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Abstract: Exploring the relationship between environmental air quality (EAQ) and climatic conditions
on a large scale can help better understand the main distribution characteristics and the mechanisms
of EAQ in China, which is significant for the implementation of policies of joint prevention and
control of regional air pollution. In this study, we used the concentrations of six conventional air
pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate
matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring
sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration
limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality
index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC
from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2,
and NO2, have been decreasing year by year. However, the concentrations of particulate matter,
such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018.
Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first
mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to
the precipitation variability associated with the East Asian summer monsoon (EASM), referred to
as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is
a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about
35◦ N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and
O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern
EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation
affects the AQI variation over southern EC in spring and summer.

Keywords: environmental air quality; air quality index; eastern China; spatial and temporal charac-
teristics; climatic conditions

1. Introduction

The World Health Organization (WHO) has stated that over 90% of the world’s
population are affected by high levels of air pollution, and nearly 7 million premature
deaths related to air pollution occur each year [1]. China is one of the most severely air
polluted countries in the world [2,3], which may significantly impact the health of its
citizens [4–7] and economic development [8,9]. Therefore, atmospheric contamination has
attracted the attention of the Chinese public and government, and become one of the most
important environmental issues in current societies [10].

Environmental air quality (EAQ) is mainly affected by the combined effects of human
activities and climatic conditions [11]. On a regional scale, the emission of air pollutants
is a significant contributor to ambient air pollution [12]. In the past decade, due to the
continuous expansion of Chinese intensive industry and the increase in production capacity
and energy consumption, EAQ has deteriorated severely [13]. The levels of primary and
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secondary air pollutants are serious in some heavily industrialized and densely populated
regions, such as the northern plains of China [6,14,15], Northwest region [16], Yangtze
River Delta [17], and Pearl River Delta [18]. The people in these regions are exposed to
high levels of air pollution. Although new energy-saving and emission control policies can
effectively improve the EAQ in some regions [19–21], on a large scale, the spreading and
migration of air pollutants are inevitably influenced by regional or even global climatic
conditions [22]. Studies have highlighted that the emission of air pollutants in some regions
of China has decreased significantly in recent years, but the regional air quality index (AQI)
remains high, and air pollutant emissions from surrounding regions are the major source of
local atmospheric contamination [23]. Scholars have proposed a policy of “joint prevention
and control of regional air pollution” [24,25], suggesting that understanding the principles
of air pollutant spreading and migration is an effective way of solving regional ambient
air pollution problems. The climatic/meteorological condition is an important factor in
understanding the spread and migration of ambient air pollutants.

Recently, with the accumulation of basic research data and the continuous progress
of technology, the research on the relationship between EAQ and climatic/meteorological
conditions in China has achieved fruitful results. Studies based on continuous on-site
monitoring data have explored the characteristics of regional EAQ and the response
to different climatic/meteorological conditions in China [26–28]. However, due to the
limitations of the data collection system, the published studies on EAQ variations have
focused on Chinese modern economic and cultural development centers [29], such as
Beijing [19,30], Shanghai [31], and Guangzhou [32], and on short time-scales of a few
days or weeks. Relatively few studies have been conducted on the relationship between
large-scale climate circulation and EAQ in the longer term. With the rise of remote sensing
technology, the use of remote sensing data to estimate long-term EAQ across a large area
has attracted growing efforts [9,33,34]. However, satellite data are of limited utility at
present. Some data limitations, such as inaccurate retrieval algorithms, the interference
of cloud and snow, the discontinuity of observation data, and the inversion accuracy
of aerosol optical thickness, can influence measurements and result in inaccuracies [35].
Therefore, to investigate the association between long-term climate conditions and EAQ in
China, large-scale and long-term monitoring datasets have an important role to play.

Environmental monitoring is the fundamental means of understanding, grasping,
evaluating, and predicting EAQ. Continuous monitoring data of EAQ could scientifically
evaluate EAQ status, and provide a reference for the development of atmospheric environ-
mental protection measures. In recent years, with the rapid development of China’s social
economy, the Chinese government has established a national EAQ monitoring network. In
February 2012, the Ministry of Environmental Protection (MEP) of China approved a new
National Ambient Air Quality Standard (BG3095-12) to monitor real-time ground-level air
pollutants. From January 2013 onward, environmental monitoring stations in more than
100 Chinese cities began to release environmental monitoring data, including the concentra-
tions of six major air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen
dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone
(O3), making it possible to study the large-scale characteristics of EAQ and its relationship
with the background climate in China. For the first time, Wang et al. [36] examined the
spatial and temporal variations of major air pollutants derived from 286 monitoring sta-
tions in 31 cities in China, from March 2013 to February 2014, and found that PM2.5 was
the primary pollutant that affected EAQ in 2013. Based on monitoring data in 31 provincial
capital cities in China between April 2014 and March 2015, Zhao et al. [37] found that the
concentration of particulate matters (PM10 and PM2.5) was significantly higher in winter
than in summer, whereas O3 had the opposite distribution. The concentrations of SO2 and
CO in the cities of northern China were significantly higher than those of southern China in
2014. Moreover, urban air pollution had a significant spatial aggregation or clustering, that
is, there was a close relationship between urban air pollution and that of the neighboring
cities [38]. Previous research found that relative humidity was negatively associated with
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the EAQ in the northern plains of China in the autumn and winter of 2013 [39]. Compared
with 2014, the climatic/meteorological conditions in 2015 were adverse for the spreading
of air pollutants in some regions in China [40]. Furthermore, the frequency and duration
of severe haze weather events in northern China were also related to specific climatic
conditions in winter [41]. The rapid decline in the extent of Arctic sea-ice, which is caused
by global warming, and reduced precipitation and surface winds could have intensified
the haze pollution in eastern China [42], which can explain the 45%–67% of interannual to
decadal haze pollution variabilities after 2000 [43]. Hence, climatic conditions may play a
non-negligible role in influencing the EAQ on a large scale.

The above studies explored the spatial distribution of EAQ in major Chinese cities
in recent years and its relationship with climatic/meteorological conditions, providing
important theoretical references and practical recommendations for this study. However,
due to the monitoring data of EAQ being sparse in time and space, the major spatial and
temporal distribution of EAQ in China and its response to climatic conditions remain
less understood. Therefore, the aim of this study was to understand the major spatial
and temporal variations of AQI, using 4-year (January 2015–December 2018) EAQ data
released by the MEP for nearly 1300 monitoring stations in Eastern China (EC), and their
associations with climatic conditions, hoping to provide a scientific reference for Chinese
EAQ governance.

2. Data and Methods
2.1. Data Sources

The hourly air pollution data of SO2, NO2, PM10, PM2.5, CO, and O3 for 1615 en-
vironmental monitoring stations between January 2015 and December 2018 were ana-
lyzed to assess EAQ in China. Real-time hourly concentrations of air pollution data
were downloaded from the National Environmental Monitoring Center (http://113.10
8.142.147:20,035/emcpublish/, accessed on 1 February 2021). At each station, auto-
mated monitoring systems were installed and used to measure the concentration of SO2,
NO2, CO, and O3 according to China Environmental Protection Standards HJ 193-2013
(http://www.es.org.cn/download/2013/7-2/2627-1.pdf, accessed on 5 February 2021), and
of particulate matter according to China Environmental Protection Standards HJ 655-2013
(http://www.es.org.cn/download/2013/7-12/2626-1.pdf, accessed on 5 February 2021).

We acquired the climate data from the ERA-interim (ERAI, https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era-interim, accessed on 1 May 2019) re-
analysis data of the European Center for Medium-Range Weather Forecast (ECMWF),
which is available monthly. The ERAI reanalysis has improved significantly the global
atmospheric records of mass, moisture, energy, and angular momentum compared with
ERA-40 [44]. Compared with other reanalysis data, ERAI reanalysis products are closer to
the real observation data of China, in climatic elements such as temperature, atmospheric
circulations, and cloud water distribution [45–47]. These efforts ensure the trustworthiness
of the conclusions made in this study. Given the main objectives of this study, the spatial
resolution of climatic elements derived from the ERAI was 0.5◦ × 0.5◦, and the period was
from January 2015 to December 2018, the same as the air pollution data (more information
in Table 1).

Table 1. Information on ERA-interim reanalysis used in this study.

Climatic Elements Spatial Resolution Vertical Layer Units

2 m temperature 0.5◦ × 0.5◦ 1 K
Geopotential height field 0.5◦ × 0.5◦ 37 m2/s2

Precipitation 0.5◦ × 0.5◦ 1 m
Atmospheric vertical motion 0.5◦ × 0.5◦ 37 Pa/s

10 m wind field 0.5◦ × 0.5◦ 1 m/s
Wind field 0.5◦ × 0.5◦ 37 m/s

http://113.108.142.147:20,035/emcpublish/
http://113.108.142.147:20,035/emcpublish/
http://www.es.org.cn/download/2013/7-2/2627-1.pdf
http://www.es.org.cn/download/2013/7-12/2626-1.pdf
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
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2.2. Methods

According with the aims of the study, the original air pollution monitoring data
derived from the stations was screened and processed. First, we computed daily averages
by averaging hourly CO, SO2, NO2, PM2.5, and PM10, and maximum average 8 h O3
values in a day. Missing values in the data were replaced by linear interpolation. For a
certain type of monitoring data, if the number was less than eight points in a day, it was
considered as the missing value for that day. Second, we calculated the total missing days
for the six types of air pollutant during 2015 to 2018. For each monitoring station, if the
number of missing days for a type of air pollutant was less than 5% of the year, it would
be classified as an “effective monitoring station”. Otherwise, the station was classified
as an “invalid monitoring station”. The locations of the effective (red dot) and invalid
(blue dot) monitoring stations during 2015 to 2018 are shown in Figure 1. The number of
effective monitoring stations for each air pollutant for every year was greater than 1300
(the total number of monitoring stations is 1615), accounting for more than 80% (Table 2),
and covering 369 Chinese cites by statistical calculations. To ensure the reliability of the
study results, air pollutant data derived from invalid monitoring stations each year were
removed in this study.
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Figure 1. Locations of effective monitoring stations of CO, NO2, SO2, 8 h O3, PM10, and PM2.5 in
China during 2015–2018 (except Hong Kong, Taiwan, and Macao). The blue dots indicate locations of
invalid monitoring stations (number of missing days/total number of days in the year ≥5%); the
red dots indicate locations of effective monitoring stations (number of missing days/total number of
days in the year <5%).

Table 2. Statistics of effective monitoring stations and the ratio of the total monitoring stations for
CO, NO2, SO2, 8 h O3, PM10 and PM2.5, respectively.

Year SO2 NO2 CO O3 PM10 PM2.5

2015 1392 (86.9%) 1386 (86.5%) 1387 (86.6%) 1387 (86.6%) 1368 (85.4%) 1387 (86.6%)
2016 1367 (85.3%) 1365 (85.2%) 1367 (85.3%) 1381 (85.6%) 1359 (85.8%) 1363 (85.1%)
2017 1310 (81.8%) 1310 (81.8%) 1308 (81.6%) 1310 (81.8%) 1302 (81.3%) 1308 (81.6%)
2018 1343 (83.8%) 1343 (83.8%) 1342 (83.8%) 1344 (83.9%) 1314 (82.0%) 1340 (83.6%)

Due to the most effective monitoring stations being located in EC (Figure 1), this study
mainly focused on characteristics of EAQ in EC (105–135◦ E, 20–55◦ N). To better explore
the major spatial and temporal characteristics of monthly AQI, as well as its relationship
with climate conditions in EC during 2015–2018, the data were processed as follows: (1) In-
terpolation of air pollutants data (daily mean derived from the effective monitoring stations
during 2015–2018) to a regular 0.5◦ × 0.5◦ grid using the cubic spline method, which was
the same as the spatial resolution of the climate data covering the EC; (2) calculation of
daily average AQI using interpolated air pollutant data for each grid point of EC, referring
to Chinese ambient air quality standards (GB3095-2012, https://www.mee.gov.cn/ywgz/
fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf, accessed on 5
February 2021) issued by CMEP. The calculation formula of AQI is:

AQI = max
(
IAQISO2

, IAQINO2
, IAQICO, IAQIPM2.5

, IAQIPM10
, IAQIO3

)

https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
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IAQIp =
IAQIHi − IAQILo

BPHi − BPLo
(CP − BPLo) + IAQILo

where p represents the pollutant p (SO2, NO2, CO, PM2.5, PM10, and O3); IAQIp represents
the individual AQI (IAQI); CP is the measured concentration of p; BPHi represents the
high threshold of CP interval; BPLO is the low threshold of CP interval; IAQIHi is the
IAQI values of BPHi; and IAQILo is the IAQI values of BPLO. The maximum IAQIp of all
pollutants is chosen as the overall AQI. According to the stage of development of China’s
socio-economic conditions, the IAQI threshold interval was set as the medium-term target
recommended by the WHO (Table 3). (3) The monthly AQI was simply calculated by
averaging the non-missing daily AQI for the month.

Table 3. Individual air quality index (IAQI) and corresponding concentration limit of pollution items
(HJ633-2012).

IAQI SO2
(µg/m3)

NO2
(µg/m3)

CO
(mg/m3)

PM10
(µg/m3)

PM2.5
(µg/m3)

O3
(µg/m3)

0 0 0 0 0 0 0
50 50 40 2 50 35 100
100 150 80 4 150 75 160
150 475 180 14 250 115 215
200 800 280 24 350 150 265
300 1600 565 36 420 250 800
400 2100 750 48 500 350 1000
500 2620 940 60 600 500 1200

To obtain the major spatial and temporal characteristics of AQI distribution in EC
during 2015–2018, one technique used for such studies is to decompose the spatial AQI
of EC into patterns called empirical orthogonal functions (EOF), and these patterns are
ranked according to how much of the total variance they explain. Each EOF is multiplied
by a time-dependent coefficient, which is called the principal component (PC) of that EOF.
Often a few of these EOFs with their PCs explain most of the variability, and in some cases
a particular PC has a temporal fingerprint that matches the climatic signal. EOF has been
widely used in meteorology to analyze various meteorological elements. Its fundamental
function is decomposing the variable matrix Xi×j, which consists of the AQI of j times (time
scale of samples) at i spatial points, into the linear combination of a spatial eigenvectors
matrix V and their associated time coefficients matrix T:

Xi×j =

 V11 · · · V1i
...

. . .
...

Vi1 · · · Vii


 T11 · · · T1j

...
. . .

...
Ti1 · · · Tij


For nth AQI value xmn at mth point, EOF expansion is to decompose xmn into the sum

of products of spatial functions and temporal functions:

xmn =
i

∑
k = 1

VmkTkn = Vm1T1n + Vm2T2n + · · ·+ VmiTin

The eigenvector characterizes the spatial pattern of a reginal AQI field. The asso-
ciated time coefficients delineate the temporal variation character of the spatial pattern
characterized by the eigenvector. A positive associated time coefficient indicates that the
pattern is the major trend of a variable at that moment; conversely, a negative associated
time coefficient indicates that the variable displays an opposite trend of the pattern; and
the larger the absolute value of the associated time coefficient, the more significant the
associated spatial pattern. For more information about EOF method, we refer to the study
by North et al. [48].
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If not specified otherwise, here, spring means March–April–May, summer means
June–July–August, autumn means September–October–November, and winter means
December–January–February.

3. Spatial and Temporal Characteristics of AQI

The spatial patterns of the seasonal average AQI in EC in 2015 are shown in Figure 2a.
Generally, the EAQ was significantly better than other seasons in summer, and worst in
winter in EC in 2015. The regional average concentrations of the six air pollutants all
reached their lowest in summer and the highest in winter (with the exception of O3). The
Asian monsoon system, which brings more precipitation to EC in summer, offers increased
air purification capacity. Therefore, the AQI was relatively low in summer (Figure 2a).
Starting in the autumn, using coal for heating begins in northern EC, and the local EAQ
was gradually poor. Furthermore, the climate in EC is mainly controlled by the East Asian
winter monsoon in winter, which results in a strong vertical temperature inversion layer,
making air pollutants difficult to spread. Therefore, the AQI was relatively high in winter.
The above results are consistent with previous research [49]. Moreover, as the largest
fraction of energy consumption is in the Beijing–Tianjin–Hebei region [50,51], the highest
AQI of each season was mainly distributed in the North China Plain. In contrast, because of
being large and sparsely populated, and its animal husbandry production mode, the AQI
was relatively low in the central and eastern Inner Mongolia border regions (Figure 2a).
The distributions of AQI were relatively low in southeast coastal regions as well, which
have abundant rainfall and high air humidity all year round. There was a strong anti-
correlation between air humidity and AQI values [29]. Compared with 2015, the AQI
in spring and summer did not change significantly in 2016 (Figure 2b). In autumn, the
AQI distributed in Hebei, Shanxi, and Shaanxi increased significantly, while it decreased
in Northeast China. In winter, the distributions of AQI showed a significant increase in
Hebei, Shanxi, and parts of southern EC. In 2017, the distributions of AQI increased in
the summer in Shanxi and Northern EC relative to 2015 (Figure 2c). In winter, the AQI
distribution in Hebei decreased significantly, while it increased significantly in southern
EC. In 2018, air pollution generally increased in northern EC from the spring with reference
to 2015 (Figure 2d), especially in the central and northern regions of Inner Mongolia. The
distributions of AQI also increased significantly in Hebei, Shanxi, and central-northern
Inner Mongolia in summer. In autumn, air quality improved significantly in the northeast
and the North China Plain, which was the most polluted area in 2015. In winter, the EAQ
in EC improved overall, and the distributions of AQI increased only in the central part of
Shanxi Province.

Int. J. Environ. Res. Public Health 2021, 18, x 7 of 17 
 

 

larger the absolute value of the associated time coefficient, the more significant the asso-
ciated spatial pattern. For more information about EOF method, we refer to the study by 
North et al. [48]. 

If not specified otherwise, here, spring means March–April–May, summer means 
June–July–August, autumn means September–October–November, and winter means De-
cember–January–February. 

3. Spatial and Temporal Characteristics of AQI 
The spatial patterns of the seasonal average AQI in EC in 2015 are shown in Figure 2a. 

Generally, the EAQ was significantly better than other seasons in summer, and worst in 
winter in EC in 2015. The regional average concentrations of the six air pollutants all 
reached their lowest in summer and the highest in winter (with the exception of O3). The 
Asian monsoon system, which brings more precipitation to EC in summer, offers in-
creased air purification capacity. Therefore, the AQI was relatively low in summer (Figure 
2a). Starting in the autumn, using coal for heating begins in northern EC, and the local 
EAQ was gradually poor. Furthermore, the climate in EC is mainly controlled by the East 
Asian winter monsoon in winter, which results in a strong vertical temperature inversion 
layer, making air pollutants difficult to spread. Therefore, the AQI was relatively high in 
winter. The above results are consistent with previous research [49]. Moreover, as the larg-
est fraction of energy consumption is in the Beijing–Tianjin–Hebei region [50,51], the high-
est AQI of each season was mainly distributed in the North China Plain. In contrast, be-
cause of being large and sparsely populated, and its animal husbandry production mode, 
the AQI was relatively low in the central and eastern Inner Mongolia border regions (Fig-
ure 2a). The distributions of AQI were relatively low in southeast coastal regions as well, 
which have abundant rainfall and high air humidity all year round. There was a strong 
anti-correlation between air humidity and AQI values [29]. Compared with 2015, the AQI 
in spring and summer did not change significantly in 2016 (Figure 2b). In autumn, the 
AQI distributed in Hebei, Shanxi, and Shaanxi increased significantly, while it decreased 
in Northeast China. In winter, the distributions of AQI showed a significant increase in 
Hebei, Shanxi, and parts of southern EC. In 2017, the distributions of AQI increased in the 
summer in Shanxi and Northern EC relative to 2015 (Figure 2c). In winter, the AQI distri-
bution in Hebei decreased significantly, while it increased significantly in southern EC. In 
2018, air pollution generally increased in northern EC from the spring with reference to 
2015 (Figure 2d), especially in the central and northern regions of Inner Mongolia. The 
distributions of AQI also increased significantly in Hebei, Shanxi, and central-northern 
Inner Mongolia in summer. In autumn, air quality improved significantly in the northeast 
and the North China Plain, which was the most polluted area in 2015. In winter, the EAQ 
in EC improved overall, and the distributions of AQI increased only in the central part of 
Shanxi Province. 

 

Figure 2. Spatial distributions of seasonal mean AQI in 2015 (a), and the differences of corresponding seasons with the
years 2016 (b), 2017 (c), and 2018 (d), respectively. MAM indicates spring, JJA indicates summer, SON indicates autumn,
DJF indicates winter.



Int. J. Environ. Res. Public Health 2021, 18, 4524 8 of 17

In recent years, with the strengthening of air pollution governance efforts, the air
quality in most areas of EC has been improving [52,53]. The concentration of SO2, CO and
NO2, decreased year by year over the period of 2015–2018 (figures not shown), especially
the SO2 concentration decreased significantly in EC. This indicates that the strict control of
SO2 industrial emissions has been effective [49]. Although the concentration of particulate
matter (PM2.5 and PM10) in EC has decreased slightly since 2015, it was still the primary
pollutant in spring, autumn, and winter during 2015–2018 (high number of days in these
seasons). Compared with 2015, the concentration of PM2.5 significantly increased in Hebei
and Shanxi in the winter of 2016, and then decreased year-on-year in 2017 and 2018. The
PM10 concentration in each season has been effectively controlled in heavy industrial
regions, such as Beijing–Tianjin–Hebei, since 2016, but there was an increase in Inner
Mongolia, Shanxi, and the southern regions in spring, autumn, and winter compared to
2015. However, O3 concentration was significantly increasing year by year in most areas
of EC during 2015–2018, and has become the most important conventional air pollutant,
which has aroused concern among scholars [17]. Especially in spring and in summer, due to
the number of polluted days seriously exceeding the standard, O3 has become the primary
ambient air pollutant in EC (figures not shown). To sum up, the spatial characteristics of
AQI and air pollutants in EC had different manifestations in each year from 2015 to 2018.
The concentrations of SO2, CO, and NO2 showed overall decreases in most areas of EC,
and particulate matters (PM2.5 and PM10) and O3 are still the main air pollutants in EC.

4. The Major Modes of the AQI Distribution

It can be seen from the previous section, that the seasonal mean states of AQI show
some differences year by year. Would this change in the mean state affect the monthly
variations? To address this question, EOF analysis was applied to the monthly AQI in EC
over the period of 2015–2018. The first two EOF modes were statistically distinguished
from the rest of the EOF modes based on the significant test proposed by North et al. [54].

Figure 3 shows the spatial pattern of the leading EOF (EOF1) of the AQI in EC
(Figure 3a) and the corresponding PC time series (PC1) for 2015–2018 (Figure 3c). The
fractional variance explained by the EOF1 was 52.9%, accounting for more than half of
the total variance, which represents a robust mode of spatial and temporal variabilities
of the AQI in EC. The spatial pattern of EOF1 was characterized by a uniform structure
throughout EC (Figure 3a), which exhibited a relatively large variation in the northern
plains of China. The PC1 shown in Figure 3c indicates an obvious annual cycle variation
from 2015 to 2018, which means that EAQ was better in summer and worse in winter
in EC, consistent with the previous research results [55,56]. Therefore, the EOF1 of the
AQI distribution in EC suggests an anti-correlation between winter and summer, which
refers to this case as the “winter–summer” mode. Furthermore, the spatial pattern of the
mean AQI in the summer half-year (May-September) minus that in the winter half-year
(November-next March) was consistent with the spatial pattern of EOF1 during 2015–2018
(spatial correlation coefficient (CC) was 0.94, p < 0.01). Likewise, the same procedure of EOF
analysis was applied to the six conventional air pollutants (figures not shown). The EOF1
of each air pollutant was similar to the EOF1 of AQI over EC (except for the leading mode
of O3, which had a significant anti-correlation with the EOF1 of AQI). This means that the
“winter–summer” mode is a common feature of the variations in each air pollutant in EC.
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The spatial structure of the second mode of AQI (EOF2) in EC is a north–south dipole
pattern, characterized by the EAQ “north good (poor) and south poor (good)” (Figure 4a).
The explained variance of EOF2 was 14.4%. The corresponding PC time series of EOF2
(PC2) was not significantly characterized by cycles and trends (Figure 4c). However, since
the spring of 2017, the amplitude of PC2 intensity has significantly increased. By calculating
the regional average IAQI in northern and southern EC (with 35◦ N as the boundary),
respectively, the IAQIs of the six air pollutants all showed significant anti-correlations
between northern and southern EC (CCs < −0.99, p < 0.01). Relative to EC-average IAQIs
of CO, PM10, SO2, and NO2, the IAQIs in each month showed negative values over the
southern EC and positive values over the northern EC (Figure 5). This indicates that these
air pollutants over northern EC are always greater than those over southern EC. However,
the IAQI of PM2.5 and O3 averaged over southern and northern EC in each month showed
alternating positive and negative changes relative to these averages over EC (Figure 5).
Therefore, the EOF2 of AQI was probably caused by the combined effect of PM2.5 and O3.
By comparing the difference between the PC2 and the IAQIs (the average values over the
northern EC minus the average values over the southern EC) of O3 and PM2.5, respectively
(Figure 6), the changes of O3 during 2015–2018 follow that of the PC2 closely (CC = −0.58,
p < 0.01). By combining the changes of PM2.5, the CC with PC2 was significantly increased
(CC = −0.83, p < 0.01). Furthermore, the mean and standard deviation of O3 concentration
over EC has shown an increased intensity since 2017, especially in summer. This indicates
that O3 has become more serious and widespread in EC during 2015–2018, which is also
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in line with the characteristics of the increased amplitude of PC2 since the spring of 2017.
The EOF2 of the combined mean IAQIs of PM2.5 and O3 (Figure 4b) exhibited an obvious
north–south dipole pattern (CC = −0.90, p < 0.01), and the explained variance was 20.40%,
which is slightly lower than its EOF1 explained variance (31.4%, figure not shown).
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Figure 4. Comparisons of the spatial structures of the second EOF mode (EOF2) of (a) AQI and
(b) ensemble mean of IAQIs of PM2.5 and O3, and their corresponding principal components (PC2,
(c)). The red line indicates the PC2 for AQI, while the green line represents the PC2 for IAQI of the
ensemble mean of PM2.5 and O3. The fraction on the top left of panel (a,b) denotes the fractional
explained variances. The spatial correlation coefficients between (a,b) are shown at the top right
corner of panel (b). The correlation coefficient between the two PC2s is drawn on the top right of
panel (c).
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Figure 6. Normalized time series of AQI PC2 (green line), average differences of O3 IAQI (cyan line), ensemble mean of
PM2.5 and O3 IAQI (blue line), and maximum of the PM2.5 and O3 IAQI (red line) between the south and north of Eastern
China from 2015 to 2018.

In summary, the combined effect of O3 and PM2.5 is the reason for the AQI north–south
dipole pattern during 2015–2018. In recent years, although the governance of PM10 has had
remarkable achievements, O3 and PM2.5 have gradually become important air pollutants
that affect EAQ in EC. The PM2.5 and O3 of atmospheric composite pollution, and the
north–south dipole pattern of AQI may become more and more serious in EC in the future.
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5. The Relationship between Climatic Conditions and the Major Modes of AQI

To understand the relationship between climatic conditions and the major modes of
AQI in EC, the climatic element fields were regressed onto the PCs of AQI during 2015–2018
for discussion. The residual terms of the regression were needed.

The EOF1 of AQI in EC refers to as the “summer–winter” mode (Figure 3a). Previous
studies have shown that autumn and winter were heating seasons in northern China, and
the emission of air pollutants in the north increased significantly in these seasons [49]. This
means that human activities have made important contributions to this mode. However,
the impact of climatic conditions in EC cannot be ignored. Figure 7a shows the PC1 of AQI
in EC associated (regressed) with precipitation from 2015 to 2018. The spatial structure is
characterized by a nearly uniform increase (or decrease) of precipitation across the EC (the
black cross means an interval at a 99% confidence level, which is used hereafter). The inter-
annual cycle of PC1 was more consistent with cycles of temperature and precipitation in EC,
indicating that the monsoonal climate also has some impact on the EAQ. That is, in summer
precipitation increases significantly, which has a strong capability for air purification. The
same pattern is also reflected in vertical convection (Figure 7b). The “summer–winter”
mode of AQI and the strength of convection change conversely, and significantly. This
means that when the AQI decreases (increases) in summer, the atmospheric vertical motion
in latitude increases (decreases). On the contrary, the thermal inversion layer is generally
strengthened (weakened) in winter in EC, and the atmospheric vertical motion is reduced
(enhanced). Furthermore, the AQI change in the mid-latitude region (30–40◦ N) (the North
China Plain, Figure 3a) is more sensitive to the strengthening of vertical convection, which
is in line with the previous studies [20,56]. Atmospheric circulation is also one of the
main climatic factors affecting the AQI. In summer, the climate in southern EC is affected
by warm and humid air currents in the Indian Ocean, and the climate in northern EC
is affected by water vapor transport from the nearby Pacific Ocean (Figure 7c,d). The
enhanced land–sea thermal contrast may bring more water vapor from the Pacific to EC,
especially in coastal areas, and the EAQ is relatively good. Conversely, with the dry and
cold air in northern China passing through the EC in winter, the thermal inversion layer
becomes thicker, and the vertical convection is weak, then the precipitation is reduced, and
results in the EAQ being relatively poor in winter. Similarly, the low-level wind field also
shows the typical characteristics of a sea–land breeze (Figure 7d). In summary, the surface
and the low-level wind fields can bring warm and humid air from nearby oceans into EC,
and the increased water vapor can deposit and absorb air pollutants, which leads to lower
AQI in EC in summer. In winter, northern EC begins the heating season with a significant
increase in pollution, and the East Asian winter monsoon climatic condition causes strong
northerly winds, which bring air pollutants from northern to southern EC. In addition, due
to the continuous consumption of energy in winter in northern EC, the overall AQI values
over the entirety of EC are relatively higher in winter.
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The spatial structure of AQI EOF2 in EC is characterized by a north–south dipole
pattern (Figure 4a). The associations of PC2 and various climatic element fields indicate that
the north–south dipole pattern of AQI is closely related to the intensity of the Mongolia–
Siberian high (Figure 8a). The dipole pattern, i.e., the AQI in the south is high and that in
the north is low, usually occurs in autumn and winter (Figure 4c). It is usually associated
with the gradual increase of the Mongolia–Siberian high (Figure 8a), which causes stronger
cold airflow from north to south, bringing air pollutants from northern EC to southern EC
(Figure 8c,d). Meanwhile, the climate in southern EC is not in the rainy season and the air
purification capacity is relatively weak (Figure 8b). This would induce the pattern that the
regional AQI is increased in southern EC, while being decreased in northern EC. On the
contrary, the dipole pattern, i.e., the AQI in the north is high and that in the south is low,
mostly happens in spring and summer (Figure 4c). In these seasons, the temperature begins
to increase in EC and precipitation generally begins and continues in southern EC. The
land–sea thermal gradient progressively increases between the temperature over the land
in EC and the northern Indian Ocean. The low-level and surface winds are predominantly
south-western (Figure 8c,d). Summer Asian monsoon precipitation lands in southern EC
from May (Figure 8b), and the air purification capacity over southern EC is strengthened.
At this time, the monsoon precipitation in northern EC has not yet arrived (generally
concentrated in July and August) and the Mongolia–Siberian high is gradually weakening
and disappearing. The seasonal northerly wind has decreased. Therefore, the AQI in the
southern EC has decreased and that in the northern EC has increased. Therefore, AQI
EOF2 is manifested as the influence of climate on the migration and purification of air
pollutants. The AQI in southern EC is closely related to precipitation changes in spring
and summer, and the AQI in northern EC is significantly related to the intensity of the
Mongolia–Siberian high in autumn and winter.
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6. Conclusions

EAQ is one of the most concerning environmental issues in China, and understanding
the characteristics of large-scale EAQ is essential for the implementation of the joint pre-
vention and control of regional air pollution. In this study, we used the concentrations of
six major air pollutants derived from about 1300 environmental monitoring stations in EC
(from January 2015 to December 2018) to analyze the monthly average AQI according to
national standards (GB3095-2012). The main seasonal spatial and temporal characteristics
of the EAQ and its relationship with climatic conditions are as follows:

1. Generally, the AQI decreased in each season in EC from 2015 to 2018, but in spring and
summer, the AQI distributions in north-central Inner Mongolia and Shanxi Province
increased from 2015–2018.

2. From 2015 to 2018, the leading AQI mode in EC was characterized by the “summer
and winter” mode, which was uniform across the EC. The AQI in EC generally
increased during the winter half-year, and decreased during the summer half-year. In
addition to human activities, climatic conditions, such as the East Asian monsoon,
may play an important role in changes in EAQ patterns over the EC.

3. From 2015 to 2018, the second EOF mode of AQI in EC shows the characteristics of a
north–south dipole pattern. That is, as the AQI in southern EC increased (decreases),
it decreased (increases) in northern EC. PM2.5 and O3 are the main air pollutants
associated with the AQI dipole pattern. In terms of a mechanism of climate conditions,
the AQI in southern EC is closely related to precipitation changes in spring and
summer, and the AQI in northern EC is significantly related to the intensity of the
Mongolia–Siberian high in autumn and winter.

Air pollution is commonly affected by human activities and climatic factors. Human
activities are the intrinsic factors, and climatic/meteorological conditions are the extrinsic
factors. This was the point of departure for the present study. Based on the analysis
of observational data, this study also shows that seasonal climatic conditions are one of
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the main factors affecting EAQ in EC, especially in the spreading and migration of air
pollutants. However, due to the short period of EAQ monitoring in China, the data are not
extensive enough to perform reasonable analyses for large-scale AQI changes on annual to
decadal timescales. Nonetheless, this study can provide a reference for understanding the
relationship between climatic conditions and EAQ.
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