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Abstract: The current SARS-COVID-19 crisis has demonstrated the dangers that airborne virus
(AV) pandemics pose to the health of all workers (particularly in the meat processing industry), the
economic health of the food industry, and food security. The impact that the current pandemic has
had on the food industry points to the need for a proactive rather than reactive approach towards
preventing future AV outbreaks. Such a proactive approach should be based on empirical assessments
of current AV food safety practices and the development of more robust practices tailored to the
culture and needs of the food industry. Moreover, a proactive approach is necessary in order to better
prepare the food industry for future AV outbreaks, protect the health of workers, reduce disparities
in AV occupational health risks, and enhance the safety of the food supply chain. The aim of this
review is to make the case for a new food safety research paradigm that incorporates the intensive
study of airborne viruses under conditions that simulate food industry work environments.
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1. Introduction

History has shown us that pandemics are not new, from the Spanish flu to the more
recent outbreaks of Ebola and SARS. In the future, pandemics will likely occur with
increasing frequency due to, among other factors, globalization and international mobility,
population growth, urbanization, weather related issues in addition to current practices in
place in food production systems. We must learn from these past and current pandemics in
order to be more prepared for future global outbreaks. This has never been as clear as today,
with the disastrous effects the current COVID-19 disaster has had on the population and
our economy. There are also many lessons to be learned about the effects of this pandemic
on front-line workers, including food industry workers. Learning from this pandemic
also means learning what sorts of models are needed to carry out the research necessary
to create the knowledge we will need to prepare for the future. In the case of the Food
Industry a new food safety model is necessary for guarding against airborne illnesses,
rather than only food-borne ones.

2. An Airborne Virus Model of Food Safety

Between 1 March and 31 May of last year, 8978 workers in 742 food and agriculture
workplaces in 30 states in the US had confirmed COVID-19 [1]. Among agriculture work-
places, meat and poultry processing (MPP) plants are particularly vulnerable to COVID-19
outbreaks. As of 21 July, MPP plants were associated with an estimated 236,000 to 310,000
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SARS-COVID-19 cases (6% to 8% of total cases in the US) and 4300 to 5200 deaths (3% to 4%
of total US deaths). These numbers included cases in worker communities in which MPP
plants were located [2]. A global study on SARS-CoV-2 infection clusters found that food
processing plants formed the third largest size clusters. The median cluster size from these
installations was 70 primary or secondary infections, which were smaller in magnitude only
to cruise ships and prisons. Among the twenty outbreak clusters found in food processing
plants around the world, 14 occurred in MPP plants (see Table 1). In MPP plants, the
median number of cases per cluster was even higher [3]. These outcomes illustrate the
effects of the strong centralization in the food and especially the meat industry [4]. MPP
plants are particularly rapid SARS-CoV-2 incubators [5].

Table 1. COVID-19 clusters in food processing settings reported on in media as of 6 July 2020. Taken from database
https://bit.ly/3ar39ky (accessed on 13 March 2021). Meat and poultry processing (MPP) facility names are shown in bold.

Installation Country Locality Date
Published/Accessed

Total Number of
Cases Per Cluster Final Attack Rate

Cedar Meats Australia Australia Melbourne 22 May 2020 67

Vegetable processing plant Canada Oppenheimer Group,
Coquitlam, B.C. 16 May 2020 3

Poultry Canada Coquitlam 29 April 2020 50

Poultry plant Canada United Poultry,
Canada 08 May 2020 35

Westfleisch meat processing
plant Germany

North
Rhine-Westphalia,

Coesfeld
08 May 2020 151

Meat processing plant Germany
North

Rhine-Westphalia,
Oer-Erkenschwick

08 May 2020 33 0.026

Westcrown Germany Dissen 21 May 2020 146

Fish factory Ghana Tema 11 May 2020 534

Meat processing plant Netherlands Vion, Groenlo, The
Netherlands 22 May 2020 45

Meat processing plants USA South Dakota 19 April 2020 518

Meat processing plants USA Iowa 19 April 2020 84

Meat processing plants USA Iowa 19 April 2020 177

Meat processing plant Germany Rheda-
Wiedenbrück/Gütersloh 20 June 2020 1029 0.158

Chicken factory UK 2 Sisters in Llangefni,
Anglesey 25 June 2020 200 0.357

Pladis biscuit factory UK Leicester 25 June 2020 5

Kober meat factory UK Kirklees 25 June 2020 165

Kepak meat factory UK Merthyr Tydfil 25 June 2020 34

Rowan Foods meat factory UK Wrexham 25 June 2020 70

Princes canned produce
factory UK Wisbech 25 June 2020 14 0.034

Walkers crisps factory UK Leicester 01 July 2020 28 0.02

Tyson Poultry Processing USA Wilkes, North
Carolina 20 July 2020 570 0.254

Importantly, the mere presence of an MPP plant is associated with transmission in
the community where the plant is located, indicating that MPP plants themselves may
have functioned as vectors of transmission [2]. The vulnerability of MPP workers to
SARS-COVID-19 is so well-acknowledged that these workers are second only to health
professionals in priority to receive COVID-19 vaccinations [3].

https://bit.ly/3ar39ky
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Outbreaks in meat processing plants have also led to plant closures [4], which led
to meat shortages in the early months of the epidemic [5]. In addition, the closures and
shortages resulted in 13.6 billion in economic losses in the US by April 2020 alone. Shortages
are a natural consequence of the highly centralized nature of the food industry and the
resultant just-in-time production strategy that eschews stockpiling [4]. This centralization
is particularly severe in the US pork industry where the four largest companies in each
meat sector control between 55% and 85% of their respective markets. As another example,
only 12 plants in the US are responsible for 50% of pork production, and another 12 for
beef production [6]. Absenteeism due to illness can also be disruptive as a 25% increase in
absenteeism can lead to a 45% decrease in the food supply [7,8]. This also depends upon the
techniques that are used to process the complexities. Therefore, the safety of food industry
workers is not only critical for maintaining the workers’ health, but for maintaining the
economic and distribution health of the entire meat production system.

The importance of securing the food system was reflected in the executive orders in
the IS declaring meat processing plants to be essential facilities, which led to the reopening
of plants in the US previously closed as a consequence of outbreaks [9]. However, this was
a reactive measure that balanced the health risks to workers and surrounding communities
against the need to keep the population fed, rather than a proactive measure designed to
protect both. As a result, the trend today is to close plants temporarily for a single day
for cleaning and disinfection [10]. The SARS-COVID-19 epidemic has clearly exposed
vulnerabilities in the supply chain, suggesting that Airborne Virus (AV) food safety is in
fact somewhat synonymous with food security. As a result, it is incumbent upon food
safety researchers to establish the empirically derived Airborne Viral Threat (AVT) food
safety practices that work best in food industry settings. Such best-practices that include
screening (e.g., self-assessments and temperature taking), medical leave rules, and personal
hygiene recommendations can then be used as part of an overall strategy for preventing
AVT in MPP facilities. These best practices may subsequently serve as a basis for the
implementation of AVT prevention in food safety management systems, such as the hazard
analysis and critical control point (HACCP) principles. These systems are currently largely
focused on preventing transmission of infectious diseases into and via food along the
supply chain, rather than AVT transmission between workers. Including measures against
AVT transmission in such food safety management systems would enable prevention and
control rather than just reactive measures against AV outbreaks [11].

Pre-SARS-COVID-19, meat packing in the US was already the most hazardous of all
occupations with a high rate of illnesses and injuries, in addition to being low-paying [12].
Meat processing workers are highly vulnerable on a number of fronts as they are largely
non-unionized [12], many are recent immigrants, and of those, many are disproportionately
undocumented. These realities make it difficult for these workers to have any recourse
with regard to safety issues. Forty-five percent of MPP workers are low income, 44%
are Hispanic, 23% are Black, and 52% are immigrants. Importantly, these percentages go
up among assembly line workers where the risk of illness also increases [13]. Fourteen
percent of assembly line workers are undocumented and therefore do not have access to
healthcare and worker protections that support the prevention and treatment of COVID-
19 [14]. The above mentioned issues also increase the occurrence of presenteeism, coming
to work despite being sick, which further increases infections at the workplace [15]. In
summary, it is unsurprising that 80% of all COVID-19 cases in the meat processing industry
occur among racial and ethnic minorities [13]. Moreover, employees receive incentives
to continue working while sick, which discourages self-isolation and increases the risk of
transmitting AVs to fellow workers [14,16]. Therefore, there is a social justice aspect, both
in terms of class and ethnicity, to ensuring MPP worker safety in anticipation of future
AVTs. This is because highly vulnerable and low-paid MPP workers from ethnic minorities
are at higher risk of contracting AVs. Reducing this risk will help reduce the disparity in
AV risk faced by different segments of the population.
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As several promising vaccines have been developed against SARS-COVID-19, it is
our hope and expectation is that the current crisis will eventually pass. Nevertheless,
the disastrous outcome of the current crisis has demonstrated the need for proactively
preparing for future AVT crises. In addition, much more needs to be explored regarding
the role of animals in the ongoing pandemic, and best practices to protect workers at food
processing facilities.

The World Health Organization (WHO) predicts future infectious disease pandemics [17].
Indeed, the frequency of disease outbreaks has increased over the last few decades, largely
as a consequence of deforestation, species extinction [18], population growth, pollution,
and climate change [18]. Between 2011 and 2018, the WHO has documented 1483 epidemic
events in 172 countries (GPMB 2019), and six international health emergencies have been
announced since 2009 [15]. Well-known viral outbreaks that have occurred over the last
two decades (other than SARS COVID-19), include SARS (2003), MERS-COV (2012 and
2020), H1N1 (2009), and Ebola (2014). In order to prepare for the next crisis that is likely to
occur, proactive and industry specific research into AVT is required.

Regarding SARS-COVID-19 safety measures, early in the SARS-COVID-19 pandemic,
the Center for Disease Control (CDC) recommended safety standards that included hand-
washing hygiene, strengthening medical leave practices [15,19], social distancing, sanitizing
surfaces, wearing cloth masks, using partitions, minimizing the use of fans, and adding
handwashing or hand sanitizer stations [20]. However, there are no CDC guidelines on
additional or novel measures that are specific to food processing [21,22]. Any responses to
safety in the area of food processing were reactive in nature as it was unknown a priori
if the measures in place at the time were sufficient to stem the tide of infections. We now
know that the measures that were in place are indeed insufficient because outbreaks are
continuing to occur in meatpacking facilities [10].

CDC recommendations are optional, and therefore may not be universally applied
in different MPP facilities [12]. In addition, there are no CDC guidelines on additional
and novel measures that are specific for food processing contexts [23] as current CDC
guidelines appear to be drawn from the general knowledge of what is understood about
infectious diseases, rather than specific guidelines based on AVT in an MPP context. For
example, hand hygiene is the most effective way to prevent the spread of infectious diseases
generally, yet the availability of this measure only offers limited protection from viruses
such as COVID-19 that are spread by respiratory droplets [24]. Physical barriers have been
used for decades in the healthcare and food service industry to prevent the movement of
pathogen-carried respiratory droplets [18], but the effectiveness of such barriers on the
assembly line, or in the context of airflow in an MPP is less well-known. Importantly, as
mentioned above, SARS-COVID-19 does not generally spread via surface contacts, but
rather from person to person via respiratory droplets. Therefore, researching the dynamics
of AVT transmission through the air should be prioritized in the context of improving food
safety protocols designed to protect against AVTs, rather than the current trend in AV food
safety research, which focuses on the efficacy of surface disinfectants in decontaminating
SARS-COVID-19 from surfaces [25,26].

An effective technique against nosocomial viruses is fogging with H2O2 [27], but
it can only be carried out in the absence of employees or food due to its skin- and eye-
irritating properties, raising operational and additional food safety concerns [15]. Ozone is a
gaseous alternative to inactivate Viruses, especially effective at high relative humidity [28].
However, it poses health risks to humans and is not recommended to be used above
concentrations of 0.1 ppm, with no information on long term effects [29,30] and only scarce
research on effectiveness against SARS-CoV-2 [30]. Alternatively, UV-light has proven
effective against AVs [31]. In the food industry, “in-duct” systems are recommended, where
air is irradiated after passage through HVAC systems. These systems allow sanitation of
the air without workers coming into contact with radiation [32]. HVAC systems and air
exchange in general are recognized as important factors for AVT, especially in relation to
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SARS-CoV-2. Minimum air exchange rates should be adhered to, and flow of recycled air
along stationary persons avoided [31,33].

The topic of SARS-CoV-2 transmission specifically in a food processing context has
only been taken up in scientific literature. In order to adhere to physical distancing
recommendations, multiple approaches have been proposed. These approaches include
staggering workstations and side-by-side workstations meant to prevent workers from
facing each other, adopting facemask policies according to national guidelines pacing out
workstations, limiting the number of workers in an area at a given time, and organizing
workers into teams with little inter-team contact. Also, attention is given to ensuring
chemical sanitation by proper accessibility to and use of sanitizers [15].

Meanwhile, new risk factors associated with increased COVID-19 transmission at MPP
facilities have been identified (See Table 2). These factors include (1) long work shifts (8–12
h); (2) close and prolonged proximity to other workers (<6 feet; >15 min) [13]; (3) difficulties
in maintaining proper face covering due to physical demands; (4) shared work spaces [13];
(5) shared transportation [19]; (6) the size of the facility [26]; (7) higher assembly line
speeds [2]; (8) temperatures of 0–12 ◦C degrees, associated with a higher risk of contracting
COVID-19 [27,28]; (9) a fast work pace that may prevent the appropriate donning and
doffing of masks [15]; (10) the high relative humidity of an MPP (90–95%), associated with
longer distance movement of respiratory particles [29]; (11) and, additicnally, the cooling
systems themselves may also spread COVID-19 by carrying bioaerosols over long distances,
as can air flow generally. In an outbreak at a German processing plant, transmission
distance was thus increased to at least 8 m as a consequence of recirculation [30,34].

Table 2. Risk factors for the transmission of COVID-19 in processing contexts.

Risk Factor Range Identified as High Risk Sources

shift length 8–12 h [13]
prolonged close proximity <6 feet, >15 min [13]

not maintaining face covering [13]
shared work spaces [13]

shared transportation [19]
facility size [26]

assembly line speeds High [2]
relative humidity 90–95% [29]

airflow recirculated and unfiltered, low exchange [30]

Processing environments such as MPPs are generally recognized as medium risk by
the WHO because no direct contact with known or suspected cases is intended. However,
it is recommended to take into account different working conditions and associated risk
factors for each individual workplace [35,36]. MPP-specific information and mitigation
measures would be therefore being very helpful in this regard.

More importantly, the above factors are derived epidemiologically and remain empiri-
cally untested in a food safety setting. New models that simulate the real-life conditions
of an MPP must be constructed. These models can be used to carry out research into
risk factors and safety measures designed to mitigate the risk of AVT in food processing
facilities. In doing so, a page can be taken from similar research carried out in health care
settings [37,38], in which pathogens, including viruses, are quantitatively measured in
order to determine levels of exposure over defined distances, and safety measures are
empirically tested in the setting in question [39,40]. Key questions in this body of literature
include the factors that influence the survival of AVs found in particles; the distance trav-
elled by AV containing particles; the time particles remain suspended in the air; particle
size; the minimum viral load necessary to induce infection; and the link between the fre-
quency of coughing, sneezing, and talking and the number of particles, size, and distance
travelled [41–43].
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3. Proposal for an AVT Model Facility

A proactive approach would require designing and building an AVT model facility
that will simulate the conditions in MPPs and use this model to carry out research into risk
factors and safety measures designed to mitigate AVT risk. At a minimum, this model will
contain an assembly line, barriers, a ventilation system, fans for air flow, and a temperature
control system set to 4–10 ◦C. (Figure 1). The research and educational tools created using
this model will thus help to prevent the emergence of AVT in the food industry in the
future. As a first step towards demonstrating that the AVT model can be reproducibly
employed to measure AV dynamics, assembly line speed, barriers, ventilation conditions,
and frequency of air replacement should be thoroughly studied in order to determine
the effects of these factors on (1) the dynamics of air flow, (2) the dynamics of moisture
particles, and (3) the dynamics of bacteriophage (BP) particles used as standins for the
highly infectious SARS-COVID-19 virus (Figure 2A–D). Ultimately this model facility
should mimic conditions in an MMP factory as closely as possible.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 1. Airborne Viral Threat (AVT) laboratory model of meat processing plants. At a minimum, 
this model will contain an assembly line, barriers (black and yellow striped bars), a ventilation 
system, fans for air flow, and temperature control at 4–10 °C. An example of an experiment to 
carry out would be to use a nebulizer to release AV particles (blue) near the assembly line and 
then measure the distance the particles travel by air and determine where they settle on the 
surface. 

 

Figure 1. Airborne Viral Threat (AVT) laboratory model of meat processing plants. At a minimum,
this model will contain an assembly line, barriers (black and yellow striped bars), a ventilation
system, fans for air flow, and temperature control at 4–10 ◦C. An example of an experiment to carry
out would be to use a nebulizer to release AV particles (blue) near the assembly line and then measure
the distance the particles travel by air and determine where they settle on the surface.

Dynamics of Air Flow In order to achieve an initial qualitative view of the effects of
specific factors on air flow dynamics, a smoke machine should be used to create a smoke
trail that can be used to track air flow in the AVT model. Photographs could be taken at
discrete time points so that we will get information on the direction and time scale of the
air movements (Figure 2A).

Dynamics of Moisture Particles In order to gain an initial model of the effects of
specific factors on particle movements, the movement of moisture particles could be
measured by using a nebulizer to release moisture in the AVT model and then placing
a particle counter at discrete distances from the moisture release point (Figure 2B). The
particle counter will count the number of moisture particles. In this way, the number of
moisture particles over time can be quantified at given distances. This data will provide
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insight into the timescale of particle movements and an estimate of the distance at which
particles begin to settle on surfaces.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 1. Airborne Viral Threat (AVT) laboratory model of meat processing plants. At a minimum, 
this model will contain an assembly line, barriers (black and yellow striped bars), a ventilation 
system, fans for air flow, and temperature control at 4–10 °C. An example of an experiment to 
carry out would be to use a nebulizer to release AV particles (blue) near the assembly line and 
then measure the distance the particles travel by air and determine where they settle on the 
surface. 

 
Figure 2. (A) The dynamics of air flow will be qualitatively determined by generating smoke and then documenting the
movement by camera. (B) The dynamics of moisture particles will be quantified by releasing moisture using a nebulizer
and counting particles at defined distances using a particle counter. (C) With each defined set up conditions, bacteriophages
(BPs) (in light blue) will be released by nebuliz-er into the air in the AVT facility and the level of dispersion and distances
travelled by BP viral particles will be measured over time (0 min, 10 min, 20 min, 30 min). Dispersion will be measured by
(A) surface samples collected at each time every 50 cm for 3 meters in 4 directions (0◦, 90◦, 180◦, 270◦) from the point of BP
release and then analyzed by viral plaque assay; and (D) air samples will be taken at 3 meters at 0◦, 90◦, 180◦, 270◦ angles
from the point of release and then analyzed by qPCR. Therefore, for every experiment there will be 24 surface samples and
4 air samples.

Dynamics of BP particles BP particles can be released using a commercial nebulizer
at different locations in the AVT model (Figure 2C,D). The dispersion of the BP particles
could be determined by plotting the reduction in the number of BP particles over distances
travelled [44–47]. The direction and the distance traveled by the BPs can be monitored by
taking both surface samples (Figure 2C) and air samples (Figure 2D). The air sampling
methodology should employ vacuum filters as seen in studies found in the literature [48,49].
Air samples should be collected using vacuum sampling devices. The intake end of the
device should be placed 3 m from the point of initial release in four directions (0◦, 90◦,
180◦, 360◦). This constant flow of air containing BPs will thus pass through, and virus
particles will be deposited from the air onto a membrane. The number of particles can be
determined by virtual plaque assays, in the case of surface samples, and by qPCR in the
case of air samples.

4. Conclusions

The knowledge necessary to establish science-based safety measures in MPPs will be
generated only by rigorously and empirically studying MPP AVT risk factors. Among the
factors identified so far are work timing and organization, workflow layout and worker
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proximity, mask wearing, as well as temperature, humidity, and airflow as a result of
climate control design. Until now, these factors have only been adjusted reactively during
or after outbreaks. These factors still need to be systematically investigated in order to gain
quantitative knowledge about their relative impacts on AVT safety. This knowledge can
then be used to develop MPP-specific food safety procedures in order to help to prevent
the transmission of AV viruses in MPPs during the AV-based pandemics that are likely to
occur in the future. An AVT model will always be limited by the danger of handling SARS-
COVID-19. Therefore, non-pathogenic model viruses or other type of particles need to be
substituted. These models will also be limited by the ethical concerns and the necessity of
creating environments that simulate the meatpacking environment without actually being a
meatpacking facility containing the vulnerable workers themselves. Nevertheless, we must
begin an MMP AVT model of the type proposed in order to begin the task of preparing for
the inevitable future AV pandemics. Thus, it will be possible to more systematically define
effective measures related to work organization, factory layout, and climatic and airflow
conditions within meat processing facilities in order to dampen the spread of AVs, enhance
worker and food-safety, and prevent food shortages.

It is critical to switch from a reactive to a proactive approach in facing future AV
threats. The current approach is to make piecemeal and inconsistent changes to safety
procedures only AFTER the effects on workers and the industry are observed. In addition,
these safety measures were clearly not enough to stem the tide of new infections or to
prevent facilitate shut downs. In order to protect both the health of MPP workers and the
meat industry, a more systematic and proactive approach is required that is carried out
well in advance of the next AV pandemic. With the resulting knowledge in hand, the effects
of the next pandemic can be mitigated. The case for a comprehensive AV model of MPP
facilities is clear.
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