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Abstract: Reducing drought vulnerability is a basis to achieve sustainable development in agriculture.
The study focuses on agricultural drought vulnerability in China by selecting 12 indicators from two
aspects: drought sensitivity and resilience to drought. In this study, the degree of agricultural drought
vulnerability in China has been evaluated by entropy weight method and weighted comprehensive
scoring method. The influencing factors have also been analyzed by a contribution model. The
results show that: (1) From 1978 to 2018, agricultural drought vulnerability showed a decreasing
trend in China with more less vulnerable to mildly vulnerable cities, and less highly vulnerable
cities. At the same time, there is a trend where highly vulnerable cities have been converted to mildly
vulnerable cities, whereas mildly vulnerable cities have been converted to less vulnerable cities.
(2) This paper analyzes the influencing factors of agricultural drought vulnerability by dividing
China into six geographic regions. It reveals that the contribution rate of resilience index is over
50% in the central, southern, and eastern parts of China, where agricultural drought vulnerability is
relatively low. However, the contribution rate of sensitivity is 75% in the Southwest and Northwest
region, where the agricultural drought vulnerability is relatively high. Among influencing factors,
the multiple-crop index, the proportion of the rural population and the forest coverage rate have
higher contribution rate. This study carries reference significance for understanding the vulnerability
of agricultural drought in China and it provides measures for drought prevention and mitigation.

Keywords: agricultural drought vulnerability; spatial heterogeneity; entropy weight method; contri-
bution model; China

1. Introduction

Drought occurs frequently in China and there has been a long history of these oc-
currences. From 206 BC to 1949, 1056 droughts occurred in China [1]. From 1971 to 2016,
the average annual disaster rates of droughts in Heilongjiang, Jilin, Liaoning, and Inner
Mongolia Autonomous Region were 19.4%, 23.6%, 25.4% and 29.8%, respectively. The
average annual disaster rates of droughts in Anhui, Hebei, Henan, Jiangsu, and Shandong
provinces were 11.5%, 20.4%, 16.2%, 8.9%, and 18.3%, respectively [2]. The Ministry of
Emergency Management of the People’s Republic of China has notified that from July to
November of 2019, droughts had affected a total of 1174 thousand hectares of crops in
Jiangxi and Anhui provinces, resulting in a direct economic loss of 8.8 billion yuan [3].
From January to April of 2020, 2.433 million people had been affected in 81 counties of 16
cities (prefectures) in Yunnan Province. A total of 662 thousand people had requested for
life assistance due to droughts, and 534 thousand hectares of crops were affected, leading
to direct economic loss of 1.41 billion yuan [4].

Drought is considered as a slow-moving natural disaster that causes severe damage
to water resources and to agriculture [5]. The characteristics of drought include, but
are not limited to, high frequency, long duration, and large area being influenced [6].
Agricultural drought is a crucial part of drought and it refers to the situation where
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agricultural production is sensitive and vulnerable to drought stress [7]. Agriculture
utilizes natural resources directly and it is also a national anchoring industry. Agriculture
is less capable of resisting and dealing with disasters. The resistance and handling capacity
of agriculture to disasters is low so the adverse impact on agricultural production is
most severe when drought occurs. In the same way, droughts can be intensified by poor
land management [8]. Therefore, the situation of agriculture and the extent of drought
affect each other. According to the Assessment Report of the AR5 Climate Change 2014:
Impacts, Adaptation, and Vulnerability: Vulnerability encompasses a variety of concepts
and elements including sensitivity or susceptibility to harm and lack of capacity to cope
and adapt [9]. Taking the initiative via human activity is an effective way to alleviate the
loss caused by a drought disaster [5]. So, measuring agricultural drought vulnerability is a
prerequisite for targeting interventions to improve and sustain the agricultural performance
of both irrigated and rain-fed agriculture [10].

Climate change has an increasing impact on production and people’s lives. In recent
years, the topic of vulnerability to agricultural drought has gradually become the focus
and research hotspot of scholars around the world.

Yi (2010) evaluated the agricultural droughts in Dalian, China. Ten evaluation in-
dexes such as irrigation index, population density and proportion of paddy areas were
selected [11]. Yuan (2016) proposed a comprehensive index of regional drought vulner-
ability that includes exposure, sensitivity, and adaptability [12]. The establishment of
evaluation indicators cannot be applied to all since it is highly subjective to regional char-
acteristics. However, different indexing systems provide more research possibilities in the
field of drought vulnerability.

Yan (2012), Pang et al. (2013), Farhangfar et al. (2015), Liu et al. (2015), and others con-
ducted quantitative evaluation on drought vulnerability of maize and wheat and obtained
the severity and spatial changes of crops at different growth stages [13–16]. Kim et al.
(2018) used multivariate statistical analysis method to assess the agricultural vulnerability
to droughts in South Korea and the results showed that the Chungchongnam-Do area
was most vulnerable [17]. Lestari et al. (2018) used Arc GIS spatial overlay analysis to
evaluate the agricultural drought vulnerability of Semarang Port City in India. The results
showed that high vulnerability in six villages, medium vulnerability in seven villages,
and low vulnerability in three villages [18]. Based on super sufficiency DEA, Huang et al.
(2019) evaluated the agricultural drought vulnerability of Hetao Irrigation Area in Inner
Mongolia and the results showed that the drought vulnerability in the eastern part of
Hetao Irrigation Area was much higher than that in the western part [19]. Frischen et al.
(2019) combined the result from spatial analysis of expert consultation and determined
the drought vulnerability of Zimbabwe’s agricultural system. The results showed that
the country’s drought vulnerability and the degree of impact vary greatly. The northern
and southern part of Matabeleland, a province in southwestern part, have higher vulner-
ability level [20]. Das et al. (2019) used Savitzky and Golay filtering methods to study
the agricultural drought situation and vulnerability in India from 1982 to 2015. Results
showed that the vulnerability of drought will continue to decrease over time [21]. On the
basis of selecting the research areas and constructing the evaluation index system, scholars
have adopted different methods to evaluate the agricultural vulnerability to droughts.
For example: Data envelopment analysis [22,23], analytic hierarchy process [24–28], prin-
cipal component analysis [29,30], entropy weight method [31–33], etc. STATA [34,35],
ArcGIS [36–38] and other software have also been used to construct an evaluation model
for quantitative analysis.

Rojas et al. (2011) and Zhang et al. (2016) used remote sensing technology to monitor
and predict agricultural drought [39,40]. Guo et al. (2016) proposed a new method (vulner-
ability surfaces) for assessing vulnerability quantitatively and continuously by including
the environmental variable as an additional perspective on exposure and assessed global
drought risk of maize based on these surfaces [41]. Chen et al. (2017) and Zeng et al.
(2019) conducted drought risk assessment on Yunnan Province and Gansu Province re-
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spectively [42,43]. All the above studies have provided scientific methods for drought risk
assessment and they have since enriched the assessment system for agricultural drought
vulnerability.

Basing on a wide range of research areas and research methods, there exists the
differences in the natural geographical environment, economic and social conditions,
which has led to different influencing factors and various degrees of agricultural drought
vulnerability. For example: Zarafshani et al. (2012) argued that the vulnerability of
wheat farmers in the western part of Iran is mainly affected by economical, socio-cultural,
psychological, technological, and infrastructural factors [44]. Wu et al. (2017) believed that
the water shortage rate and irrigation level in the growing season were the main factors
affecting the vulnerability level of regional agricultural drought [45]. Kamali et al. (2019)
believed that the fertilization level is an important factor affecting the vulnerability of crop
to drought in sub-Saharan Africa. Generally, countries with a higher food production index
and better infrastructure perform better in terms of withstanding drought [46].

To sum up, there are two methods namely qualitative research and quantitative research
on agricultural drought vulnerability. Existing research on agricultural drought vulnerability
in China mainly focused on certain regions for quantitative research [7,14,32,37,45,47–51].
There were only a few studies on the overall assessment of agricultural drought vulnerabil-
ity and among those the research objects, conclusions and countermeasures are limited.

Therefore, this paper focuses on the agricultural drought vulnerability in China.
Based on literature review and relative theories, the paper first constructs the vulnerability
evaluation index system of agricultural drought. Then the paper uses entropy weight
method, weighted comprehensive scoring method as well as k-means clustering algorithm
to evaluate and categorize the vulnerability of agricultural drought in China. Finally, using
the contribution model to analyze the influencing factors and the degrees of agricultural
drought vulnerability in China, this paper proposes countermeasures to reduce agricultural
drought vulnerability in China. In one aspect, the paper carries theoretical value for
enriching vulnerability research. It is also conducive to a better understanding of drought
conditions and influencing factors in various regions of China. In another aspect, the
empirical analysis provides the basis for the government to formulate corresponding
policies, to reduce losses caused by disasters, and to promote the sustainable development
of agriculture in China.

2. Materials and Methods
2.1. Research Area Overview

The People’s Republic of China is located in East Asia and to the west coast of the
Pacific Ocean. Liberated on 1 October 1949, China’s capital city is Beijing and the provincial
administrative divisions are divided into twenty-three provinces, five autonomous regions,
four municipalities, and two special administrative regions. China’s land area is about
9.6 million square kilometers. China is the world’s second largest economy, the world’s
largest industrial country, and the world’s largest agricultural country. At the end of 2019,
the total population of mainland China was more than 1.4 billion.

The terrain is high in the West and low in the East. Mountains, plateaus, and hills
account for estimated 67% of the land area, basins, and plains account for around 33% of
the total land area. The climate condition is complex and diverse.

Looking at the situation and distribution of China’s agricultural natural resources
as a whole, the light and heat conditions are superior. However, there is a great regional
differences of dry and wet conditions. The total amount of river runoff is large; however,
the coordination and distribution of soil and water is not even. The absolute amount of
land resources is large; however, the land occupied per capita is small. Agriculture still
serves as the basic industry of China’s national economy.
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2.2. Establishment of Indicator System and Data Sources

The establishment of evaluation index system is the prerequisite for evaluating agri-
cultural drought vulnerability. Vulnerability is the root cause of drought disasters, which
results from the interaction of natural environment and social economy system as well
as the interactions of sensitivity and resilience in a certain space. Therefore, following
the principles of science, comprehensiveness, pertinence, quantification, and availability
of data [47], we select two first-level indicators, namely, sensitivity and resilience and 12
second-level indicators to conduct an evaluation on 31 provincial administrative units
(except for Hong Kong, Macao, and Taiwan) in China to establish an indicator system
(as shown in Table 1). The larger the indicator, the larger the vulnerability of agricultural
drought. Hence, it is a positive indicator. On the contrary, it would be a negative indicator.

Sensitivity is the sum of all kinds of natural and social factors that would cause or
aggravate drought and its impact on agricultural drought vulnerability is negative. That
means the higher the sensitivity, the greater the vulnerability of agricultural drought. It
includes agriculture in GDP proportion, multiple-crop index, rural population proportion,
annual average temperature, annual sunshine duration, and annual precipitation.

Higher proportion of agriculture in GDP means that farmers rely heavily on agricul-
tural income which is highly dependent on natural conditions. So the vulnerability of
agricultural drought will increase. The higher the multiple-crop index, the more water
the crop would need to grow. As a result, drought vulnerability will increase. The most
severely impacted population at the time of drought is the agricultural population. There-
fore, when the proportion of rural population increases, the degree of vulnerability will
also increase. Moreover, higher the temperature and longer sunshine hours will lead to
the increase of evaporation, and hence the agricultural drought vulnerability will increase
together. Precipitation is the main factor affecting the growth of crops. The precipitation
index can reflect the meteorological conditions of crops in this region and the impact of
precipitation on vulnerability is negative.

Resilience refers to the ability of human society to prepare for, to respond to, and to
recover from, disasters. It has a positive impact on agricultural drought vulnerability. That
means the stronger the resilience, the lower the drought vulnerability. It includes forest
coverage rate, net income per capita of rural residents, food production per capita, real
GDP per capita, effective irrigation rate, and agricultural fertilizer per unit area.

The forest coverage rate reflects a country’s (or region) actual level of forest resources
and forestry possession. Net income per capita of rural residents reflects the group of peo-
ple’s economical ability to withstand and to resist drought. The higher the net income per
capita of rural residents, the weaker the threats of agricultural drought. Food production
per capita reflects the level of agricultural productivity. Real GDP per capita reflects the
level of social and economic development. When the index is bigger, it means that the
social and economic development level and the ability to withstand disasters is high. The
effective irrigation rate reflects the degree of water conservancy and irrigation capacity.
The increase of the amount of agricultural fertilizer per unit area is beneficial to enhance
soil fertility, to improve soil structure and to increase the efficiency of land usage. The
above indicators constitute the resilience of the agricultural system.

The agriculture in GDP proportion, the rural population proportion, the net income
per capita of rural residents, the food production per capita, and the real GDP per capita
affect the agricultural drought vulnerability from the economic and social perspectives. The
multiple-crop index, the effective irrigation rate and the agricultural fertilizer per unit area
affect the vulnerability of agricultural drought from the perspective of agricultural tech-
nology. The forest coverage rate, annual average temperature, annual sunshine duration,
and precipitation affect the vulnerability of agriculture to drought from the perspective of
natural conditions.

The indicator data in this paper comes from the website of the National Bureau of
Statistics [52] and the China Meteorological Administration [53]. The annual precipitation,
annual sunshine duration and annual average temperature are obtained from annual obser-
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vations from 613 weather stations nationwide from China Meteorological Administration
data network. In addition to the forest coverage rate, net income per capita of rural resi-
dents and real GDP (Gross Domestic Product) per capita can be directly obtained, other
indicators need to be calculated. The descriptive statistical results of the complete sample
are shown in Table 2.

Table 1. Index system and source of China’s agricultural drought vulnerability assessment.

Indicators and Units Calculation Formula Source

Agriculture in GDP proportion (%) Agricultural output value/GDP [51,54]

Multiple-crop index (%) Cultivated area of crops/Total
cultivated area [49]

Rural population proportion (%) Rural population/Total population [51,54]

Annual average temperature (◦C) Annual average value of each
meteorological station [32]

Annual sunshine duration (h) Annual average value of each
meteorological station [55]

Annual precipitation (mm) Annual average value of each
meteorological station [51,54,56]

The forest coverage rate (%) Available directly [56,57]

Net income per capita of rural
residents (yuan/per) Available directly [22,58,59]

Food production per
capita (kg/per) Food production/Total population [49]

Real GDP per capita (yuan/per) Available directly [32,51,59]

The effective irrigation rate (%) Effective irrigation area/Total
cultivated area [31,56]

Agricultural fertilizer per unit
area (ton/hm2)

Amount of fertilizer used/Total
cultivated area [32]

Table 2. Descriptive statistical results of samples.

Variable Obs Mean Std. Dev. Min Max

Agriculture in GDP proportion 279 20.51542 12.75119 0.3193709 59.28663

Multiple-crop index 279 1.371218 0.5034035 0.5117678 2.589842

Rural population proportion 279 60.47917 20.75162 10.39337 91.76649

Annual average temperature 279 13.00551 5.695829 0.5178571 25.18

Annual sunshine duration 279 2136.61 481.6672 703.8 3075.392

Annual precipitation 279 917.2576 495.0083 80.34242 2523

The forest coverage rate 279 23.74077 16.91269 0.3 66.8

Net income per capita of
rural residents 279 4124.196 5357.99 100.93 30374.73

Food production per capita 279 377.0782 225.9848 15.84958 1989.61

Real GDP per capita 279 18,178.2 25,786.47 175 140,000

The effective irrigation rate 279 0.5104425 0.229718 0.0719334 1

Agricultural fertilizer per unit area 279 0.0388566 0.0252265 0.002069 0.1870795
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2.3. Data Processing

From Table 1, each indicator has different dimensions; hence, direct comparison is
not possible. Therefore, it is necessary to carry out the dimensionless standardization of
each indicator. The positive and negative indicators have different influence directions on
agricultural drought vulnerability so the treatment methods should be different.

Suppose there are k provinces, n years and m evaluation indicators; then Xθij repre-
sents the j indicator value of province i in year θ. The normalized value after treatment is
expressed as Sθij (0 < Sθij < 1). Xmin is the minimum value of the j indicator and Xmax is the
maximum value of the j indicator.

Positive indicator:

Sθij =
Xθij − Xmin

Xmax − Xmin
(1)

Negative indicator:

Sθij =
Xmax − Xθij

Xmax − Xmin
(2)

2.4. Improved Entropy Weight Method

There are two methods to determine the weight: subjective weight method and
objective weight method. This paper chooses the entropy weighting method (one of the
objective weighting methods) for indicator weighting, which overcomes the subjective
arbitrariness of the subjective weighting method and makes the weighting more scientific.
The improved entropy weighting method has the following methods and steps [60,61]:

Build the matrix Yθij:

Yθij =
Sθij

∑θ ∑i Sθij
(3)

Calculate indicator information entropy ej:

ej = −
1

ln kn∑
θ

∑
i

Yij ln(Yθij) (4)

Find indicator difference coefficient (redundancy) gj:

gj = 1− ej (5)

The weight of each indicator wj:

Wj =
gj

∑j gj
(6)

2.5. Vulnerability Assessment Model

This paper chooses the weighted comprehensive scoring method and uses Vθi to
represent the degree of vulnerability. The improved vulnerability assessment model of
agricultural drought in China is as follows:

Vθi = ∑
j
(Wj × Sθij) (7)

2.6. K-Means Clustering Algorithm

According to the above steps, to calculate the degree of vulnerability of the target year
of China’s agricultural drought in various regions and put them in ascending order. After
that, to use k-means clustering algorithm in Stata to grade the vulnerability of China’s
agricultural drought disaster [48,62].
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Algorithms usually use Euclidean distance to calculate the distance between samples.
The calculation formula is as follows:

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (8)

Suppose the class center of the k category is centerk, then the formula of centerk is
updated as follows:

centerk =
1
|ck| ∑

xi∈ck

xi (9)

The clustering algorithm requires continuous iteration to re-classify and update centerk
value. Whenever the maximum number of iterations has been reached or the objective
function is less than the threshold value, the iteration ends. The objective function is as
follows:

J =
k

∑
k=1

∑
xi∈ck

d(xi, centerk) (10)

2.7. Contribution Model

The main contributing factors of agricultural drought vulnerability in China are
analyzed by contribution model. Rj is the weight of the j criterion level indicator; Cij is the
contribution degree of the j indicator factor to the vulnerability of the i evaluation object;
Ur represents the contribution of the first level indicators to vulnerability; Fj is the weight
of single indicator to total target; Iij is the indicator membership degree (that is to say the
proportion of Single factor indicator accounts for in vulnerability results. In the obstacle
degree model, the indicator deviation degree is the difference between the individual index
factor evaluation value and 100%. Therefore, the factor membership in the contribution
degree model is the single indicator factor evaluation value ratio 100%) [32].

Fj = Rj ×Wj (11)

Iij = 1− Sθij (12)

Cij =
Fj × Iij

∑j(Fj × Iij)
(13)

Ur = ∑ Cij (14)

3. Results and Discussion
3.1. Agricultural Drought Vulnerability in China

According to Formulas (1) and (2), after the data is being nondimensionalized and
standardized, we use the calculation steps of the entropy weight method (Formulas (3)–(6))
to calculate the weight of each indicator, which is shown in Table 3.

It can be seen that, for the two first-class indicators, sensitivity index weight is 0.594
and resilience index weight is 0.406. Among them, multiple-crop index, annual aver-
age temperature, the forest coverage rate, the effective irrigation rate, and agriculture
in GDP proportion have higher weight of over 0.1. Since the weight of agricultural in
GDP proportion is 0.099, which is very close to 0.1, we also put significant important over
this index.

According to Formula (7), the agricultural drought vulnerability degree of each region
in 1978, 1983, 1988, 1993, 1998, 2003, 2008, 2013, and 2018 have been calculated and shown
in Table 4.
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Table 3. The weight of each indicator.

First-Level
Indicator Weight Second-Level Indicatorand the

Direction of Influence Weight

A. Sensitivity 0.594

A1. Agriculture in GDP proportion (+) 0.099
A2. Multiple-crop index (+) 0.145

A3. Rural population proportion (+) 0.071
A4. Annual average temperature (+) 0.106

A5. Annual sunshine duration (+) 0.081
A6. Annual precipitation (-) 0.091

B. Resilience 0.406

B1. The forest coverage rate (-) 0.102
B2. Net income per capita of rural

residents (-) 0.049

B3. Food production per capita (-) 0.049
B4. Real GDP per capita (-) 0.045

B5. The effective irrigation rate (-) 0.101
B6. Agricultural fertilizer per unit area (-) 0.061

Table 4. Vulnerability of agricultural drought in different provinces.

Province
Years

Level Sort1978 1983 1988 1993 1998 2003 2008 2013 2018

Shanghai 0.492 0.476 0.491 0.438 0.419 0.378 0.426 0.469 0.303 0.432 1
Beijing 0.505 0.517 0.492 0.513 0.427 0.417 0.399 0.408 0.541 0.469 2

Zhejiang 0.579 0.553 0.407 0.528 0.502 0.443 0.419 0.417 0.375 0.469 3
Guangdong 0.499 0.476 0.501 0.474 0.545 0.500 0.446 0.464 0.345 0.472 4

Fujian 0.549 0.520 0.524 0.521 0.485 0.434 0.467 0.444 0.349 0.477 5
Tianjin 0.514 0.536 0.508 0.522 0.493 0.434 0.460 0.457 0.483 0.490 6

Jilin 0.503 0.491 0.493 0.508 0.515 0.487 0.510 0.492 0.535 0.504 7
Heilongjiang 0.485 0.500 0.493 0.501 0.499 0.479 0.526 0.493 0.562 0.504 8

Liaoning 0.520 0.520 0.534 0.535 0.509 0.494 0.521 0.509 0.582 0.525 9
Jiangsu 0.593 0.612 0.609 0.558 0.526 0.442 0.524 0.530 0.392 0.532 10
Hunan 0.526 0.527 0.554 0.539 0.576 0.508 0.592 0.585 0.398 0.534 11
Jiangxi 0.598 0.571 0.598 0.591 0.547 0.496 0.577 0.538 0.422 0.549 12
Shaanxi 0.590 0.581 0.572 0.570 0.560 0.529 0.586 0.573 0.545 0.567 13
Hubei 0.607 0.587 0.630 0.610 0.585 0.512 0.585 0.574 0.463 0.573 14

Sichuan 0.562 0.581 0.568 0.572 0.650 0.572 0.635 0.616 0.516 0.586 15
Guangxi 0.613 0.636 0.645 0.638 0.587 0.573 0.574 0.581 0.507 0.595 16

Shandong 0.663 0.662 0.667 0.622 0.587 0.528 0.567 0.578 0.495 0.597 17
Inner

Mongolia 0.635 0.638 0.634 0.615 0.613 0.568 0.558 0.548 0.579 0.599 18

Shanxi 0.623 0.628 0.615 0.621 0.607 0.551 0.582 0.580 0.598 0.601 19
Hebei 0.639 0.662 0.640 0.632 0.592 0.556 0.589 0.593 0.543 0.605 20
Anhui 0.699 0.646 0.681 0.630 0.612 0.533 0.603 0.585 0.462 0.606 21

Yunnan 0.608 0.614 0.616 0.631 0.614 0.588 0.607 0.642 0.577 0.611 22
Xinjiang 0.634 0.633 0.612 0.587 0.581 0.599 0.634 0.633 0.601 0.613 23

Chongqing 0.674 0.666 0.675 0.681 0.616 0.618 0.583 0.588 0.484 0.620 24
Qinghai 0.583 0.621 0.614 0.618 0.636 0.598 0.619 0.648 0.649 0.621 25
Henan 0.690 0.681 0.710 0.669 0.653 0.543 0.676 0.622 0.483 0.636 26
Hainan 0.657 0.710 0.683 0.649 0.705 0.606 0.584 0.576 0.586 0.640 27

Tibet 0.615 0.674 0.681 0.678 0.647 0.606 0.597 0.610 0.694 0.645 28
Guizhou 0.634 0.659 0.699 0.659 0.734 0.593 0.619 0.641 0.583 0.647 29
Ningxia 0.656 0.686 0.679 0.669 0.648 0.615 0.644 0.622 0.643 0.651 30
Gansu 0.629 0.660 0.645 0.667 0.687 0.643 0.674 0.681 0.735 0.669 31
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It can be noticed that from 1978 to 2018, the vulnerability of agricultural drought in
China has decreased year by year. Agricultural drought vulnerability in Gansu, Ningxia,
Guizhou, and Tibet is relatively high with an average value of more than 0.648. Agricultural
drought vulnerability in Shanghai, Beijing, and Zhejiang is low with the average value less
than 0.47.

3.1.1. Classification of Agricultural Drought Vulnerability

In order to accurately classify China’s agricultural drought vulnerability, according to
Formulas (8)–(10) by using k-means clustering algorithm in Stata, the China Agricultural
Drought Vulnerability Index (ADVI) is divided into four ranges between 0 to 1 and they
are shown in Table 5.

Table 5. Classification of agricultural drought vulnerability.

Grade Range

Low vulnerability (0, 0.463)
Mild vulnerability (0.463, 0.552)

Middle vulnerability (0.552, 0.628)
High vulnerability (0.628, 1)

3.1.2. Spatial Distribution and Evolution

According to the classification of agricultural drought vulnerability in Table 5, in
order to express the results more clearly, this study uses ArcGIS to display the research
results. The assessment results of agricultural drought vulnerability in China are shown
in Figure 1a–i.

Figure 1. Cont.
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Figure 1. Spatiotemporal evolution of agricultural drought vulnerability in China (a–i).

It can be seen that the vulnerability of agricultural drought in China has changed
significantly over time: from 1978 to 2018, the number of provinces and cities in low and
mild vulnerability state has been increasing.

From 1978 to 2018, the spatial distribution pattern of agricultural drought vulnerability
in China was obvious:

(1) The overall agricultural drought vulnerability in China is 0.569, which is at a moderate
fragile level. This is in line with the characteristics of frequent droughts and serious
losses in China [63–65].

(2) Highly vulnerability level: (0.628 < ADVI < 1) Over time, the number of cities in
highly vulnerable areas has decreased, which mainly included Xizang, Guizhou,
Ningxia, Gansu, etc. Among them, Gansu, Ningxia have higher vulnerability to
drought, which is consistent with the research results of other scholars [59,66]. Firstly,
most of these areas have complex terrain conditions and less precipitation. Drought
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is their main natural feature. Secondly, the region is less developed compared with
other regions and real GDP per capita is low while agriculture in GDP proportion
and rural population proportion is high. It means that farmers are highly dependent
on agricultural and natural conditions. With high sensitivity and weak resilience
when drought occurs, the number of highly vulnerable provinces and cities are
inevitably high.

(3) Middle vulnerability level: (0.552 < ADVI < 0.628) The number of provinces and
cities in this region is stable and it accounts for nearly half of the total number of
provinces and cities in China and most of them are concentrated in Central China. It
included Inner Mongolia, Sichuan, Hebei, Anhui, etc. Most of them are important
grain production bases in China and major agricultural provinces. Agriculture in GDP
proportion, multiple-crop index and rural population proportion are high. It reflects
that the region has a strong dependence on agriculture with high land utilization rate
and heavy water demand.

(4) Low and mild vulnerability level: (0 < ADVI < 0.552) Although there has seen a small
fluctuation in the number of slightly vulnerable provinces and cities, the overall trend
shows a stable and marginal increase. This is consistent with the research results
of some scholars [22,67]. The provinces and cities in this region such as Shanghai,
Zhejiang, Beijing, and Tianjin have a high level of economic development. Their high
real GDP per capita gives them better response ability and post disaster recovery
ability when disasters occur. At the same time, those provinces and cities tend to have
a small agricultural planting area multiple-crop index, agriculture in GDP proportion
and rural population proportion are also low. When we turn to those provinces
and cities in the Northeast China like Heilongjiang, Jilin, and Liaoning, their land
is sparsely populated and the food production per capita is high. They also have
high latitude, low average temperature, and less evaporation. The annual sunshine
duration is long and the crops normally harvest once a year. With lower multiple-crop
index, the water demand is lesser and the sensitivity of disaster is weak.

3.2. Analysis on the Influencing Factors of Agricultural Drought Vulnerability in China
3.2.1. Factor Contribution Analysis of First Level Index

According to the research results of agricultural drought vulnerability assessment in
China, it can be noticed that the distribution of provinces and cities in different vulnerability
levels has certain regional characteristics. Therefore, this paper studies the influencing
factors of vulnerability in different regions. It adopts China’s six geographic regions: North
China, Northeast China, Northwest China, East China, Central and Southern China, and
Southwest China. According to the Formulas (11)–(14), the contribution of sensitivity and
resilience is shown in Figures 2 and 3.

Figure 2. Changes in the contribution of sensitivity indicators.
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Figure 3. Changes in the contribution of resilience indicators.

As shown in Figure 2, looking at the trends as a whole, during the period of 1978–2013,
the contribution of sensitivity indexes in different regions was relatively stable. From 2013
to 2018, except for North China, the contribution ratio of sensitivity indicators in other
regions changed dramatically.

The contribution of sensitivity indicators in Northeast China, Northwest China, and
Southwest China have declined. Possible reasons are as follows: agriculture in GDP
proportion, multiple-crop index, and annual sunshine duration has decreased drastically
while annual precipitation has increased significantly. Farmers in these regions have
become less dependent on agricultural income. Lower land use has reduced water demand,
and hence there is less evaporation.

The contribution of sensitivity indexes in East China and Central South have increased
significantly. Possible reasons are as follows: agriculture in GDP proportion and multiple-
crop index have increased while land use in the region has improved and water demand
has increased.

As shown in Figure 3, looking at the trends as a whole, during the period of 1978–2013,
the contribution of resilience indexes in different regions was relatively stable. From 2013 to
2018, except for North China, the contribution ratio of resilience indicators in other regions
changed dramatically.

The contribution of resilience indicators in Northeast China, Northwest China, and
Southwest China have increased. I think the possible reasons are as follows: the contribu-
tion of forest coverage rate, food production per capita, and agricultural fertilizer per unit
area have increased while net income per capita of rural residents has declined. The region
is less dependent on agriculture, needs to improve its ability to conserve water, and is less
able to cope with disasters and recover from disasters.

The contribution of resilience indicators in East China, Central China, and South China
have decreased evidently. Possible reasons are as follows: the forest coverage rate, the
effective irrigation rate and agricultural fertilizer per unit area have increased. The region’s
ability to conserve water is better, so the recovery capacity after the disaster is improved.

On the whole, the contribution of resilience in East China, Central, and Southern China
is more than 50%, which is greater than the contribution of sensitivity. Cities in the central
and southern region: the Yellow River valley passes through Henan, and the Yangtze River
valley passes through Hubei and Hunan. Guangxi, Guangdong, and Hainan are adjacent
to the sea. Therefore, the relative abundance of water resources and the contribution of
sensitivity indicators are less. East China includes Shanghai, Jiangsu, Zhejiang, Anhui,
Fujian, Jiangxi, and Shandong. These several provinces and cities are adjacent to the sea, or
within the territory of the river flow through, and the level of economic development is at
the forefront of China. Therefore, the contribution degree of resilience index is relatively
high.

Northwest China, Northeast China, North China, and Southwest China have higher
sensitivity contributions than that of resilience. The sensitivity contribution of the South-



Int. J. Environ. Res. Public Health 2021, 18, 4449 13 of 17

west China and Northwest China is as high as 75%. Desert is widespread in the northwest
and annual precipitation about 200–400 mm. Deep inland and blocking the arrival of moist
air. Northeast China is an important grain production base with a large area of cultivated
land. Compared with the coastal areas, its economic development level is not high.

3.2.2. Factor Contribution Analysis of Secondary Index

Select the top four indicators of contribution among the 12 indicators and the calcu-
lated results are shown in Table 6.

Table 6. The top four indicators and contribution of agricultural drought vulnerability in different regions.

Regions
North China Northeast China East China Central and

Southern China
Southwest

China
Northwest

ChinaYears

1978
A3

19.14
A1

17.33
A2

17.69
A3

15.33
A5

16.78
B4

13.51
A5

25.73
A6

19.51
A5

26.02
A3

17.52
A2

30.17
A4

24.05
A2

15.34
B4

13.98
A4

15.03
A1

12.26
B5

13.39
A6

11.64
B6

12.95
B5

11.22
A2

16.48
A6

12.99
A1

18.47
B6

10.72

1983
A1

16.04
A6

15.46
A2

16.01
A3

14.30
A5

21.32
B5

15.00
A5

32.92
B6

17.32
A5

32.83
A6

12.67
A2

26.31
A6

22.12
A2

14.50
A3

13.29
A4

13.60
B1

10.88
B4

14.01
A1

10.93
B1

14.13
B5

13.64
A3

12.60
A2

11.74
A4

20.80
A1

12.16

1988
A1

15.47
A3

15.17
A2

16.48
A3

14.72
A5

15.04
B2

13.80
A5

29.65
B6

16.36
A5

33.60
A3

19.91
A2

21.14
A6

19.18
A2

13.92
B4

12.48
A4

14.00
A1

13.28
B5

13.03
B4

12.94
B1

14.00
A3

12.46
A2

11.73
A4

11.01
A4

17.64
A3

14.32

1993
A1

15.51
A2

15.33
A2

16.44
A4

13.97
A5

20.21
B4

14.89
A5

27.93
B1

15.28
A5

31.28
A3

26.59
A2

21.74
A6

19.60
A6

13.82
B4

12.51
A3

12.92
A1

11.21
A1

13.02
B2

12.97
B6

15.26 B5 10.7 A6
10.58

A4
10.54

A4
18.43

A1
10.98

1998
A1

14.71
A2

14.60
A2

17.43
A3

15.57
A5

19.33
A1

13.14
A5

29.65
B1

17.82
A5

40.25
A4

14.11
A2

24.87
A6

21.12
A3

12.84
A6

12.15
A4

14.81
B1

11.85
B2

11.48
B1

10.88
B6

15.27
B5

10.36
A6

11.14
A2
9.93

A4
19.22

A3
18.46

2003
A3

15.25
A2

13.85
A2

16.24
A3

15.17
A5

16.10
B4

12.34
A5

31.60
B1

21.12
A5

36.68
B1

13.65
A2

28.07
A6

22.37
A1

13.80
A6

12.06
A4

15.03
B1

12.02
A1

12.30
B2

12.34
B6

15.45
A3

10.32
A6

13.37
A2

16.61
A4

20.78
A3

11.94

2008
A3

15.20
A1

13.76
A2

18.76
A4

15.94
A5

16.13
A3

13.64
A5

31.02
B1

21.16
A5

32.99
A2

21.60
A2

27.46
A6

23.87
A2

11.95
A6

11.87
A3

14.19
A6

11.90
A1

11.56
B2

11.23
B6

16.46
A3

11.95
B1

14.10
A6

11.82
A4

22.45
A1

9.96

2013
A3

15.30
A1

13.85
A2

19.32
A4

16.41
A3

15.52
A5

14.56
A5

31.32
B1

20.26
A5

28.93
A2

19.64
A2

26.18
A6

25.94
A6

13.85
A2

11.94
A3

12.89
B1

11.16
A1

13.52
B2

11.92
B6

15.76
A3

11.84
B1

15.33
A6

14.52
A4

20.60
A3
7.40

2018
A3

18.97
A1

17.17
A4

19.15
A6

14.24
A2

21.93
A5

19.19
A5

25.82
A2

25.37
A5

21.36
B4

13.26
A6

15.32
A4

13.55
A6

15.76
A2

12.10
B4

12.87
A3

12.78
A3

18.00
A1

17.68
B4

12.02
A3

10.09
B2

10.30
A6

10.14
B1

13.06
B4

11.94

On the whole, referring to the calculation results above, it can be noticed that the con-
tribution factors of agricultural drought vulnerability in China mainly focus on sensitivity.
Among them, A2 (multiple-crop index) and A3 (rural population proportion) are more
important. It shows that these two indicators have a greater impact on the vulnerability of
agricultural drought. We should sustainably reduce the land utilization rate, reduce the
water demand, strengthen the vocational skills training of rural residents, supervise and
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protect the legitimate rights and interests of migrant workers, and promote the transfer
of rural population to cities. Hence, the proportion of rural population can be effectively
reduced, and the vulnerability of agricultural drought can also be mitigated.

Among the indexes of resilience, B1 (the forest coverage rate) and B4 (real GDP
per capita) are more important. According to the data from the Ninth National Forest
Resources Inventory, China’s forest coverage rate is still lower than the world average
level. Strengthening afforestation is highly effective for soil and water conservation, hence
reducing water evaporation and improving the forest coverage rate. The adverse impact
from drought can also be reduced significantly. Similarly, the higher the real GDP per
capita, the easier the recovery would be after droughts. The GDP per capita China is still
relatively low in the worldwide spectrum, although China’s total domestic GDP ranks
No. 1 in the world.

The factor with the least contribution is B3 (Food production per capita). China has
a large planting area of crops with high and stable grain yield, so it has little impact on
agricultural drought vulnerability.

4. Conclusions, Limitations, and Future Research

The paper uses entropy weight method, weighted comprehensive scoring method
as well as k-means clustering algorithm to calculate and classify the vulnerability degree
of agricultural drought. ArcGIS was used to show the spatial and temporal changes of
agricultural drought vulnerability in China, then, using the contribution model to analyze
the influencing factors and the degrees of agricultural drought vulnerability in China, the
results show that:

(1) From 1978 to 2018, the vulnerability of agriculture to drought has been reduced and
the numbers of China’s highly vulnerable cities have declined. During the same
time, there has been a trend appeared that high vulnerability cities have converted
to the middle-level vulnerability cities while middle-level vulnerability cities have
converted to mild-level or low-level vulnerability cities. The vulnerability towards
agricultural drought disasters in China was generally at the middle and mild level in
most regions while the vulnerability in Northwest China and Southwest China were
more severe.

(2) China’s agricultural drought vulnerability is mainly affected by sensitivity factors,
among which multiple-crop index and the proportion of rural population have a
higher contribution compared with other indicators. For resilience index, forest
coverage rate and real GDP per capita carry a more important role.

In the data collection process of this paper, partially due to the wide time span
selected, there is a lack of data from early years. Therefore, those crucial indicators that
can be easily obtained with clean data have been selected for evaluation. Imperfection still
exists although these selected indicators can truly reflect the vulnerability characteristics
of agricultural drought in China. In the future, we will do some comparative studies on
different evaluation methods to further optimize the research results.
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