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Abstract: This paper examines the effects of regional characteristics on the spread of the highly
pathogenic avian influenza (HPAI) during Korea’s 2016–2017 outbreak. A spatial econometric model
is used to determine the effects of regional characteristics on HPAI dispersion using data from
162 counties in Korea. Results indicate the existence of spatial dependence, suggesting that the
occurrence of HPAI in a county is significantly influenced by neighboring counties. We found that
larger size poultry, including laying hens, breeders, and ducks are significantly associated with a
greater incidence of HPAI. Among poultry, we found ducks as the greatest source of the spread of
HPAI. Our findings suggest that those regions that are spatially dependent with respect to the spread
of HPAI, such as counties that intensively breed ducks, should be the focus of surveillance to prevent
future epidemics of HPAI.

Keywords: highly pathogenic avian influenza (HPAI); regional characteristics; spatial dependence;
spatial autoregressive model

1. Introduction

The livestock industry in Korea has contributed to stabilizing farm household income
in response to the substantial increase in Korean meat consumption that has occurred over
the past couple of decades. However, increased incidence of livestock disease outbreaks,
such as foot-and-mouth, Brucella, and highly pathogenic avian influenza (HPAI) has
caused substantial production losses and economic damage to the livestock sector over the
same period, thereby substantially threatening the emerging livestock sector in Korea [1].
Particularly, the spread of HPAI in Korea has largely varied across counties over the years.
Factors responsible for the spread—such as transportation of livestock, stocking density,
and bird habitats—have varied greatly from region to region [2]. Hong et al. [3] even
argue that the establishment of an effective prevention policy must be broken down by
region. Little research examines the role of spatial characteristics of HPAI spread at the
county level since its first detection in Korea. The objective of this paper is to determine the
effects of various regional characteristics on the spread of HPAI. Specifically, we determine
whether there is an inter-county relationship with respect to the occurrence of HPAI during
the 2016–2017 outbreak in Korea. In addition, we examine factors that affect the spread
of HPAI to provide policymakers with evidence-based policy insights when enacting
regional-specific measures that could effectively mitigate HPAI outbreaks in Korea and
other countries.

HPAI was first detected in Korea during the 2003–2004 production season, and since
then, outbreaks have occurred approximately every other year. HPAI outbreaks grew
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modestly at first but have increased in magnitude and severity. During its initial outbreak,
19 farms were affected in 10 counties. A few years later, in 2008–2009, the number of
reported farms affected by HPAI increased to 33 and had spread across a wider area encom-
passing 19 counties. During the 2014–2015 production season, HPAI outbreaks were similar
in size and extent with 38 reported farms affected in 19 counties. The largest HPAI outbreak
occurred most recently in 2016–2017. During that production season, the number of farms
affected by HPAI increased dramatically reaching a total of 383. Moreover, the HPAI
outbreak spread to a much larger area, affecting 50 counties, corresponding to a fivefold
increase in the number of affected counties, compared to the initial 2003–2004 outbreak [1].

In general, managing disease outbreaks remains a critical challenge to maintaining
the economic viability of livestock production over the long term. In 2017, Korean livestock
production totaled USD 16.8 billion, accounting for 41.9% of agricultural production
and 22% of the total farm income from agricultural enterprises [1]. Livestock production,
including cows, pigs, milk, eggs, chickens, and ducks, all rank among the top 10 agricultural
products in Korea. Livestock production is considered a future growth industry and is
projected to create high-value products well into the 21st Century. However, HPAI remains
a challenge for the industry to continue with its projected success, and curtailing the spread
of HPAI remains an important step toward minimizing national losses in the livestock
industry. Therefore, it is crucial to grasp factors that propagate HPAI to maximize the
effectiveness of prevention measures and activities.

Cumulatively, HPAI rapidly spreads as livestock farmers, along with their vehicles,
visit infected farms where they make direct and indirect contact with host pathogens [3].
Unmonitored visits enable the movement of the pathogen throughout the transportation
network that ultimately is transported back to farms. Spatial diffusion of the disease can be
explained in terms of a contact network, which models the movement of pathogens along
transportation corridors [4]. Specifically, it is necessary to combine individual defense
activities with cooperative ones among counties [5]. With this strategy, strengthening
local defense measures administered by county municipalities could be effective at pre-
venting the spread of HPAI. Thus, there is a critical need to identify significant factors
that affect the spread of HPAI, particularly those factors that fall within the purview of
local municipalities.

Moreover, the dissemination of HPAI is closely related to the geographic and envi-
ronmental factors of a region. In 2017, the Ministry of Environment concluded that HPAI
outbreaks in Korea often overlap with migratory patterns of seasonal bird movements [6].
The study by Ito [7] indicates that the propagation of HPAI is affected by wild birds. In
addition, the movement of vehicles carrying livestock is considered a method of HPAI
propagation [8]. Previous studies on HPAI outbreaks in Korea in 2014 show that livestock
vehicle movements constituted 26.9% of the HPAI infection paths [9]. The Korean govern-
ment implemented a livestock vehicle registration system in August 2012 to preemptively
prevent the spread of HPAI outbreaks. People’s movement in certain areas may spread the
HPAI virus to nearby areas. Urbanization may further imply population concentration,
which indirectly results in reduced farmland in rural areas. This further increases the
density of farming in rural areas and increases the spread of disease among farms. The
denser the population is, the greater the likelihood of disease exposure and spreading of
HPAI. In addition, it is estimated that the impact on the spreading of HPAI is different
because there are differences in the poultry breeding environment. Breeding scale effects
and preventive response vary. In particular, aging populations in rural areas have been
recently emerging [10] and are anticipated in this study to have a significant effect on HPAI.

In addition, livestock epidemics are potentially affected by climate change. The fifth
Intergovernmental Panel on Climate Change (IPCC) suggested that mad cow disease,
severe acute respiratory syndrome (SARS), brucellosis, and HPAI are the most common
infectious diseases worldwide that may be affected by climate change [11]. Host pathogens
and mediators of disease differ in survival and reproduction according to climatic factors
such as temperature, precipitation, and humidity. Given the sensitivity of those climatic
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factors to the spread of pathogenic diseases, it warrants the need to analyze how they affect
HPAI outbreaks, and this study takes a step in examining these factors.

2. Literature Review

Some studies have attempted to measure the impacts of spatial characteristics on the
spread of HPAI in different countries. Fang et al. [12] examined the influence of environ-
mental factors and the spatial distribution of HPAI outbreaks in mainland China. They
found that HPAI outbreaks occurred in areas with low air temperature, high relative humid-
ity, and high air pressure and that these outbreaks were strongly associated with migratory
corridors of seasonal migratory bird movements. Martin et al. [13] employed bootstrapped
logistic regression and boosted regression trees to examine the association between HPAI
incidences in China. Seven factors were considered in their study (i.e., domestic chicken
and domestic waterfowl population density, the proportion of land covered by rice or sur-
face water, cropping intensity, elevation, and human population density) and mapped them
to the spatial distribution of HPAI outbreaks. Chicken breeding density, human population
density, and elevation were associated with HPAI outbreaks in domestic poultry. Paul
et al. [14] and Paul et al. [15] analyzed anthropogenic factors for the risk of HPAI outbreaks
in Thailand in 2004–2005. They found that the spread of HPAI was most influenced by
population density and the proximity to highway junctions and large cities, highlighting
the critical role of transportation in HPAI movements.

Tran et al. [16] stated that it is necessary to examine the spatiotemporal patterns of
HPAI outbreaks to establish effective countermeasures in Vietnam. They used a two-stage
procedure to identify factors influencing the occurrence of HPAI, predict the probability of
HPAI outbreaks, and map the spatiotemporal distribution of HPAI. They found that HPAI
outbreaks were more likely to occur in the months of November–January and April–June,
and were associated with higher breeding density, higher monthly average temperature, in
addition to lower monthly average precipitation and humidity. A global analysis of the
spread of HPAI outbreaks by [17] found that wild migratory bird routes, roads and railways,
wetlands, land usage, and coverage were significantly associated with HPAI outbreaks.

A meta-analysis of published literature by [18] found that proximity of infected farms,
presence of other livestock on a farm, open water sources, and whether a farm was not
disinfected were significantly associated with an increased risk of HPAI infection at a farm.
Simultaneously, the incidence of HPAI in surrounding areas was also found to affect the
occurrence of the disease in a particular area. That is, the occurrence of HPAI is spatially
dependent. However, some previous studies (e.g., [18]) have limitations in analyzing the
direct and indirect effects of nearby areas on HPAI outbreaks in terms of econometric
methodology. It is rather important to incorporate a spatial econometric method for the
analysis of factors influencing the propagation of HPAI. Thus, in this study, we apply a
spatial econometric model that considers the spatial dependency of HPAI outbreaks and
analyzes the spatial interactions of county-level characteristics with regard to the spread of
HPAI. Our study contributes to the existing literature by providing useful empirical and
data-driven information for establishing and strengthening localized effective defenses
against HPAI outbreaks in Korea and other countries where HPAI outbreaks are prevalent.

3. Materials and Methods
3.1. Data

Data for the number of farms affected by HPAI in each county from 16 November 2016
to 12 May 2017 (the seventh HPAI outbreak in Korea) were obtained from the Ministry of
Agriculture, Food and Rural Affairs ASF·AI·FMD·BSE homepage https://www.mafra.go.
kr/FMD-AI2/2179/subview.do and were accessed on 19 September 2020. Data of poultry
type—laying hens, broilers, breeders, and ducks, and poultry numbers—were collected at
the county level from the Korean National Statistics for 2016 at https://www.weather.go.
kr/weather/climate/past_table.jsp and were accessed on 19 September 2020.

https://www.mafra.go.kr/FMD-AI2/2179/subview.do
https://www.mafra.go.kr/FMD-AI2/2179/subview.do
https://www.weather.go.kr/weather/climate/past_table.jsp
https://www.weather.go.kr/weather/climate/past_table.jsp
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Climate data that included monthly average temperature, precipitation, and relative
humidity for each county were collected from the Korea Meteorological Administration
for yearly records. For each county, the climate data is the average of the monthly to-
tals obtained in January–December 2016. Geographical and environmental factors in-
vestigated were the presence of migratory birds and the number of livestock vehicles
registered (registration vehicles include various vehicles that carry livestock, crude oil,
animal drugs, feed, livestock manure, and compost as of 2016; these vehicles also include
vehicles entering animal husbandry facilities for medical treatment, artificial insemina-
tion, consulting, sampling, quarantine, and machine repair [19]). A dummy variable was
created to indicate the main habitat of migratory wild birds as assigned by the Korean
Ministry of Environment and the Korean Ministry of Oceans and Fisheries. The variable
was equal to 1 if the county had migratory bird habitat that the Ministry of Environ-
ment designated, and zero otherwise. The number of livestock vehicles registered in each
province was collected from the Ministry of Agriculture, Food, and Rural Affairs as of
31 December 2016 (https://www.me.go.kr/home/web/public_info/read.do?pagerOffset=
0&maxPageItems=10&maxIndexPages=10&searchKey=all&searchValue=&menuId=10357&
orgCd=&condition.deleteYn=N&publicInfoId=149&menuId=10357 and was accessed on 19
September 2020).

Demographic and social factors considered were aging level, population growth per-
centage, migration, population density, and urbanization rate by county (urbanization rate
data are from city planning status of Korea Land and Housing Corporation homepage [20]).
We considered population growth rate as the percentage of population growth compared
to the previous year, whereas migration was defined as the difference between the number
of people that had moved into a region and the number of people that had moved out. As
for population density, it was defined as the number of residents per km2, while the aging
level was considered as the ratio of the population aged 65 or older at the county level [21].
Data used in the spatial models are summarized in Table 1.

Table 1. Descriptive statistics (2016, N = 162).

Variables Mean Std. Dev. Max. Min.

Dependent
variable Farms affected by HPAI (N/county) 2.59 6.82 46.00 0.00

Poultry number
(1000 head)

Laying hens 444.26 743.71 4558.81 0.00
Broilers 505.68 737.57 4190.00 0.00
Breeders 70.46 156.12 1070.05 0.00

Ducks 36.92 94.30 642.59 0.00

Poultry Farms Farm Number (N) 43.54 32.55 197.00 1.00

Climate
Temperature (◦C) 13.52 1.28 17.00 8.10

Precipitation (mm) 112.16 88.66 1056.00 60.49
Humidity (%) 69.69 5.98 91.90 56.70

Geographic and
environmental

Migratory birds (0 or 1) 0.20 0.40 1.00 0.00
Livestock vehicles (N) 301.70 212.56 845.94 6.75

Demographic and
sociological

Population growth (%) 0.38 2.98 26.40 −0.52

Migration (1000) 0.00 12.81 43.53 −14.03
Population density (N/km2) 1058.00 2474.00 16,408.00 19.00

Aging level (%) 20.55 8.24 37.49 7.51
Urbanization (%) 65.06 25.75 100.00 19.06

A total of 162 counties were analyzed in this study. Average poultry numbers were
444,260 laying hens, 505,680 broilers, 70,460 breeders, and 36,920 ducks (Table 1). Spatially,
poultry production is clustered within certain areas in Korea, as shown in Figure 1.

https://www.me.go.kr/home/web/public_info/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=all&searchValue=&menuId=10357&orgCd=&condition.deleteYn=N&publicInfoId=149&menuId=10357
https://www.me.go.kr/home/web/public_info/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=all&searchValue=&menuId=10357&orgCd=&condition.deleteYn=N&publicInfoId=149&menuId=10357
https://www.me.go.kr/home/web/public_info/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=all&searchValue=&menuId=10357&orgCd=&condition.deleteYn=N&publicInfoId=149&menuId=10357
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Figure 1. Spatial distribution of poultry numbers in Korea, 2016.

Climatically, the mean values of temperature, precipitation, and relative humidity
for all counties were 13.5 ◦C, 112.2 mm, and 69.7%, respectively. For the main habitat of
migratory birds, the average value across all counties was 0.2. The average number of
livestock vehicle registration in all provinces was 301.7. For demographic and social factors,
the average population growth rate in 2016 was 0.38%, while the average migration was
0 but ranged from −14,030 to +43,530. The average population density was 1058 people
per square kilometer, and the aging index, which represents the proportion of people over
65 years old, averaged 20.6%.

3.2. Econometric Procedure
3.2.1. Construction of the Spatial Weight Matrix

One of the most important structural elements of a spatial econometric model is the
spatial weight matrix. Being part of the model error structure, a spatial weight matrix is a
tool for quantifying and controlling spatial autocorrelation. One of its principal functions
is to measure the extent of spatial dependence within the model sphere of influence.
Establishing spatial neighbors and measuring the order of their proximity from one another
are the two important steps in constructing a spatial weight matrix. A spatial weight
matrix can be constructed by a contiguity-based approach, which typically relies on either a
versus-distance or N nearest-neighbor approach. Anselin [22] suggests that distance scales
are preferable because alternatives, such as the proximity scale, indirectly reflect a spatial
arrangement of neighboring elements. Approaches based on distance scale are defined
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more precisely according to the actual separation in between and spatial arrangement of
neighboring elements in the network. Therefore, in this study, a spatial weight matrix by
employing the K-nearest-neighbor (KNN) scheme is constructed.

Numerical issues can arise with spatial weight matrices if care is not taken. Specifically,
if the spatial weight matrix is populated with the same value throughout the adjacent
elements among all of the regions, then there could be significant errors as a result of
multicollinearity in the error structure. The spatial weight matrix must, therefore, undergo
a row-standardization process, as specified in Equation (1) [23]. Row-standardization
quantifies the value of the effects of the surrounding area at one point to give shape to the
influence of the surrounding area, as given by Equation (1).

Wrs
ij =

Wij

∑ Wij
, ∑ Wij = k, (1)

where Wij is the spatial weighted value between points i and j and k = 5. The number of
nearest neighbors for each county typically ranged from three to five with relatively few
counties having >5 neighbors.

3.2.2. Diagnosis of Spatial Autocorrelation

If spatial autocorrelation is ignored in the analysis, it may bias estimated results [19].
This study tested for spatial autocorrelation using three tests—Moran’s I test, the Lagrange
Multiplier (LM) test, and Geary’s coefficient. Moran’s I index is an indicator of the overall
clustering trend in the area under analysis and is estimated by comparing the values of
neighboring spatial units. The Moran’s I statistic is estimated using the covariance concept
shown in Equation (2)

Moran′s I =
N

∑i ∑j wij

∑i ∑j wij
(
Xi − X

)
(Xj − X)

∑i
(
Xi − X

)2 , (2)

where N is the number of counties, Xi and Xj are the characteristic values of each region, X
is the average characteristic value of the region in which HPAI occurs, and wij is the spatial
weighted value. Moran’s I values are normalized to range between−1 and 1. The closer the
Moran’s I value is to 1, the more spatially clustered the data are. Alternatively, the closer
the value is to −1, the more spatially unclustered the data. A value of zero implies that no
correlation or random pattern among neighboring regions exists. The LM test is used to
determine a more appropriate spatial regression model and is more specific compared to
Moran’s I test. Both the LM and Geary’s coefficients were provided by statistical software.

3.2.3. Model Specification

The occurrence and spread of HPAI in a county can be a result of the outbreaks of
HPAI in neighboring areas because they share the same spatial characteristics and/or face
similar environments. If an ordinary least-squares (OLS) model is estimated to model HPAI
occurrence under spatial autocorrelation, the estimated coefficients tend to be inefficient,
generating misleading results. To obtain unbiased and consistent estimates for the possible
spatial interaction effects of spatial characteristics on the spread of HPAI outbreaks, a
spatial econometric model is more appropriate.

We start with a spatial lag model (SAR) to examine the potential influence of nearby
counties on the occurrence of HPAI in a county. In this model specification, we can measure
whether the occurrence of HPAI in a specific county depends on the neighboring counties’
HPAI outbreaks. The spatial lag model is expressed as

Y = ρWY + Xβ + ε, ε ∼ N
(

0, σ2
)

, (3)
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where Y is an N × 1 vector of the dependent variable representing the number of occur-
rences of HPAI in a county, W is an N × N spatial weight matrix describing the spatial
proximity between counties, WY denote the endogenous interaction effects among the
occurrences of HPAI in nearby counties, and X denotes an N× k matrix of the independent
variables that are expected to be associated with the occurrence of HPAI. The parameter
ρ represents the spatial autoregressive coefficient that measures the strength of spatial
dependence between neighboring counties, β is a vector of parameters to be estimated,
and ε is assumed to be an independently and identically distributed error term with zero
mean and constant variance σ2. The reduced form of Equation (3) is

Y = (I − ρW)−1Xβ + (I − ρW)−1ε, (4)

where each inverse can be expressed as an infinite series, shown in Equation (5).

(I − ρW)−1 = I + ρW + ρ2W2 + · · · ≈ 1
1− ρ

,
(
0 ≤ wij ≤ 1, |ρ| < 1

)
. (5)

The spatial lag model directly reflects spatial autocorrelation among the dependent
variables and the regression parameter β with a hybrid coefficient given by (I − ρW)−1 × β
(Equation (4)). Therefore, the occurrence of HPAI in a specific county implies the change
of the characteristics of the county and the influence of the characteristics onto adjacent
surrounding counties as governed by the spatial weight matrix. Here, (I − ρW)−1 denotes
a spatial multiplier, implying either an indirect or external effect on spatial interactions [23].

If there exists a spatial dependency between the errors in the OLS model, the covari-
ance of these errors increases, and the model becomes inefficient. A spatial error model
(SEM) can control the spatial autocorrelation of the errors by assigning a spatial weight
matrix in the error terms. The standard form of the spatial error model is presented in
Equation (6).

Y = Xβ + e, e = λWe + ε, ε ∼ N
(

0, σ2 I
)

, (6)

where We denotes the interaction effects among the error terms of neighboring counties, and
λ is the spatial autocorrelation coefficient that measures the strength of spatial dependence
between neighboring counties’ unobserved characteristics. As in the spatial error model,
Equation (7) can be derived by modifying Equation (6).

Y = Xβ + (I − λW)−1e, (7)

(I − λW)−1 = I + λW + λ2W2 + · · · ≈ 1
1− λ

,
(
0 ≤ wij ≤ 1, |λ| < 1

)
, (8)

where the matrix (I − λW)−1 is the spatial multiplier that can be expressed as an infinite series.
A general spatial model (SARMA) contains spatial dependence in both the dependent

variable and the random error terms that account for both endogenous interaction effects
and an interaction effect among the error terms. The general spatial model and its reduced
form can be expressed as

Y = ρWY + Xβ + λWe + ε, ε ∼ N
(

0, σ2 I
)

. (9)

It is worth mentioning that the general spatial model is appropriate when both spatial
interaction effects appear to be statistically significant (ρ 6= 0 and λ 6= 0) but reduces to
either the SAR model if ρ 6= 0 and λ = 0 or the SEM model if ρ = 0 and λ 6= 0. To
estimate these two different types of interaction effects of spatial characteristics on the
spread of HPAI occurrences, a maximum likelihood (ML) estimator is used to estimate
the models, thereby allowing us to distinguish the explanatory power of the alternative
interaction effects.
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3.3. Testing the Goodness of Fit of the Model

To select the most appropriate model among the three competing spatial models (SAR,
SEM, and SARMA), we tested the fitness of the models through the bottom-up approach
proposed by Anselin and Rey [24]. The bottom-up approach involves firstly estimating
the OLS model and then conducting the LM test and the robust LM test to establish the
autocorrelation of dependent variables and errors of the OLS model. There are three types
of LM test—LM–lag, LM–error, and LM–SARMA. The LM–lag test verifies the spatial
autocorrelation between dependent variables, and the LM–error test verifies the spatial cor-
relation between error terms. LM–SARMA is an alternative for a higher-order model of the
spatial autoregressive moving average [25]. If the LM statistics are statistically significant
in both the spatial lagged and spatial error models, a more statistically significant model is
used through the robust LM test. In general, the explanatory power and goodness of fit of
the general regression model are often determined by R2. However, the spatial regression
model yields a pseudo-R2 value that is not useful for a spatial model. Accordingly, the
values of log likelihood, Akaike information criterion (AIC), and Bayesian information
criterion (BIC) are used to determine the goodness of fit of the spatial models. All our
analyses were conducted using the R software using the “spdep” package [26–28].

4. Results and Discussion

Table 2 presents results of the Moran’s I test results for spatial autocorrelation. The
OLS residuals were used to calculate Moran’s I value. As shown in Table 2, Moran’s I
statistic was 0.2283 and statistically significant at the 1% significance level. This implies
that there is strong evidence that HPAI occurrence by county in Korea exhibits spatial
autocorrelation. Since spatial autocorrelation of HPAI is confirmed by Moran’s I test, it is
therefore appropriate to apply the spatial econometric models rather than the OLS model.

Table 2. Moran’s I statistics.

Moran’s I Z-Score Expectation Variance p-Value

0.2283 5.1670 −0.0062 0.0021 0.0001

To specify the spatial econometric models, the LM and robust LM test statistics were
used to determine between the alternative models. The SAR LM–lag and the SEM LM–error
values were both statistically significant at the 1% level. The SAR robust LM value was
26.7410 and statistically significant at the 1% significance level. However, the SEM robust
LM–error was not statistically different from zero. Based on the LM tests, estimating a
spatial econometric model would be more appropriate than a linear model by OLS. For
completeness, all three spatial models (SAR, SEM, and SARMA) were estimated.

The AIC and BIC values are used to determine which spatial model best fits the
empirical data. The AIC and BIC measures for the SAR, SEM, and SARMA models are
912.371, 930.141, and 911.528, and 915.936, 933.703, and 915.298, respectively. The SAR
model and the SARMA model both equally provide the “best fit” based upon both criteria.
The estimation results from both SAR and SARMA are comparable since the coefficients
have the same direction and magnitude. The SARMA model is more appropriate when
both spatial interaction effects are statistically significant (ρ 6= 0 and λ 6= 0), which is the
case, capturing the spatial correlation among the error terms that was negatively associated
with HPAI occurrence.

The estimation results from OLS, SAR, SEM, and SARMA models are presented in
Table 3. The regression estimate representing the estimated ρ value under the SARMA model
is 0.5624. This estimate is statistically significant at the 1% level. This regression coefficient
implies that 56.24% of the occurrence of HPAI in a specific area is influenced by infection from
neighboring areas. The spatial ripple effect is 2.29 ((I − ρW)−1 =

(
1

1−0.5624

)
= 2.2852). The

spatial ripple effect represents the extent to which spatially independent variables affect
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the spread of HPAI. This value indicates adjacent counties moderately affect the spread
of HPAI.

Table 3. Estimation results for highly pathogenic avian influenza (HPAI) outbreaks.

Independent Variable OLS Model Spatial Lag Model Spatial Error Model General Spatial
Model

Constant
15.700 ** 12.499 ** 14.815 ** 11.376 **
(6.342) (5.327) (7.217) (4.646)

Laying hens 0.006 *** 0.005 *** 0.005 *** 0.005 ***
(0.001) (0.001) (0.001) (0.001)

Broilers
0.002 *** 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Breeders
0.004 0.004 * 0.005 * 0.004 *

(0.003) (0.002) (0.003) (0.002)

Ducks
0.023 *** 0.020 *** 0.021 *** 0.018 ***
(0.004) (0.004) (0.004) (0.003)

Poultry farms 0.052 ** 0.040 ** 0.042 * 0.033 *
(0.023) (0.019) (0.022) (0.018)

Temperature 0.239 0.081 −0.028 0.130
(0.291) (0.244) (0.312) (0.212)

Precipitation −0.005 −0.004 −0.006 * −0.002
(0.004) (0.004) (0.004) (0.003)

Relative humidity −0.107 * −0.099 * −0.082 −0.109 **
(0.063) (0.053) (0.066) (0.047)

Migratory birds 1.042 1.300 * 1.310 1.221 *
(0.916) (0.768) (0.859) (0.702)

Livestock vehicles
−0.016 *** −0.011 *** −0.011 *** −0.010 ***

(0.004) (0.003) (0.004) (0.003)

Population growth 0.078 0.032 0.041 0.004
(0.142) (0.120) (0.129) (0.111)

Migration 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Population density 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Aging level −0.313 *** −0.201 *** −0.229 *** −0.172 ***
(0.077) (0.066) (0.073) (0.063)

Urbanization
−0.066 *** −0.047 ** −0.050 ** −0.043 **

(0.025) (0.021) (0.022) (0.020)

ρ — 0.463 *** — 0.562 ***
(0.070) (0.079)

Λ
— — 0.570 *** −0.343 *

(0.084) (0.183)

Adj. R2 0.612 — —

Log likelihood −455.910 −439.187 −448.071 −437.764

AIC 943.819 912.371 930.141 911.528

BIC 947.171 915.936 933.703 915.299

Notes: *, **, *** represent statistical significance at the 10%, 5%, and 1% levels. Standard errors are shown in parenthesis.
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The number of farms affected by HPAI averaged 2.59 per county with a range of
0 to 46 HPAI affected farms per county (Figure 2). Figure 2b provides visualizations of the
predictions (with uncertainties) made by the SARMA model compared with the actual data
in Figure 2a. The results in Figure 2b are comparable with those in Figure 2a, suggesting
that the SARMA model’s prediction accuracy was well.
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The coefficients for the number of laying hens and ducks are 0.005 and 0.018, re-
spectively, and both are statistically significant at the 1% level. This implies that for
larger numbers of laying hens and ducks, the likelihood of the HPAI occurrence increases.
The number of ducks has a larger estimated effect on HPAI occurrences. Similar results
regarding the significant effect of ducks on the spread of HPAI have been previously
reported [29–32].

Temperature and precipitation were found to be not statistically significant at affecting
the spread of HPAI, while relative humidity was significant at the 5% level. The coefficient
of relative humidity is −0.109, which indicates that the occurrence of HPAI, on average,
increases by about 1 farm/county for every 10% reduction in relative humidity, holding
other factors constant. This implies that HPAI is affected by relative humidity and that dry
areas are more vulnerable to HPAI. This is consistent with the findings from the analysis of
Vietnam’s Red River Delta region where humidity was also found to have a significant and
negative effect on the spread of highly pathogenic diseases [16].

The number of livestock vehicle registrations is statistically significant at the 1% level.
The coefficient on the livestock vehicle registrations is −0.010, which indicates that the
HPAI decreases by about 10 farms per county for additional 1000 registered livestock
vehicles. This finding suggests that there are concerns regarding the occurrence and spread
of disease in provinces where registered livestock vehicles are small.

Population growth rates, population movements, and population densities reflecting
regional demographics were not found to be significant. However, in a risk-factor analysis
of HPAI in Thailand and China, the increase in population density was found to negatively
affect the occurrence of HPAI in each country [13,15]. On the other hand, the coefficient
of the aging level is −0.172, which is statistically significant at the 1% level, indicating
that the occurrence of HPAI decreases by 0.172 in regions where the aging population
is 1% higher. In addition, the level of urbanization that reflects the social characteristics
of counties in Korea is also high. Our results indicate that HPAI incidences decrease by
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0.043 farms/county in regions where the urbanization level was 1% under the regional
average. HPAI affects a greater number of farms in rural areas. This is plausible because
livestock are more concentrated in rural areas than in urban cities.

5. Conclusions

In this study, the spatial correlation between the occurrence of highly pathogenic avian
influenza (HPAI) and characteristics of 162 Korean counties in 2016–2017 was analyzed.
This was to understand the spread of HPAI better and improve the efficiency of the defense
against HPAI. Our results suggest the existence of spatial dependency among counties
with respect to the occurrence of HPAI. A general spatial model (SARMA) that accounts for
both the spatial autocorrelation of the spread of HPAI between counties and the correlation
among the error terms of neighboring counties was the best model to determine the
factors influencing the spread of HPAI. After examining the spatial ripple effect of HPAI,
56.24% of the HPAI occurrence in a particular county was found to be influenced by
surrounding counties. Coherent policies implemented in a timely manner to minimize
potential sources from spreading HPAI from the surrounding counties are necessary to
limit the potential damage.

The effect of regional characteristics of counties on the spread of HPAI was also tested.
We found that poultry numbers of laying hens, breeders, and ducks have a statistically
significant effect on the spread of HPAI. Therefore, as in [29], increased efforts to improve
the raising environment found on those poultry farms are recommended to mitigate
and prevent the spread of HPAI. Particularly, we found ducks as the most vulnerable to
HPAI. This result suggests that counties intensively breeding ducks should be the focus
of surveillance and improved methods of disinfection to mitigate the spread of HPAI
during outbreaks.

In terms of the climatic factors, the relative humidity of an area was found to affect the
occurrence of HPAI. A current policy is to increase inspections to curb the spread of HPAI
when humidity forecasts are favorable for increased HPAI spread. Increasing the number
of preliminary inspections based upon humidity forecasts in municipalities located inland,
such as Gyeonggi and Chungchung Provinces, may prevent or retard HPAI outbreaks since
these areas are more susceptible to the effects of humidity than coastal areas.

For livestock vehicle registrations, our results indicated that the spread of HPAI is
less likely to occur in provinces with a larger number of livestock vehicle registrations.
The coefficient of livestock vehicles is expected to be positive because livestock vehicles
potentially mediate how HPAI spreads [9]. However, in the present study, livestock vehicle
registrations were found to be negatively correlated with HPAI outbreaks. This may
be because the data for livestock vehicle registration were not county level. It was at a
provincial level and might not have captured the actual movements of the vehicles at the
county level and could include vehicles not necessarily involved in the poultry industry.
For example, there are no HPAI occurrences in Gyeongsang Province, where the number of
registered livestock vehicles is the largest, while there are numerous HPAI occurrences in
Chungchung Province where there are fewer registered livestock vehicles.

The influence of aging by region reveals that the higher the aging level, the lower the
likelihood of the occurrence of HPAI. Whether or not this is a result of breeding practices
of elderly farmers remains to be determined. HPAI is more common in rural areas where
urbanization is low. Therefore, to promptly prevent the spread of HPAI, we suggest that
there is a need to reinforce prevention-centered activities/measures by focusing on rural
areas and counties with lower urbanization levels.

This study provides important insights that may be useful for county-specific pre-
ventive measures for HPAI outbreaks by estimating the spatial ripple effect of various
characteristics at the county level. This study also estimated the spatial dependence of
the spread of HPAI across Korean counties. Since we did not have access to panel data
that could account for unobserved spatial heterogeneity, this is an important caveat. In
addition, our analysis is restricted to the 2016–2017 outbreak, which was more damaging,
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and not the previous ones that occurred in Korea. This may limit the generalizability of
our findings. To build upon our results, future studies should employ panel datasets and
incorporate other outbreaks of the HPAI to identify spatial and temporal effects of HPAI
outbreaks in Korea and other countries.
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