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Abstract: Anti-vaccination attitudes have been an issue since the development of the first vaccines.
The increasing use of social media as a source of health information may contribute to vaccine
hesitancy due to anti-vaccination content widely available on social media, including Twitter. Being
able to identify anti-vaccination tweets could provide useful information for formulating strategies
to reduce anti-vaccination sentiments among different groups. This study aims to evaluate the
performance of different natural language processing models to identify anti-vaccination tweets
that were published during the COVID-19 pandemic. We compared the performance of the bidi-
rectional encoder representations from transformers (BERT) and the bidirectional long short-term
memory networks with pre-trained GLoVe embeddings (Bi-LSTM) with classic machine learning
methods including support vector machine (SVM) and naïve Bayes (NB). The results show that per-
formance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%,
F1 score = 95.5%, and AUC = 84.7%. Bi-LSTM model performance showed: accuracy = 89.8%,
precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel per-
formed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%.
Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%,
and AUC = 62.7%. In conclusion, the BERT models outperformed the Bi-LSTM, SVM, and NB models
in this task. Moreover, the BERT model achieved excellent performance and can be used to identify
anti-vaccination tweets in future studies.

Keywords: deep learning; neural network; LSTM; BERT; transformer; stance analysis; vaccine

1. Introduction

Vaccination is one of the most important public health achievements that save millions
of lives annually and helps reduce the incidence of many infectious diseases, including
eradicating smallpox [1]. However, anti-vaccination attitudes still exist in the population.
A study by the American Academy of Pediatrics showed that 74% of pediatricians encoun-
tered a parent who declined or postponed at least one vaccine in a 12-month period [2]. In
addition, the prevalence of non-medical vaccination exemption has increased in the last
two decades, especially in states with less strict exemption criteria in the U.S. [3]. Vaccine
hesitancy was also named as one of the top ten threats to global health by the World Health
Organisation in 2019 [4]. During the COVID pandemic, resulting in more than 120 million
infections, 2.66 million deaths (as of 17 March 2021), and the development of safe and
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effective vaccines, it is expected that most people would be willing to vaccinate. However,
a study in New York showed that only 59% reported that they would get a vaccine and 53%
would give it to their children [5]. Other surveys in Australia showed a higher willingness
to vaccinate, about 85% [6] and 75% [7].

The increasing use of social media as a source of health information may contribute to
vaccine hesitancy due to anti-vaccination content being widely available on social media [8].
A report found that about 31 million people were following Facebook accounts of ‘anti-
vaxxers’ in 2019, and about 17 million people were subscribing to similar accounts on
YouTube [9]. Since then, the number of people following anti-vaxxer accounts on social
media has increased by at least 7.8 million people [9]. The report also pointed out that
those who received information on the COVID pandemic from social media were more
likely to be more hesitant about the vaccine [9]. Another study found that uptake of
influenza vaccine was inversely associated with the use of Twitter and Facebook for health
information [10].

Research that can make use of the huge amount of rich data generated from social
media, such as Twitter, will be able to provide useful information for formulating strategies
that could help reduce anti-vaccination sentiments among different groups. One of the
first tasks in this context is to develop a text classification method that can identify anti-
vaccination tweets on Twitter. However, given the text-based format and the large amount
of data, it is quite a challenging task to handle. An effective approach that was adopted
in several Twitter studies on anti-vaccination was to use machine learning techniques.
However, most of these studies used traditional machine learning techniques such as
support vector machine (SVM), naïve Bayes (NB), and decision tree [11–16]. A few other
studies did not describe what machine learning techniques they used [17,18] whereas one
study used hashtag scores instead of a machine learning technique [19]. Although these
methods may generate comparable results in some machine learning tasks compared to
deep learning (or deep neural network) [20,21]. Deep learning has been shown to produce
state-of-the-art results in many natural language processing tasks [22]. However, only two
studies applied deep learning to identify tweets against HPV vaccines [23,24].

Therefore, this study aims to evaluate the performance of different natural language
processing models to identify anti-vaccination tweets that were published during the
COVID-19 pandemic with the main focus on the bidirectional long short-term memory
networks with GLoVe embeddings [25] (Bi-LSTM) and bidirectional encoder representa-
tions from transformers (BERT). We also compared the performance of these models with
those of classic machine learning methods including SVM and NB. The finding from this
study provides useful information to determine an appropriate model for use to identify
anti-vaccination tweets in future studies.

2. Related Work

Zhou et al. (2015) [15] used a random sample of 884 tweets to develop a supervised
classifier that could identify anti-vaccine tweets. Particularly, the SVM method with a
radial basis function kernel was used. Forward selection and backward elimination were
used to select features that were most likely to discriminate between the two classes. Using
only the content of the tweet, the top performer achieved an accuracy of 89.8%.

Mitra et al. (2016) [14] also developed a vaccination stance classifier by training an
SVM with 8000 tweets. However, they only used tweets with the same ratings by all three
raters as well as only retained tweets with a predicted probability greater than 90%. The
accuracy of this classifier was 84.7%.

Another study using SVM was conducted by Shapiro et al. (2017) [13]. However,
the classification was implemented in two stages. First, they used 1000 manually labeled
tweets to develop a binary classifier that could identify tweets expressing concerns or no
concerns about vaccines. This classifier achieved an F1-score of 93% for concern and 81%
for non-concern. Then they used another 1000 manually labeled tweets to build another
classifier that could identify tweets with specific types of concerns. The performance of
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this classifier was widely different with F1 scores ranging from 0.22 to 0.92 for each type
of concern.

Kunneman et al. (2020) [16] used multinomial naïve Bayes and SVM with a linear
kernel to develop a vaccine stance classifier. The classifier was trained on 8259 labeled
tweets. The results suggested that SVM as a binary classifier outperformed NB for the task
with the highest F1-score of 34% for SVM and 27% for NB. The highest AUC was 63% for
SVM and 58% for NB.

Du et al. (2017) [26] also found that SVM outperformed NB and random forest on
the ability to identify negative tweets against HPV vaccines. The SVM models used a
radial basis function kernel and were trained with 6000 labeled tweets. Compared with the
standard SVM model (a micro-averaging F1 score of 67.32%), the hierarchical classification
SVM model achieved a micro-averaging F1 score of 72.08%.

For the purpose of identifying anti-vaccination tweets, we found two studies that
developed deep learning models with the use of transfer learning. Du et al. (2020) [23]
compared the performance of extremely randomized trees (a classic machine learning
method) with deep-learning-based methods including Attention-based RNN, Attention-
based ELMo, and BERT. The models were developed using 6000 labeled HPV-related tweets.
The results showed that top performers were deep-learning-based models with the mean
F1 score between 70% and 81%. The other study was conducted by Zhang et al. (2020) [24].
This study used deep learning models with three transfer learning approaches. The first
was to use static embeddings (Word2Vec, GloVe, and FastText) [27] and embeddings from
language models (ELMo) [28] processed by the bidirectional gated recurrent unit with
attention. The other two were to fine-tune generative pre-training (GPT) and BERT models.
6000 tweets relating to HPV were used for the experiments. The results showed that the
BERT model was the top performer with a micro-average F1 score of 76.9%.

3. Methods
3.1. Data Source

Twitter is a social networking platform where users post messages and respond
to messages from other users. These messages are known as tweets. A tweet has an
original length of 140 characters but since November 2017, the length was doubled to
280 characters [29]. A Twitter dataset collected by Banda et al. 2020 was used [30]. Details
of the dataset (version 24) were published elsewhere [30]. In brief, tweets were collected
between 1 January and 23 August 2020 using a Twitter Stream API which allows public
access to a one percent sample of the daily stream of Twitter. Although the dataset includes
635,059,608 tweets and retweets in the full version, the clean version (no retweets) with
150,657,465 tweets was used. After removing tweets not in English, 75,797,822 tweets
were hydrated using the Tweepy library in Python 3 (https://www.tweepy.org, accessed
on 10 April 2021). A total of 1,651,687 tweets containing “vaccin”, “vaxx”, or “inocul”
were extracted.

3.2. Data Processing and Labeling

Texts were changed to lowercase. Twitter handles, URLs, hyphens, hashtags (with at-
tached words), numbers, and special characters were removed. A list of English stop words
(e.g., is, that, has, a, do, etc.) from the NLTK library (https://www.nltk.org, accessed on 10
April 2021) were used to remove stop words from the tweets (negations including “not”
and “no” were not removed given the purpose was to identify anti-vaccination tweets).
Lemmatization, a process of generating the canonical form of a word, was implemented
for words in all tweets. Tweets with no content after being processed were removed. A
total of 1,474,276 remained.

A systematic random sampling method was used to select 20,854 tweets from 1,474,276
tweets for labeling. This sampling method ensures that tweets across the different times
during the pandemic were selected. Tweets were labeled as either “anti-vaccination” or
“other” (i.e., neutral, news, or ambiguous) as the model was aimed to use for stance analysis.

https://www.tweepy.org
https://www.nltk.org
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In stance analysis, a tweet is determined to be in favor or against a target [31]. This is
different from sentiment analysis in which a tweet is classified as positive or negative.
A negative tweet may not mean anti-vaccine while a positive tweet may not mean pro-
vaccine. Ten researchers worked in pairs to label the tweets. Differences in labeling were
checked and decided by a third researcher. The average agreement between the two raters
was 91.04% ranging between 85.90% and 94.48% (Supplementary file). The percentage of
anti-vaccine tweets was 9.1%. The data were then split into three parts: training set (70%),
development set (15%), and test set (15%). The training and development sets were used to
build the model, the performance of which was evaluated on the test set.

3.3. Bidirectional Long Short-Term Memory Networks (Bi-LSTM)

Recurrent neural networks (RNN) have been used in many natural language process-
ing tasks due to their ability to handle sequential data with various lengths. However,
standard RNNs have limitations. First, as the inputs are processed in order, the outputs are
mostly based on only previous context (i.e., words) [32]. The second issue is referred to
as difficulty in learning long-term dependencies when the sentences are too long [32,33].
For the first problem, a solution is to use bidirectional RNN [32,34]. Bidirectional RNNs
combine two unidirectional RNNs that process data in two opposite directions. As such, at
every time step, the bidirectional RNN has all information before and after it [34]. For the
second problem, LSTM units can be used. An LSTM unit is comprised of a cell that can
remember information over time intervals, and a set of gates (i.e., input, forget, and output
gates) that are used to control which information flows into and out of the cell [32,35]. Ad-
ditionally, word embeddings from pre-trained models were used to increase performance.
Specifically, we used the GloVe model, pre-trained with 2 billion tweets, 27 billion tokens,
and 200 dimensions [25].

The RNN with one bidirectional LSTM layer was used as increasing the network size
did not improve the performance. We used a dropout rate of 0.1, Adam with weight decay
(AdamW) optimizer, and binary cross-entropy loss function. We also experimented with
a learning rate = (0.00003, 0.0001, 0.001), the number of units of the bidirectional LSTM
layer = (256, 128, 64), and the number of epochs = (10, 20, 30, 40, 50, 60, 70, 80). Class
weights were also calculated and used in the training.

3.4. Bidirectional Encoder Representations from Transformers (BERT)

Although static word embedding methods such as GloVe and word2vec have obtained
great achievement in many natural language processing tasks, it does not take into account
the order of words in the sentence. Also, the same word may have different meanings
depending on the context of the sentence. This problem is addressed with dynamic
embedding methods such as BERT [36] that produce vector representations for words
conditional on the sentence context. BERT has been shown to achieve new state-of-the-art
results on natural language processing tasks [36]. In this study, we used the BERT pre-
trained uncased model with 12 hidden layers (transformer blocks), a hidden size of 768, and
12 attention heads (https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3,
accessed on 10 April 2021). We also experimented with different learning rate = (0.0003,
0.0001) and number of epochs = (1, 2, 3, 4, 5).

3.5. Support Vector Machine (SVM) and Naïve Bayes (NB) Classifier

SVM [37] and NB [38] are traditional machine learning methods that have been used
in text classification tasks [13–15]. Some studies showed that the performance of SVM
and NB is comparable to neural networks [20,21] while the opposite results were found
in the other studies [39,40]. In this study, we used the term frequency-inverse document
frequency method to vectorize the text data. In addition, we experimented with four SVM
kernels = [linear, poly, radial basis function, and sigmoid] but used default values (as
reported in c-support vector classification, the Scikit-learn package) for other parameters.
For NB, we used the complement NB and multinomial NB.

https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3
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3.6. Metrics for Evaluating Performance

We reported the following metrics for evaluating the performance of all machine
learning models. Accuracy is the proportion of tweets correctly predicted by the model
over all of the tweets. Precision (also named positive predictive value) is the proportion of
anti-vaccination tweets that are correctly predicted by the model over all anti-vaccination
predictions. Recall (also named sensitivity) is the proportion of anti-vaccination tweets
that are correctly predicted by the model over all anti-vaccination tweets. As the data are
imbalanced (i.e., the percentage of anti-vaccination tweets is small), accuracy may not be a
good metric. Therefore, we used the F1 score as the primary metric. We also reported the
area under the receiver operating characteristic curve (AUC) which is drawn based on true
positive and false-positive rates.

F1 score = 2 × Precision × Recall
Precision + Recall

(1)

Accuracy =
True positive + true negative
Total number o f predictions

(2)

Precision =
True positive

True positive + f alse positive
(3)

Recall =
True positive

True positive + f alse negative
(4)

4. Results

Table 1 shows the performance of the Bi-LSTM models on the development set. We
only reported results for Bi-LSTM models with 128 units as these outperformed those
with 64 and 256 units. In general, the performance of these 128-unit models was not very
different across learning rates and epochs. The top performer was the Bi-LSTM-128 model
that used a learning rate of 0.0001 and was trained for 60 epochs. For this model, the F1
score was 51.7%. AUC was also quite high (87.9%).

Table 2 shows the performance of the BERT models on the development set. In general,
all BERT models performed very well. F1 scores for all models were above 95%. Although
AUC was also high, the models seem to overfit after three epochs. The top performer based
on the F1 score was the model which was trained with a learning rate of 0.0001 and for
3 epochs.

Table 3 shows the performance of the SVM and NB models on the development set.
The SVM model with linear kernel outperformed the other SVM models with an F1 score
of 32.2% and AUC of 83.9%. The complement NB model, which achieved an F1 score of
30.5% and AUC of 65.2%, outperformed the multinomial NB model. Although F1 scores
were similar between the SVM model with linear kernel and the complement NB (32.2%
vs. 30.5%, respectively), the SVM model with linear kernel achieved much higher AUC
compared to the complement NB (83.9% vs. 65.2%, respectively).

Table 4 shows the performance of the top Bi-LSTM, BERT, SVM, and NB models that
were evaluated on the test set. The BERT model outperformed the other models with an F1
score of 95.5% which is more than two times higher than the Bi-LSTM model (45.5%) and
three times higher than the SVM with the linear kernel (31.2%) and the complement NB
(27.1%) models. However, the performance of AUC for the BERT model was lower when
evaluating with the test set (84.7%) compared to the development set (90.8%). AUC for the
complement NB model was also low at 62.7%.
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Table 1. Performance of the Bi-LSTM-128 models on the development set.

Learning Rate Epoch Accuracy Precision Recall F1 Score AUC

0.00003

10 77.2% 26.2% 74.9% 38.9% 84.2%
20 78.7% 28.1% 76.9% 41.1% 85.1%
30 79.8% 28.7% 73.3% 41.2% 86.3%
40 82.3% 31.2% 68.6% 42.9% 87.1%
50 82.3% 31.3% 69.3% 43.2% 87.6%
60 82.7% 31.8% 68.6% 43.4% 87.7%
70 81.3% 30.1% 70.6% 42.2% 87.6%
80 82.5% 31.9% 71.3% 44.0% 88.0%

0.0001

10 80.7% 29.9% 73.9% 42.6% 87.2%
20 80.5% 29.9% 75.6% 42.8% 88.3%
30 80.8% 30.1% 74.9% 43.0% 88.0%
40 85.8% 37.0% 66.3% 47.5% 88.2%
50 89.7% 47.2% 53.1% 50.0% 86.2%
60 88.4% 43.2% 64.4% 51.7% 87.9%
70 86.1% 37.4% 64.0% 47.2% 87.3%
80 88.8% 43.9% 54.1% 48.4% 85.0%

0.001

10 84.5% 35.2% 71.3% 47.1% 88.1%
20 84.7% 35.1% 68.0% 46.3% 86.9%
30 90.0% 47.9% 41.6% 44.5% 83.8%
40 89.1% 44.6% 52.1% 48.1% 80.4%
50 90.7% 53.3% 34.3% 41.8% 74.5%
60 89.6% 46.2% 42.6% 44.3% 78.3%
70 88.6% 42.1% 47.2% 44.5% 79.4%
80 88.7% 42.5% 46.5% 44.4% 77.5%

Table 2. Performance of the BERT models on the development set.

Learning Rate Epoch Accuracy Precision Recall F1 Score AUC

0.00003

1 91.7% 92.5% 98.8% 95.5% 90.7%
2 91.8% 94.3% 96.8% 95.5% 91.5%
3 92.2% 94.6% 96.8% 95.7% 86.5%
4 92.1% 94.5% 96.9% 95.7% 83.7%
5 91.7% 94.5% 96.4% 95.4% 79.8%

0.0001

1 92.1% 93.5% 98.0% 95.7% 91.0%
2 92.0% 94.1% 97.2% 95.6% 91.4%
3 92.5% 94.5% 97.3% 95.9% 90.8%
4 92.1% 94.5% 96.9% 95.7% 84.6%
5 92.0% 94.4% 96.9% 95.6% 82.1%

Table 3. Performance of the SVM and NB models on the development set.

Accuracy Precision Recall F1 Score AUC

SVM-linear 91.7% 20.5% 75.6% 32.2% 83.9%

SVM-poly 90.8% 9.2% 66.7% 16.2% 78.9%

SVM-rbf 91.1% 12.5% 74.5% 21.5% 83.0%

SVM-sigmoid 91.5% 17.5% 75.7% 28.4% 83.8%

Complement NB 88.8% 25.4% 38.1% 30.5% 65.2%

Multinomial NB 90.6% 5.6% 68.0% 10.4% 79.4%
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Table 4. Performance among Bi-LSTM, BERT, SVM, and NB on the test set.

Accuracy Precision Recall F1 Score AUC

Bi-LSTM-128, learning
rate = 0.0001, epoch = 50 89.8% 44.0% 47.2% 45.5% 85.8%

BERT, learning rate = 0.0001,
epoch = 3 91.6% 93.4% 97.6% 95.5% 84.7%

SVM-linear 92.3% 19.5% 78.6% 31.2% 85.6%

Complement NB 88.8% 23.0% 32.8% 27.1% 62.7%

5. Discussion

This study aimed to evaluate the performance of machine learning models on iden-
tifying anti-vaccination tweets that were obtained during the COVID-19 pandemic. The
findings showed that BERT models outperformed the Bi-LSTM, SVM, and NB models
across all performance metrics (i.e., accuracy, precision, recall, F1 score, and AUC). The next
top performer was the Bi-LSTM deep learning models. Classic machine learning models
including SVM and NB models did not perform as well on this task of identifying the
anti-vaccination tweets compared to the BERT and Bi-LSTM models.

The BERT models did very well on this text classification task with four of five metrics
being above 90% and an AUC of 84.7%. This is higher than the performance of systems
using the classic SVM method (accuracy less than 90%) [14,15,18]. Our finding is consistent
with other studies that deep learning-based models outperformed classic machine learning
methods on this task [23,24]. Moreover, the finding that BERT models outperformed other
deep learning models is consistent with that by Zhang et al. (2020) [24]. The BERT model
also achieved an F1 score higher than the deep learning models by Du et al. (2020) (mean
F1 scores from 70% to 81%) [23] and Zhang et al. (2020) (F1 score 76.9%) [24]. These
results show that the BERT models were extremely good at identifying anti-vaccination
tweets even in the case that the data are imbalanced (i.e., anti-vaccination tweets were
a small percentage of all vaccination tweets). With a basic BERT model, we have been
able to achieve an F1 score higher than F1 scores achieved by a more complex static word
embedding system, which was the top performer (average F1 score of 67.8%) among the
19 submissions to a supervised stance analysis task [41]. We suggest that the BERT model
should be considered as a method of choice for stance analysis on large Twitter datasets.
This finding is not surprising given that the BERT model has been shown to outperform
other state-of-the art natural language processing systems and even human performance
on eleven natural language processing tasks [36].

In this study, the average agreement rate between coders (91.04%) was comparable to
that in other studies which were 85.1% by Du et al., 2020 [23], 95% by Zhou et al., 2015 [15],
and 100% by Tomeny et al., 2017 [18]. However, the number of tweets used in this study
(20,854 tweets) was larger than those used in other studies such as 884 tweets by Zhou et al.,
2015 [15], 2000 tweets by Tomeny et al., 2017 [18], 6000 tweets by Du et al., 2020 [23], and
8000 tweets by Mitra et al., 2016 [14] which is a strength of this study.

This study has some limitations. As public access to tweets is limited due to rules
imposed by Twitter, the tweets used in this study accounted for only one percent of daily
tweets and therefore, may not be representative for all of the tweets. In addition, due to lack
of time and resources needed for training, model fine-tuning was limited to a few learning
rates and the number of epochs, other parameters were not tuned. The performance of
these models might have been improved further if the tuning had been conducted more
widely. However, we consider that the performance of BERT models in this study was
excellent and good enough for use to identify anti-vaccination tweets in future studies.
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6. Conclusions

The BERT models outperformed the Bi-LSTM, SVM, and NB models on this task.
Moreover, the BERT model achieved excellent performance and can be used to identify
anti-vaccination tweets in future studies.
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