflammatory IL-6 Cytokine in MS Patients

To determine the serum concentrations of anti- and pro-inflammatory cytokines in RRMS
patients, we quantified IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-gamma, and TNF by cytometric
bead array. There were no significant differences (p < 0.05) in the concentrations of IL-2, IL-4,
IL-10, IL-17A, TNF in patients’ serum (mean ± standard error IL-2: 0.1867 ± 0.0687 pg/mL; IL-4:
0.3239 ± 0.0743 pg/mL; IL-10: 0.265 ± 0.0429 pg/mL; IL-17A: 2.708 ± 0.8544 pg/mL; TNF:
1.138 ± 0.1372 pg/mL; IFN-gamma: 0.4222 ± 0.1076 pg/mL) when compared with control
group (IL-2: 0.4294 ± 0.4051 pg/mL; 233IL-4: 0.2839± 0.2244 pg/mL; IL-10: 0.2422 ± 0.18 pg/mL;
IL-17A: 4.796 ± 1.43 pg/mL; TNF: 0.7572 ± 0.4383 pg/mL; IFN-gamma: 0.5028 ± 0.158 pg/mL)
(Figure 4A–G). IL-6 serum concentrations were decreased (p = 0.003) in RRMS patients
(0.7261 ± 0.1244 pg/mL) when compared with controls (1.242 ± 0.1601 pg/mL) (Figure 4C). In
addition, IL-6 concentrations inversely correlated with Clostridiaceae family members (p = 0.001;
r = −0.70), and TNF levels correlated with Actinobacteria (p = 0.025; r = 0.48) and Bacteroides vul-
gatus (p = 0.001; r = −0.70) (Figure 5A–C).
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Figure 4. Cytokine profile in treated RRMS patients and control subjects. Serum concentrations of (A) IL-2, (B) IL-4, (C)
IL-6, (D) IL-10, (E) IL-17A, (F) IFN-gamma, and (G) TNF. Statistical analyses were performed by the Mann–Whitney test.
Significance was set at p < 0.05.

Figure 5. Correlations among relative abundances of bacterial taxa and serum concentrations of inflammatory cytokines.
(A) Negative correlation between relative abundance of Clostridiaceae and IL-6 concentrations in RRMS patients; (B) Positive
correlation between relative abundance of Actinobacteria and TNF concentrations; (C) Positive correlation between Bacteroides
vulgatus and TNF concentrations. Statistical analyses were performed by Spearman’s test. Significance was set at p < 0.05.
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3.4. Detection of Increased Intestinal Permeability in RRMS Patients

In order to find whether RRMS patients presented increased intestinal permeability,
since alterations in the gut microbiota were detected, we evaluated the serum concentra-
tions of zonulin. Zonulin levels were significantly increased (p = 0.017) in MS patients’
samples (mean ± standard error: 27.13 ± 2.08 ng/mL) when compared with controls’
(mean ± standard error: 19.01 ± 2.98 pg/mL) (Figure 6A). Besides that, zonulin concentra-
tions positively correlated with disease duration (p = 0.025; r = 0.55; Figure 6B) and with the
relative abundance of Bacilli class members (p = 0.045; r = 0.49; Figure 6C) in MS patients.

Figure 6. Zonulin concentrations and correlations with clinical data and gut microbiota. (A) Serum zonulin concentrations
in RRMS patients and controls (CTRL); (B) Positive correlation between zonulin concentrations and disease duration;
(C) Positive correlation between zonulin concentrations and relative abundance of Bacilli class members.

4. Discussion

The dietary habits in industrialized societies have considerable changed in the last
years, and concomitant to this changes, the frequency of autoimmune diseases has in-
creased [47]. Western diets include low fiber and high fat consumption, which alters
the gut microbiota diversity and function, affecting the mucosal immune system and
influencing the development of autoimmune diseases [48]. Berer and colleagues (2018)
demonstrated that the supplementation of non-fermentable fiber to transgenic mice of the
spontaneous EAE model (opticospinal encephalomyelitis mice) impacted gut microbiota
and metabolic profile, increased long-chain fatty acids production, induced polarization to
Th2 immune responses, and prevented autoimmune diseases [49]. Furthermore, exercise
practice and low-calorie diets based on the consumption of vegetables, fruits, fish, pre-
biotics, and probiotics induced a decrease in inflammatory mediators and reestablished
eubiosis by acting via nuclear receptors [50]. Additionally, Wu and colleagues (2011)
showed the influence of diet on the gut microbiota and the prevalence of Bacteroides species
when animal proteins and saturated fats were consumed, while the presence of Prevotella
species was associated with carbohydrates and simple sugar intake [51]. In our study, we
detected significant differences in the consumption of vegetables, fruits, carbohydrates,
animal-derived proteins, and dairy products between patients and controls and, in contrast
to Wu et al., we detected an inverse correlation between increased animal-derived protein
intake by patients (50% vs. 27.8% in controls) and relative abundance of Bacteroides vulgatus.
There are no studies evaluating the intestinal microbiota of the Brazilian population as a
whole, and it should be noted that the human intestinal microbiota is considered to be
variable between individuals and presents geographic variation [52].

Several clinical trials are underway to test the effects of dietary interventions on inflam-
matory diseases, such as MS (NCT03539094, NCT02580435, NCT04574024, NCT04042415,
NCT03451955). So far, protective effects have been proposed for a Mediterranean diet en-
riched in fibers, vegetables, polyunsaturated fatty acids, and low levels of proteins [51,53].
On the other hand, the consumption of large amounts of milk and derivatives, meat, or
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animal fats correlates with an increasing prevalence of MS [54]. We detected differences
in dairy products consumption between patients and controls, and inverse correlations
with Bacteroidetes members, carbohydrate-degrading, Gram negatives bacteria, including
Bacteroides uniformis [55]. In MS patients, it has been suggested that dysbiosis caused by
an inadequate diet may indirectly influence Tregs/Th17 cell balance in the gut mucosa
and activate inflammatory pathways, contributing to intestinal and systemic inflammation
and MS pathogenesis [56]. Although we detected differences in diet and alterations in the
gut microbiota, the levels of inflammatory IL-17 and IFN-γ cytokines, which are involved
in MS pathogenesis [57], were similar in patients and controls. However, we detected
a significant decrease in IL-6 levels, which are probably associated with DMTs, which
impacts the immune response in relapsing–remitting patients [58].

The gut microbiota and the CNS are connected in a bidirectional manner, including
neural, endocrine, and immunological interactions [59]. Commensal microbes can interfere
with the secretion of neurotransmitters by intestinal cells, stimulate the vagus nerve thus
affecting the brain and behavior, produce neuroactive molecules, and modulate mucosal
immune cells and systemic populations that can cross the blood–brain barrier (BBB) into
the CNS [60]. In turn, the CNS modulates the microbiota by adrenergic signaling and
impacts intestinal motility and neurotransmitters actions in immunological cells that shape
the gut microbiota composition [60]. Interestingly, a small fraction of metabolites generated
by the gut microbiota in response to diet can reach the systemic circulation, cross the blood
BBB through vascular epithelial receptors, and modulate CNS inflammation [10,61–63].
Besides that, these metabolites can indirectly act through SCFA receptors in MS patients
and through aryl hydrocarbon receptors that influence microglia activation and gene
transcription in astrocytes [53,63,64]. In animal models, previous studies showed that
germ-free mice with a breakdown of tight-junctions at the BBB had defective permeability,
restored when these mice were colonized with conventional microbiota [65]. Therefore,
a disbiotic microbiota secretes metabolites that enter the blood stream and impact the
development of local and systemic diseases [49]. Moreover, these microbes may influence
therapeutic responses by activating or inhibiting exogenous molecules [60].

In the present study, we detected intestinal dysbiosis in RRMS patients receiving
DMTs, and our results present some similarities with previous studies in non-treated
patients [24–33]. Some of these similarities include decreased Lactobacillus spp. (Lacto-
bacillales) and predominance of Akkermansia muciniphila and Methanobrevibacter smithii,
chemilitotrophic specie. Methanobrevibacter is involved in inflammatory conditions by
recruiting macrophages and activating dendritic cells [66]. Akkermansia have immunoreg-
ulatory effects by converting mucin into SCFAs [54]; however, they play a role in the
degradation of the mucus layer and can promote intestinal inflammation [56]. In addition,
we detected a reduced relative abundance of Bifidobacterium spp. and Ruminocaceae mem-
bers including Faecalibacterium spp. and Ruminococcus spp. Bifidobacterium represents one
of the first colonizers of the human gut and exerts health-promoting effects [67]. Faecalibac-
terium spp. are butyrate-producing bacteria in the human colon, a bioindicator of human
health, and are reduced in inflammatory conditions [68]. Ruminococcus spp. re part of the
healthy gut microbiota in humans, and some mucus-degrading species are increased in
inflammatory diseases [69].

There are few studies evaluating the effect of DMTs on gut microbiota composition,
and previous works suggest that these therapies are able to reestablish the gut ecosystem
towards a eubiosis condition [19]. Patients on IFN-β or glatiramer acetate treatment showed
increased abundance of Prevotella, Sutterella, and Prevotella copri and decreased Sarcina
species [29,36,37]. In our MS patients, we also observed an increase in Prevotella spp. (Bac-
teroidales) in treated RRMS patients. The Prevotella genus is associated with a high-fiber diet
and has regulatory roles via butyrate generation [28]. Butyrate has anti-inflammatory effects,
induces Tregs in the gut mucosa, and maintains the epithelial barrier [70]. It is important
to note that metabolites produced by the gut microbiota are capable of influencing drug
bioavailability, pharmacokinetics, and clinical response, which supports the importance of



Int. J. Environ. Res. Public Health 2021, 18, 4621 13 of 17

studies on the interaction of the gut microbiota with DMTs [38,39]. In our work, the treated
RRMS patients had a different microbiota profile when compared with healthy controls,
suggesting that the disbiotic microbiota could interfere with the therapeutic response and
with intestinal permeability, which was significantly increased in our patients.

In addition to changes in the gut microbiota, recent studies have associated small
intestine rupture with the development of MS, and, based on this, Rahman and colleagues
hypothesized that a leaky gut is mechanistically linked to BBB disruption through receptors
for zonulin [71]. One of the predictors of intestinal permeability in humans is the serum
zonulin level. Zonulin is a physiological modulator of tight junctions involved in the traffic
of macromolecules and in the maintenance of epithelial barrier integrity and immune
tolerance in the gut mucosa. [72]. A leaky gut in mice induces inflammatory cytokines
release that promote an increased permeability, establishing a vicious circle favoring the
entry of antigens derived from diet and gut microbes, inducing a tolerance breakdown and
the activation of immune cells in the gastrointestinal mucosa [73,74]. The activated immune
cells can remain in the gut or migrate to distant organs, including the brain [73–75].

Intestinal dysbiosis can activate the zonulin pathway and stimulate cytokines release
allowing the leakage of luminal contents through the epithelial barrier [73]. A study from
Camara-Lemarroy and colleagues detected an increase in serum zonulin concentrations in
RRMS patients, which positively correlated with BBB disruption, confirmed by positive
gadolinium images in MRI [76]. In the present study, we detected a significant increase
in serum zonulin concentrations in treated RRMS patients, suggesting that increased
gut permeability could be a consequence of the intestinal dysbiosis detected in treated
RRMS patients.

5. Conclusions

We conclude that diet plays an important role in the composition of the intestinal
microbiota in MS patients and controls. In addition, intestinal dysbiosis, detected in RRMS
patients receiving DMTs, could be involved in increased intestinal permeability and affect
clinical response, future relapses, and disease progression in MS patients. Additional
studies in patients with different forms of MS, using DMTs, in different populations
are needed, and the future goal is to predict therapeutic responses based on individual
microbiome analyses (personalized medicine) and propose dietary interventions and the
use of probiotics or other microbiota modulators as adjuvant therapy to enhance the
therapeutic efficacy of DMTs.
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Abbreviations

MS: multiple sclerosis; RRMS: relapsing-remitting MS; CNS: central nervous system; MRI: magnetic
resonance imaging; PPMS: primary progressive MS; SPMS: secondary progressive MS; HLA: human
leucocyte antigens; SCFAs, short-chain fatty acids; EAE: experimental autoimmune encephalomyeli-
tis; IFN: interferon; IL: interleukin; Treg: regulatory T cells; Th: T helper; DMTs: disease modifying
therapies; SD: standard deviation; FFQ: food frequency questionnaire; F: female; M: male; BMI: body
mass index; EDSS: expanded disability status score; Gd+: presence of gadolinium-enhancement
brain lesions; ND: not determined; Gd-: Absence of inflammatory active lesions; AZA: Azathioprine;
GA: Glatiramer acetate; TER: Teriflunomide; FTY720: Fingolimod; NAT: Natalizumab; REU: relative
expression units; Ct: cycle threshold; TNF: tumor necrosis factor; OTUs: operational taxonomic units;
PcoA: principal component analysis; BBB: blood-brain barrier.
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