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Abstract: Background: Obesity prevalence has become one of the most prominent issues in global
public health. Physical activity has been recognized as a key player in the obesity epidemic. Ob-
jectives: The objectives of this study are to (1) examine the relationship between physical activity
and weight status and (2) assess the performance and predictive power of a set of popular machine
learning and traditional statistical methods. Methods: National Health and Nutrition Examination
Survey (NHANES, 2003 to 2006) data were used. A total of 7162 participants met our inclusion
criteria (3682 males and 3480 females), with average age ranging from 48.6 (normal weight) to 52.1
years old (overweight). Eleven classifying algorithms—including logistic regression, naïve Bayes,
Radial Basis Function (RBF), local k-nearest neighbors (k-NN), classification via regression (CVR),
random subspace, decision table, multiobjective evolutionary fuzzy classifier, random tree, J48, and
multilayer perceptron—were implemented and evaluated, and they were compared with traditional
logistic regression model estimates. Results: With physical activity and basic demographic status,
of all methods analyzed, the random subspace classifier algorithm achieved the highest overall
accuracy and area under the receiver operating characteristic (ROC) curve (AUC). The duration
of vigorous-intensity activity in one week and the duration of moderate-intensity activity in one
week were important attributes. In general, most algorithms showed similar performance. Logistic
regression was middle-ranking in terms of overall accuracy, sensitivity, specificity, and AUC among
all methods. Conclusions: Physical activity was an important factor in predicting weight status,
with gender, age, and race/ethnicity being less but still essential factors associated with weight
outcomes. Tailored intervention policies and programs should target the differences rooted in these
demographic factors to curb the increase in the prevalence of obesity and reduce disparities among
sub-demographic populations.

Keywords: physical activity; obesity; machine learning; disparity

1. Introduction

Over the last decade, the rapid rise in obesity prevalence has become one of the most
prominent issues in global public health [1,2]. In 2015–2016, 39.6% of U.S. adults aged 20
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and older and 18.5% of children and adolescents aged 2–19 were obese [3]. Obesity is of
public health interest because excess fat would result in serious health consequences [4],
including a high risk of hypertension, hypercholesterolemia, Type 2 diabetes [5], certain
cancers [6], and early mortality [4]. As a result, the U.S. spends USD 315.8 billion annually
treating obesity-related illness [7], and obesity is one of the top preventable causes of death
in the U.S. [8].

Physical activity has been recognized as a key player in the obesity epidemic. It was
found that the adherence rate to the physical activity (PA) guideline among U.S. adults
remained low and unchanged between 2007 and 2016 [9]. Nationally representative data
showed that in 2015, only 18% of the obese population met the PA guideline [10]. Previous
evidence has suggested that a small increase in daily moderate-to-vigorous physical activity
(5–10 min) was associated with a lower risk of obesity [11]. It was shown that those
who maintained a healthy weight were consistently more likely to engage in vigorous
physical activity [12]. Additionally, physical activity interventions can benefit children and
adolescents with obesity [13] and reduce obesity-related health risks [14]. However, there
are also other studies suggesting a low or null correlation between PA and weight status.
For example, Lauran and others, using the Behavioral Risk Factor Surveillance System
(BRFSS) and the National Health and Nutrition Examination Survey (NHANES), found
that from 2001 to 2009, for every 1 percentage point increase in PA prevalence, obesity
prevalence was 0.11 percentage points lower after controlling social detriments of health
such as poverty, unemployment, and urbanicity [15]. Using the NHANES dated from 1988
to 2006, Ruth and colleagues revealed factors other than PA could contribute more to the
increase in Body mass index (BMI) over time [16]. A prior systematic review concluded
that, even though the health benefit of PA has been well documented, PA alone might be a
minor determinant of obesity [17,18].

The relationship between physical activity and obesity remains unknown, given the
mixed evidence in the extant literature. Thanks to technological advancement in recent
years, machine learning (ML) has become an available powerful tool to help us identify
the complex risk factors of the obesity problem. ML provides a novel way to analyze
multifactorial data that can be further used to make predictions about the complex inter-
relationships that likely drive the risk for obesity. Comparing with statistical modeling,
machine learning learns from data without relying on rules and by not only focusing
on relationships between variables in a way to circumvent issues regarding overfitting,
collinearity, and assumptions that are crucial in regression models. Machine learning can
handle extremely large volumes of highly complicated big data much better than statistical
modeling [19,20]. The ML techniques, however, have not always performed better in
clinical settings. A systematic review showed no performance benefit of ML models over
traditional logistic regression for clinical prediction models [21]. In addition, there are
some hurdles existing in ML-based prediction models that undermine the usefulness of
this method. For instance, a better performing ML model, in terms of some accuracy
measurements, will often be in conflict with the human understanding of predictions, and
there is no rule of thumb for how much performance improvement is sufficient to justify
using less interpretable estimators [22]. As a result, in the present exploratory study, we
aimed to: (1) examine the relationship between PA and weight status using ML techniques
and objectively measured national PA data and (2) compare the findings and performance
of using ML-based and traditional statistical technique-based methods in assessing the
relationship between PA and weight status. We hypothesized that PA is an important
predictor of whether one encounters obesity or not and that ML models could yield a better
predicting power in comparison with traditional statistical methods.

2. Materials and Methods
2.1. Data

The data used were from the National Health and Nutrition Examination Survey
(NHANES) [23] 2003–2004 and 2005–2006. The NHANES was conducted by the Centers
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for Disease Control and Prevention (CDC). It is a nationally representative cross-sectional
survey that aims to investigate the health and nutrition statuses of Americans [23]. PA
data collected by a physical activity monitor (PAM) contain objective information on the
intensity and duration of common locomotion activities. Respondents wore ActiGraph
AM-7164 devices [24] for seven consecutive days. The device was placed on a flexible
fabric belt that fitted each individual and was worn on the right hip [25]. The advantage of
using objective measurement is to reduce the recall and reporting bias commonly seen in
self-reported surveys. The accelerometer in ActiGraph AM-7164 recorded the sum of the
magnitude of acceleration during every one-minute epoch. The sum of device intensity
values (the magnitude of acceleration) and the duration (the sum of minutes) of PAs of
different intensity during the seven days were both used in the experiments.

The data were collected through both interviews and physical examinations. In this
study, we used the NHANES 2003–2004 (n = 10,122) and 2005–2006 (n = 10,348) mainly
because the PAM was first available in these two waves (2003–2004 and 2005–2006). The
analytic sample was restricted to adults aged 20–85 for whom detailed demographic, PA,
and anthropometric information (including weight and height) was available for two
waves. In addition, we excluded female respondents who were pregnant at the time of the
survey. The final analytical sample totaled 7162.

2.2. Outcome Variables

BMI and overweight or obese weight status are the primary outcomes of this study.
BMI was calculated as the respondent’s weight (kg) divided by squared height (m2).
We adopted the clinical definition of overweight and obesity from 2000 CDC growth
charts—normal weight is defined as 18.5≤BMI < 25 kg/m2, overweight as 25 ≤ BMI < 30 kg/m2,
and obesity as BMI ≥ 30 kg/m2 [26].

2.3. Exposure Variables

PA levels were grouped into five categories: sedentary (intensity < 100 counts/min),
light (100 ≤ intensity < 760 counts/min), lifestyle (760 ≤ intensity < 2200 counts/min), mod-
erate (2200 ≤ intensity < 6000 counts/min), and vigorous (intensity ≥ 6000 counts/min) [27].

2.4. Covariates

Covariates in the analyses were sociodemographic variables including gender, age,
race, education level, marital status, and family poverty income ratio (PIR). Specifically,
race was measured through 5 racial categories: non-Hispanic white, non-Hispanic black,
Mexican American, other Hispanic, and other race (including multi-racial). The education
level was the highest grade or level of school the individual had completed or the highest
degree the individual had received. Marital status was measured on a 6-point scale: married,
widowed, divorced, separated, never married, and living with partner. The family poverty
income ratio (PIR) was defined as the ratio of the individual’s family income to the national
poverty threshold.

2.5. Machine Learning and Statistical Analyses

This present study used eleven classification algorithms and traditional logistic regres-
sion to examine the relationship between PA and weight status. The eleven classification
algorithms were naïve Bayes, radial basis function (RBF), local k-nearest neighbors (KNN),
classification via regression (CVR), random subspace, decision table, multiobjective evolu-
tionary fuzzy classifier, random tree, J48, and multilayer perceptron classification [28,29].
The naïve Bayes classifier is based on Bayes’ theorem [30]. The conditional distribution is
learned under the assumption that all attributes are mutually independent. This technique
has low complexity and high scalability. However, if the independence assumption is
unmet, it may not perform well. The RBF classifier [31] is a supervised learning method. It
uses Gaussian radial basis function networks and normalizes all attributes. The local KNN
classifier detects k-nearest neighbors of one object in the attributes space with local metric
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induction [32,33]. The class to which the object is assigned rests on the classes to which its
nearest neighbors belong. Although the KNN classifier is relatively easy to understand
and implement, its primary disadvantage is that it would not perform well when attributes
are heterogeneous and data are imbalanced. The CVR classifier uses regression models to
evaluate the class value [31]. However, the class value should be binary. Both the random
subspace and J48 classifiers [34] are based on tree-like models. One attribute is tested in
one node. The random subspace classifier is based on decision trees, constructing trees
in randomly chosen subspaces [35]. A decision table classifier builds a decision table and
makes decisions by following the rules in the table [36]. Splitting one decision table into
smaller ones is relatively simple but scaling up is more difficult. Although decision trees are
well suited for classification of obesity, their greedy algorithm generates an approximation
of the optimal decision tree and therefore may be more computationally complex and
complicated to implement [37]. The multiobjective evolutionary fuzzy classifier is a fuzzy,
rule-based model to optimize two objectives [38–40]. It generates comprehensible fuzzy
rules to obtain optimal solutions by maximizing the accuracy and minimizing the number
of fuzzy rules, but generating these rules is time-consuming [38]. Finally, the multilayer
perceptron classifier is a kind of feedforward neural network [38] with high accuracy, but
the computational complexity is high and requires a large amount of data. It utilizes a
backpropagation-supervised learning technique for training [41,42]. The major advantage
of modeling using neural networks is that they are self-adaptive models and are capable of
approximating any functional form as closely as desired [43].

2.6. Terminology of Model Evaluation Tools and Definition

To evaluate the predictability of eleven algorithms, we used overall accuracy, sensi-
tivity, specificity, and the receiver operating characteristic (ROC) curve. Overall accuracy
is defined as the proportion of samples that are predicted correctly. Sensitivity, known
as the true positive rate, is defined as the proportion of actual positives that are correctly
detected. In our study, prediction of overweight or obesity was considered as the positive.
It measured the probability of the classifier to accurately detect the individuals who were
at risk of being overweight (or obese). Specificity is the true negative rate, indicating the
proportion of actual negative (non-overweight or non-obese) individuals who are identi-
fied by the classifiers as negative. Additionally, normal weight was considered to be the
negative. The receiver operating characteristic (ROC) curve is a useful tool for organizing
classifiers and visualizing their performance. It is a curve located in a two-dimensional
plot where the x axis is the false positive rate and the y axis is the true positive rate. The
area under the curve (AUC) value can be calculated from the ROC curve. A higher AUC
value indicates a better model performance.

To evaluate the importance of each predictor, we used an information gain algorithm
to rank the contribution of each predictor. Information gain is based on the concept of
reduction in entropy. Entropy, in information theory, measures the amount of information
that is missing before reception. It is a concave function with 0 being the smallest value
and 1 being the largest in binary learning tasks and thus suitable for the present study [36].
A factor with high information gain was ranked higher because it has stronger classifying
power. All analyses were conducted using WEKA or SAS.

3. Results

Table 1 reports the key characteristics of the study sample, including demographic,
anthropometric, and physical activity features. There were 7162 participants in the sample
set, 51.41% of whom were male. The individuals in the study consisted of adults from 20
to 85 years old. The mean age of the obese group (50.02) was lower than the overweight
group (52.13) and higher than the healthy group (48.60). There were five racial categories:
non-Hispanic white, non-Hispanic black, Mexican American, other Hispanic, and other
race (including multi-racial). The education level was the highest grade or level of school
the individual had completed or the highest degree the individual had received. There
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were six types of marital status: married, widowed, divorced, separated, never married,
and living with partner. Only 117 individuals refused to answer this question. The family
poverty income ratio (PIR) is the ratio of the individual’s family income to the national
poverty threshold. The lowest value is 0, and the highest value is 5. The mean family PIR
of the overweight class was 2.74, which was higher than the other two groups. The mean
value of the sum of intensity values had a positive association with group BMI. The sum of
intensity values of obese groups was lower than the other two groups. The obese group
also had the longest duration of sedentary activities and the shortest duration of other
types of activities. For physical activity variables, the difference between the healthy and
overweight groups was generally not obvious.

Table 1. Study population characteristics.

Variables
Normal (18.5 ≤ BMI < 25 kg/m2) Overweight (25 ≤ BMI < 30 kg/m2) Obese (BMI ≥ 30 kg/m2)

Observations Mean (%) Observations Mean (%) Observations Mean (%)

Gender
Male 1046 47.72 1505 59.65 1131 46.22

Female 1146 52.28 1018 40.35 1316 53.78
Age 2192 48.60 2523 52.13 2447 50.02

Race
Non-Hispanic White 806 36.77 857 33.97 708 28.93
Non-Hispanic Black 334 15.24 368 14.59 508 20.76
Mexican American 420 19.16 593 23.50 606 24.77

Other Race, Including Multi-Racial 342 15.60 396 15.70 410 16.76
Other Hispanic 290 13.23 309 12.25 215 8.79

Education Level
Less than 9th Grade 702 32.03 917 36.35 862 35.23

9–11th Grade (Includes 12th
Grade with No Diploma) 251 11.45 280 11.1 292 11.93

High School Grad/GED or
Equivalent 347 15.83 438 17.36 465 19

Some College or AA Degree 344 15.69 369 14.63 400 16.35
College Graduate or Above 451 20.57 421 16.69 341 13.94

Refused 95 4.33 95 3.77 87 3.56
Do Not Know 1 0.05 1 0.04 0 0

Marital Status
Married 807 36.82 1016 40.27 903 36.90

Widowed 445 20.30 514 20.37 485 19.82
Divorced 305 13.91 331 13.12 356 14.55
Separated 148 6.75 203 8.05 219 8.95

Never Married 327 14.92 276 10.94 319 13.04
Living with Partner 126 5.75 143 5.67 122 4.99

Refused 34 1.55 40 1.59 43 1.76
Family PIR 2192 2.62 2523 2.74 2447 2.60

Sum Intensity Value 2192 1,584,527.52 2523 1,562,816.99 2447 1,298,389.77

Duration of Different Activity
Intensity Levels (in Minutes)

Sedentary 2192 7988.89 2523 7945.10 2447 8146.58
Light 2192 1468.27 2523 1498.67 2447 1407.09

Lifestyle 2192 500.84 2523 522.37 2447 450.55
Moderate 2192 112.70 2523 106.91 2447 73.21
Vigorous 2192 7.45 2523 4.63 2447 1.93

3.1. Relationship between PA and Overweight/Obesity

We first predicted whether an individual was overweight/obese based on PA levels.
The individuals were divided into two groups based on their BMIs: normal and abnormal
(including both overweight and obese individuals). Table 2 represents the classification
performance results. The random subspace classifier had the highest overall accuracy of
70.01%. The sensitivity of the J48 classifier was 72.9%. The highest specificity was 57.3% for
the random subspace classifier, while the lowest specificity was 35.6% for the random tree
model. The mean percentages of overall accuracy, sensitivity, and specificity of the eleven
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classifiers were 62.37%, 70.89%, and 49.70%, respectively. The sensitivities for all models
were much higher than the corresponding specificities.

Table 2. Evaluations of accuracy, sensitivity, and specificity of 11 prediction models of overweightness and obesity.

Method Logistic
Regression

Naïve
Bayes RBF † Local

KNN † CVR † Random
Subspace

Decision
Table Multiobject Random

Tree J48 ‡ Multilayer
Perceptron

Mean Value
of 11 Models

Accuracy 69.4% 69.11% 69.5% 69.63% 69.9% 70.01% 69.59% 69.37% 60.71% 68.70% 68.65% 62.37%
Sensitivity 70.0% 70.8% 70.2% 70.7% 70.9% 70.6% 70.1% 70.0% 71.6% 72.9% 72.0% 70.89%
Specificity 51.6% 48.1% 51.6% 52.1% 54.4% 57.3% 51.4% 49.5% 35.6% 47.9% 47.2% 49.70%

Notes: † RBF = radial basis function; KNN = local k-nearest neighbors; CVR = classification via regression; random subspace; ‡ J48 = J48 is
an algorithm to generate decision trees.

The sensitivity of the logistic regression method was slightly lower than the mean
value, while the specificity was slightly higher than the mean value. The random tree
performed worst in overall accuracy and specificity, although it achieved a higher sensitivity
compared with the mean sensitivity value. In general, all the methods have similar overall
accuracy, sensitivity, and specificity. As shown in the ROC curves in Figure 1, the random
subspace classifier produced the highest result with 63.3% area under the ROC curve (AUC).
The other four classifiers, namely, RBF, CVR, decision table, and multilayer perceptron,
also achieved marginally over 62% AUC. Naïve Bayes and J48 classifiers proved average in
AUC, with approximately 60%. The AUC values of local KNN and random tree classifiers
were slightly higher than 53%. The AUC value from the multiobject classifier was the
lowest of 51.2%.
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3.2. Relationship between PA and Obesity Only

We then predicted whether an individual was obese based on PA levels. The individu-
als were labeled as not obese and obese. The results of classifying are shown in Table 3. The
mean overall accuracy was 57.69%, which was lower than that of Table 2 (62.37%). Likewise,
the mean sensitivity was 48.55%, which was much lower than that of Table 2 (70.89%).
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Nonetheless, the mean specificity was 68.75%, which was significantly higher than that
of Table 2 (49.70%). The random subspace classifier had the highest overall accuracy and
sensitivity. Compared with other methods, naïve Bayes had the highest specificity (76.7%).
However, the overall accuracy (49.64%) of the naïve Bayes classifier was significantly lower
than that of the other ten classifiers. Regarding overall accuracy, the logistic regression
model performed slightly worse than the other algorithms, excluding naïve Bayes, random
tree, and J48, all of which performed lower than the logistic regression classifier. Both the
sensitivity (49.4%) and specificity (66.5%) of logistic regression were slightly higher than
the mean values of all eleven models. Table 3 also demonstrates that for all of the classifiers,
specificities were higher than sensitivities. The sensitivities of six algorithms (including
logistic regression, naïve Bayes, multiobject, random tree, J48, multilayer perceptron) were
lower than 50%. The highest sensitivity obtained from random subspace was only 56.8%.

Table 3. Evaluations of accuracy, sensitivity, and specificity of 11 prediction models of obesity.

Method Logistic
Regression

Naïve
Bayes RBF † Local

KNN CVR Random
Subspace

Decision
Table Multiobject Random

Tree J48 ‡ Multilayer
Perceptron

Mean Value
of 11 Models

Accuracy 65.78% 49.64% 66.20% 65.92% 65.89% 67.03% 66.32% 65.78% 58.42% 63.66% 64.48% 57.69%
Sensitivity 49.4% 38.6% 52.7% 50.3% 50.3% 56.8% 52.4% 49.1% 39.5% 45.8% 49.2% 48.55%
Specificity 66.5% 76.7% 67.1% 68.1% 67.2% 68.0% 67.9% 66.3% 68.7% 69.9% 69.9% 68.75%

Notes: † RBF = radial basis function; KNN = local k-nearest neighbors; CVR = classification via regression; random subspace; ‡ J48 = J48 is
an algorithm to generate decision trees.

Figure 2 illustrates the ROC curves of the four classifiers that achieved the two highest
AUC values and the two lowest AUC values. Both random subspace and CVR classifiers
achieved 64.3% AUC values. However, RBF, decision table, and multilayer perceptron
classifiers performed slightly worse than the random subspace classifier. The naïve Bayes
classifier achieved 62% AUC in obesity prediction. The multiobject classifier still had the
lowest AUC of 51%. In general, all classifiers produced similar AUC values to those of
Table 2.
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3.3. Importance of PA in Predicting Weight Status

We further checked variable importance by ranking all features involved in predictive
models. All features were ranked by an information gain ranking filter. One Rule is a
classifier that only generates one rule for each feature. The importance of a feature was
evaluated by the accuracy of the rule. Table 4 shows the feature ranking results.

Table 4. Ranked feature importance in predicting weight status based on information gain.

Rank Feature Meaning Contribution

1 Duration of moderate-intensity activity in one week 0.0211
2 Duration of vigorous-intensity activity in one week 0.0140
3 Age 0.0137

4 The sum of the intensity value recorded by the
physical activity monitor in one week 0.0133

5 Race/Ethnicity 0.0110
6 Duration of sedentary-intensity activity in one week 0.0053
7 Duration of lifestyle-intensity activity in one week 0.0045
8 Duration of light-intensity activity in one week 0.0042
9 Gender 0.0040

10 Education level 0.0027
11 Poverty income ratio (PIR) 0
12 Marital status 0

Duration of vigorous-intensity activity in one week and duration of moderate-intensity
activity in one week were ranked top among 12 features with contributions of 0.0211 and
0.014, respectively. Age was ranked No.3 with a 0.0137 contribution. Gender, race/ethnicity,
and socioeconomic status (SES) (marital status, education level, and poverty income ratio),
even though they contributed to the prediction model, had less predictive power, ranking
among the bottom.

4. Discussion

This study is the first study in the field to assess adulthood overweight/obese risks
using objectively measured PA data and advanced ML techniques. Our results indicate
that PA (especially moderate to vigorous intensity) was a key risk factor in predicting
overweight and obesity. In addition, duration of moderate-intensity activity and duration
of vigorous-intensity activity ranked higher than the sum of the intensity value recorded
by the physical activity monitor, duration of sedentary-intensity activity, duration of
lifestyle-intensity activity, and duration of light-intensity activity. The results imply that
high-intensity physical activity is more important than low-intensity physical activity and
overall physical activity intensity. This finding aligns with our hypothesis and empirical
evidence. Physical activity increases a person’s energy expenditure and helps individuals
maintain their energy balance or even lose weight as long as energy consumption is not
compensated by calorie intake [44]. Demographic features played a less but still critical
role in predicting weight status as our ML and traditional statistical analyses suggested.
This finding is in line with previous studies [15,45]. Underlying disparities associated with
race/ethnicity including food environment, healthcare access, social environment, and
building environment are important factors that predict the risk of obesity through complex
known and unknown pathways [46]. This may provide guidance for obesity control.

We compared the performance of different ML algorithms in predicting weight status
and found that the random subspace algorithm had a weak superiority over the other
ten models. However, the logistic regression model performed slightly worse than the
random subspace and several other algorithms. The random subspace classifier produced
the highest overall accuracy and AUC among the eleven classifiers. It also produced the
highest specificity for prediction of normal weight and the highest sensitivity for prediction
of obesity. The sensitivity of the J48 classifier in normal weight prediction was 2.3% higher
than the sensitivity of the random subspace classifier. The specificities of the J48 classifier
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in both normal weight and obesity predictions were also higher than the random subspace
classifier. The overall accuracies of the J48 classifier were lower than those of the random
subspace classifier. Furthermore, its sensitivity was 11.0% lower than the sensitivity of the
random subspace classifier in prediction of obesity. Overall, the random subspace classifier
outperformed the J48 classifier. Regarding obesity prediction, the specificity produced
by the naïve Bayes classifier was 8.7% higher than that of the random subspace classi-
fier. However, it performed worse than the other algorithms regarding overall accuracy
and sensitivity.

Our results are comparable to existing studies. For instance, Jie et al. [47] reviewed
927 studies and provided no evidence of the superior performance of advanced machine
learning methods over the logistic regression method for clinical predictions. Similarly,
Tozlu et al. [48] used logistic regression and four other machine learning methods (adaptive
boosting, ANN, RF, and SVM) to identify high infarction risk. They concluded that logistic
regression performed as well as the other four machine learning approaches. In addition,
Tozlu et al. [48] compared the performances of several machine learning models to predict
the effect of labor induction on the occurrence of cesarean section and found that the logistic
regression model produced a similar performance to the RF one. Therefore, advanced
machine learning methods with high computational complexity are not always necessary in
obesity prediction. Due to the well-understood theoretical and computational background,
the logistic regression model is preferable when predicting obesity.

Some limitations of this study should be noted: First, ActiGraph AM-7164 is not
waterproof, and thus some activities such as swimming were not captured. Thus, the
collected data for some individuals who performed aquatic activities are not trustable. The
device may not have been able to accurately detect upper-body exercises, such as lifting
dumbbells. Second, this study only examined weight status but not body composition,
which is planned for our future research.

5. Conclusions

This study was conducted in a large population-based sample and thus the results
reflect the average relationship between physical activity and BMI. Weight loss intervention
trials testing the addition of physical activity to diet modification have shown the impor-
tance of physical activity at weight-loss maintenance. The findings herein do not speak to
the types and level of physical activity needed for individuals trying to lose weight.

In sum, the random subspace algorithm had a weak superiority over the other ten
models including logistic regression. Although physical activity was a crucial predictor of
weight outcomes, demographic characteristics including gender, age, and race/ethnicity
were also important factors associated with weight outcomes. Tailored intervention poli-
cies and programs should target the differences rooted in these demographic factors
to curb the increase in the prevalence of obesity and reduce disparities among sub-
demographic populations.
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