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Abstract: The coronavirus SARS-CoV-2 pandemic has become a global health burden. Surface
sanitation is one of the key points to reduce the risk of transmission both in healthcare and other
public spaces. UVC light is already used in hospital and laboratory infection control, and some recent
studies have shown its effectiveness on SARS-CoV-2. An innovative UV chip technology, described
in Part I of this study, has recently appeared able to overcome the limits of old lamps and is proposed
as a valid alternative to LEDs. This study was designed to test the virucidal activity on SARS-CoV-2
of a device based on the new UV chip technology. Via an initial concentration of virus suspension
of 107.2 TCID50/mL, the tests revealed a viral charge reduction of more than 99.9% after 3 min; the
maximum detectable attenuation value of Log10 = 5.7 was measured at 10 min of UV exposure.

Keywords: UV; disinfection; disinfection device; innovative techniques; UV LED; UV chip; preven-
tion; UV technology; SARS-CoV-2; photonic measurements

1. Introduction

The World Health Organization declared the COVID-19 pandemic on 11 March 2020.
Globally, as of 12:37pm CEST, 3 April 2021, there have been 129,619,536 confirmed cases of
COVID-19, including 2,827,610 deaths, reported to WHO [1]. The pandemic has continued
to have a sustained trend, with the basic reproduction number (R0) estimated between 2.2
and 3.3 in the early stages of the pandemic [2,3] and a low infection fatality ratio according
to the latest estimates [4].

SARS-CoV-2 is an enveloped single-stranded RNA virus of the Coronaviridae family
and the Nidovirales order. Viruses in this family have similar features: a spherical shape
with a diameter of 120–160 nm covered with spike proteins and with RNA of about 27–32
kb long. Some of these viruses are responsible for common colds, but MERS-CoV, SARS-
CoV, and SARS-CoV-2 have a more substantial clinical impact and have caused many
deaths [5,6].

Respiratory droplets are coronaviruses’ primary transmission mode but contact (either
direct contact with an infected subject or indirect contact through a hand-mediated transfer
of the virus from contaminated fomites to the mouth, nose, or eyes) can be another trans-
mission route [7]. This is confirmed by evidence showing that SARS-CoV-2 can survive
up to 3 h in aerosols, up to 4 h on copper, up to 24 h on cardboard, and up to 3 days
on plastic and stainless steel [8], and, under some conditions, SARS-CoV-2 can survive
for weeks [9–11]. The viability of SARS-CoV-2, as well as SARS-CoV-1, depends on the
material, the environmental microclimate parameters, the medium in which the virus is
deposited, and the initial viral load [12,13].
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While waiting for specific drugs and an understanding of the effects of the extensive
vaccination campaigns that have just begun, containment measures (social distancing,
masks, and hygiene) [14,15] and tracing [16,17] are the main weapons to contain the spread
of infection and will remain valid measures in every scenario, even in the future [18].

In this regard, no-touch technologies can provide mitigation practices by inactivating
the virus. Their use during the COVID-19 pandemic could be one of the key points to
reduce the risk of transmission both in healthcare and other public spaces. It is recognized
that UVC light can stop microbial growth, and its physical approach is considered a good
compromise between cost and effectiveness, which is why it is progressively becoming
more and more widespread in healthcare and at home [19]. In addition, the introduc-
tion of standards such as E3131/18 (Standard Practice for Determining Antimicrobial
Efficacy of Ultraviolet Germicidal Irradiation Against Microorganisms on Carriers with
Simulated Soil) by The American Society for Testing and ISO 15714:2019 (Materials and
the Method of Evaluating the UV dose to Airborne Microorganisms Transiting In-Duct
Ultraviolet Germicidal Irradiation Devices) will standardize tests and comparisons. There
are many fields of UVC applications. The main one is the disinfection of hospital or public
environments and fomites [20], but the possibility of using them to disinfect and re-use
PPE in case of shortages during the pandemic has also been considered [14]. Finally, the
possibility of inactivating the virus in biological samples and transfusion material has been
assessed [21,22].

UVC light (200–280 nm) has better germicidal properties than UVA (315–380 nm) or
UVB (280–315 nm). UVC rays are absorbed by nucleic acid bases, leading to molecular
structural damage through photodimerization that results in virus inactivation and an
inability to replicate [14,22,23]. The effectiveness of UV on novel coronavirus is of great
interest, and several studies have shown that UVC irradiation is an effective disinfection
method against SARS-CoV-2 [14,19,22]. However, given the similarities described above
among the various viruses of the coronavirus family, much of the evidence on the new
virus is deduced from studies on surrogates and few studies have been done directly on
the new coronavirus.

Different technologies produce UVC light, but most devices use low-pressure mercury
lamps to produce UVC at a wavelength of 254 nm [24]. Given the known toxicity of mercury,
the Minamata Convention on Mercury was signed by the United Nations Environment
Program (UNEP) in 2013, and, from 2020, mercury-containing products will be banned,
and new alternative UV devices should be used [25]

Among them UVC LEDs have become an alternative by solving some of the limitations
of mercury lamps: a reduced size allows for a greater field of application and the absence
of a warm-up time, as they are minimally affected by operating temperatures, allows for
faster times of use and avoids the heating of irradiated materials [23].

Another solution can be represented by xenon pulsed light devices that generate,
compared to other devices, a wider UV spectrum (200–280 nm), considered more effective
by some authors [26], but they require more energy, which could lead to a reduction in
lamp life.

Finally, a UV chip is cold, has a very low current, and is less influenced by temperature
compared to an LED. As described in Part I of this study, it has a spatially wider (non-
point-shaped) radiation source that provides a wider diffusion and energy homogeneity of
light in the space. The wavelengths of the chip are centered around the maximum biocidal
efficacy values of the UVC radiation (264 nm) [27]. Although there is still little evidence
available, all three previous UVC technologies have proved effective in reducing the viral
load of SARS-CoV-2, but our work is the first to test this chip technology on this emerging
viral pathogen. This study aims to determine the virucidal activity against SARS-CoV-2 of
a box with UV chips.
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2. Materials and Methods

In June 2020, the virucidal activity of a device, based on UV chip technology by
Lightlab Sweden AB, provided by SAES Getters S.p.A. was tested against SARS-CoV-2.
Some of the experiments were run in the Department of Molecular and Development
Medicine at the University of Siena and some were conducted in a BSL3 laboratory of the
“Toscana Life Sciences Foundation” affiliated with the University of Siena.

2.1. Tested Device

All the UV treatments were performed in a disinfection box developed by LightLab
Sweden using the newly developed UV chip technology. Six UV sources were placed in
the bottom of the UVC treatment box, with each one providing 10 mW of UV power. The
UV irradiation surface of the chips is a circle with a diameter of approximately 1.3 cm (a
chip is about the size of a 2-euro coin). The objects to disinfect can be placed on the quartz
shelf, which is positioned approximately at the mid-height of the box. A lid prevents the
light from coming out. The interior of the box is carefully designed and coated with highly
reflective UV paint to ensure that the UV radiation reflects and reaches, as much as possible,
the objects positioned on the quartz surface. A button placed laterally on the base of the
device can initiate the UV radiation of the system. Different light colors, visible around the
starting button, alert the user to whether the system is in standby mode or is functioning
(Figure 1a,b).
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Figure 1. (a) Base and lid of the white disinfection box; UV chips are visible in the bottom part. (b) Box with the lid closed.

The operating principle of the UV chips differs from other commercially available
sources. Briefly, electrons are accelerated in a vacuum cavity toward a material that will emit
photons when struck by electrons. The spectral properties are determined by the specifics
of the material. These light sources exhibit a very low working temperature. Further
information or specifications on the operation principles of the UV chip are contained in
Part I of this study.

2.2. Photometric Analysis

The photonic specifications of the box have been determined using a spectrophotome-
ter Avantes ULS2048CL-EVO (Avantes, Apeldoorn, Netherlands) with a probe that had a
cosine corrector.

The direct irradiance from the chips was evaluated at 126 points positioned at the
level of the internal quartz plane (in yellow, Figure 2). To properly measure the irradiance
at these points, we created a 3D-printed mask (in blue, Figure 2), using a high-resolution
printer (Form 2 Formalb), which was a quarter of the size of the crystal plane. On the mask,
35 holes of the exact size of the probe with the cosine corrector were positioned to improve
the precision of the measurements and to standardize the measurements and positioning.
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Moving the mask into the 4 different quadrants of the box, it was possible to collect the 126
measurements.
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Figure 2. The 126 points selected on the quartz surface for photonic measurement are represented in
yellow, while the dashed blue lines represent the different quadrants of the base.

2.3. Setup

The UV light was activated by pressing the starting button of the white disinfection
box.

Positions 1 and 2 were selected on the crystal because they do not directly face the UV
chips and the UV radiation is lower in these positions; Position 1 is also a central point and
where objects are usually expected to be placed (Figure 3).
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Figure 3. On the left (a), a representation of 10 points (in yellow) where the cosine corrector was inserted to measure
irradiance. On the right (b), 3 holes (in red) drilled into the bottom of the box, and the two positions (in blue) selected to
perform the tests.

These positions were inoculated with 100 µL of viral suspension of SARS-CoV-2,
which had a concentration of 107.2 tissue culture infective dose 50% (TCID50%)/mL. To
better highlight the performance of the device, the suspension was placed as follows: (i)
directly on the crystal, when the box was without the lid to test the direct virucide effect of
the UV chips’ light coming from the base; (ii) on shielded lab slides, when the box was with
the lid, to test the reflective virucide effect of the UV light reflected by the metallic layer in
the box but preventing the light going through the lab slide carrier directly from the base.

2.4. Experimental Protocol

Each experiment was conducted in triplicate, with and without the device lid, testing 2
different positions on the quartz shelf and 3 time settings (3, 6, and 10 min). The schematic
parameters are shown in Table 1.
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Table 1. Schematic procedure of the UV device experiment.

Device Configuration Exposure Time Inoculum Position

Box with lid
3 min 1; 2
6 min 1; 2
10 min 1; 2

Box without lid
3 min 1; 2
10 min 1; 2

2.5. Cells and Virus

All repetitions were tested for SARS-CoV-2 (Lot: VMR–SARSCPV2 VERO E6_28042020)
concentration by TCID50% using the VERO E6 C1008 (ATCC CRL-1586) cell line.

For each experiment, the following evaluations were made: 3 samples were inoculated
with the virus and subjected to the action of UV according to the protocol; 3 samples were
inoculated but not treated with UV to determine the viral titer after recovery and were
examined immediately after inoculation.

The collected suspensions were used to inoculate a 48-well plate into which the VERO
E6 cell cultures were fixed.

Subsequent decimal dilutions were inoculated for a total of 10 dilutions. Each dilution
was inoculated in 4 wells. The plates were incubated for 3 days at 37 ◦C ± 2 ◦C at 5% CO2
in a humidified atmosphere. After the exposure time, the residual virus activity was tested
by evaluating the TCID50%.

2.6. Virus Infectivity Assays

The TCID50% assay was used to quantify the viral titers by determining the concentra-
tion at which 50% of the infected cells displayed a cytopathic effect (CPE).

Viral titration was determined according to the method developed by Spearman–
Karber [28,29].

2.7. Data analysis

Excel 2016 (Microsoft Corporation, Redmond, WA, USA) was used for the data analysis
and graphs. The descriptive statistics were arranged using STATA 16 SE version (StataCorp
LLC, College Station, TX, USA). Preliminary data from the photometric analysis were
processed with AvaSoft 8.11 (Avantes, Apeldoorn, Netherlands).

3. Results
3.1. Photometric Analysis

The measurements of the UV light spectrum of the chips are shown in Figure 4 and, as
already explained in the first part of this study, it is possible to observe a relatively broad
spectrum with a peak at 265 nm (UVC) and a secondary (lower) peak at approximately
300 nm (UVB) that extends to approximately 350 nm (UVA) (Figure 4).

Figure 5 shows the direct irradiance measured and modeled using the 126 sampling
sites. The zones with the higher value of irradiance (max. 187.9 µW/cm2) were those near
the corners of the box, while the lowest irradiances were measured (min. 61.9 µW/cm2)
near to one of the long sides of the box. The center of the crystal was the part that had
lower values than the corners. The light distribution was almost symmetrical with respect
to the center of the system.
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The average of the direct irradiance was 97.7 µW/cm2 with a standard deviation of
24.9 µW/cm2.

The average irradiance measured in the 10 holes drilled in the lid was 101.6 µW/cm2

with a standard deviation of 11.4 µW/cm2.
The average of direct irradiance in Position 1 (using 6 points) was 86.9 µW/cm2 with a

standard deviation of 11.4 µW/cm2, while in Position 2 (using 6 points) it was 97.0 µW/cm2

with a standard deviation of 5.99 µW/cm2.
The average of reflected irradiance in Position 1 was 91.8 µW/cm2 with a standard

deviation of 0.74 µW/cm2 and slightly higher than in Position 2 where it was 86.2 µW/cm2

with a standard deviation of 0.85 µW/cm2, unlike with direct radiation.

3.2. Test on SARS-CoV-2

The results for testing the device against SARS-CoV-2 were as follows:

• The maximum measurable Log10 reduction equal to 5.7 (99.9998%) was reached with
an irradiation time of 10 min, for all the repetitions, regardless of the presence or not
of the lid (i.e., regardless of whether the UV light was coming directly from the UV
chips at the base or whether the UV light was just reflected from the reflective layers
of the box);

• By lowering the UV exposure time to 3 min, slightly lower Log10 attenuation values
were achieved and still greater than 3.2 (99.94%);
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• At 6 min of exposure, the mean Log10 attenuation value was over 5 (99.999%);
• The results obtained have been schematized in Table 2 for better understanding;
• The dispersion graph in Figure 6 shows the surviving virus concentrations based on

the radiation dose to which it was exposed.

Table 2. Evaluation of the virucide activity on SARS-CoV-2.

Device Con-
figuration

Inoculum
Position

Exposure
Time
(min)

Irradiance
(µW/cm2)

DOSE
(mJ/cm2)

TCID50% Log10
Mean of

Untreated Virus
Suspensions

TCID50% Log10
Mean of

UV-Treated
Virus

Suspensions

TCID50% Log10
Virus Reduction

Mean

With lid * 1 3 91.8 16.5 7.20 2.50 −4.70
With lid 2 3 86.2 15.5 7.20 3.75 −3.45
With lid 1 6 91.8 33.0 7.20 1.67 −5.53
With lid 2 6 86.2 31.0 7.20 1.67 −5.53
With lid 1 10 91.8 55.1 7.20 1.50 −5.70
With lid 2 10 86.2 51.7 7.20 1.50 −5.70

Without lid ** 1 3 86.9 15.6 7.20 2.58 −4.62
Without lid 2 3 97.0 17.5 7.20 1.67 −5.53
Without lid 1 10 86.9 52.1 7.20 1.50 −5.70
Without lid 2 10 97.0 58.2 7.20 1.50 −5.70

* sample exposed to light reflected from the inner coating of the lid; ** sample exposed to direct chip light.
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Figure 6. Dispersion plot shows the virus concentration reduction based on the irradiation dose
to which it was exposed. The value of Log TCID50% = 1.50 means total viral inactivation—limit of
detection. The initial concentration of viral suspension of SARS-CoV-2 was 107.2 TCID50%.

4. Discussion

This device is the first UV-chip-based system, to our knowledge, to show effectiveness
against SARS-CoV-2. The new UV chip technology was effective in reducing vital SARS-
CoV-2 to 3.2 Logs (99.94%) after 3 min from a starting titer of 7.2 Logs requiring about
15 mJ/cm2, and 35 mJ/cm2 should be sufficient to have a reduction of TCID50 equal to
5.7 Log (99.9998%). Figure 6 suggests that the maximum reduction achievable with the
experiment (5.7 Logs) could have been achieved with irradiation times of less than 10 min
and presumably just over 6 min. These results appear to be slightly better than similar
studies. For example, Fischer et al. reported a reduction of 4 Logs (99.99%) starting from
4.5 Log TCID50/mL in 50 uL inoculated on stainless steel with 330 mJ/cm2 exposure to
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UVC 260–285 nm [30]. According to Heilingloh et al., UVC 254 nm exposure produced
a reduction of 6.7 Log TCID50/mL in 600 uL of viral suspension inoculated in 24 well
plates with exposure to 1048 mJ/cm2 [19], and a deep ultraviolet light-emitting diode
with 280 ± 5 nm, tested by Inagaki et al., generated an abatement of 3.2 Log PFU/mL
starting from 4.3 Log PFU/mL in 150 uL spread on a 60 mm petri dish and exposed to
75 mJ/cm2 [22]. Hebling et al., from a review of the literature on other coronaviruses,
have estimated that a dose of 3.7 mJ/cm2 with an upper limit of 10.6 mJ/cm2 is required
for a 90% reduction of the coronavirus [5]. Different wavelengths may have a different
efficacy on SARS-CoV-2; UVC radiation near 264 nm appears to have superior efficacy
than higher wavelengths [27]. It should also be considered that the device we tested also
has peaks in the UVA and UVB range that contribute to the virucidal effect albeit to a
lesser degree; in fact, Heilingloh et al. reported the reduction of 1 Log at 365 nm with
292 mJ/cm2. However, Kitagawa et al. reported slightly better results: a 222 nm UVC
light (0.1 mW/cm2) reduced viable SARS-CoV-2 by 2.51 Log10 in 30 s [31]. The effects may
vary depending on the substrate considered. The radiation dose is lower in transparent
substrates and thin layers, while the protein components of organic substrates, larger
thicknesses, and the porosity of objects may shield the penetration of rays. In this regard,
our study was carried out in a laboratory condition on a contaminated drop and not on
objects taken in real public or hospital environments; however, the inoculated viral titer
was very high and probably higher than what can be found in real conditions. UVC can be
used to disinfect the FFP mask but a higher radiation dose is required due to the porosity
of the material and the possible presence of substrates [14]. The distance of the sample
from the light source can affect the experiment because the sample can be heated or can
evaporate and thus the effects of UV can be overestimated; although high and prolonged
temperatures are required to inactivate SARS-CoV-2 [5]. The chip tested does not heat up
during operation, so the above effects, as well as damage to exposed materials caused by
heat, can be considered negligible. Further studies will also be carried out to evaluate the
impact of the geometry of the object on the distribution of light irradiation: larger objects
can make shadows, which can decrease the reflected light, but for objects with a smaller
surface the direct and reflected virucidal activity can add up and other light paths, which
are difficult to identify, can increase the effect.

This device is completely new in technology and, compared to other types of devices,
the chip has several strengths. Mercury technology, although still widely used, as men-
tioned above, will soon be replaced due to the toxicity of the metal. LEDs, pulsed-xenon
UV devices, and novel chips are the main contenders. The chip, which does not even
contain quartz, provides a wider diffusion and energy homogeneity of light in the space
and is not affected by working temperatures. The wavelengths of the chip are centered
around the maximum biocidal efficacy values of the UVC radiation (264 nm) but can cover
multiple wavelengths, expanding the field of effectiveness, which is comparable to xenon
technology although some lengths fall outside the UVC range. The device, which is a
pre-industrial prototype, can be used in the disinfection of many objects, including medical
devices of which phonendoscopes [32] can only be an example. In addition, it can also be
used outside the strictly medical field in public places and even in homes.

5. Conclusions

In conclusion, the tests revealed a SARS-CoV-2 charge reduction of more than 99.9%
after 3 min of operation. The maximum detectable attenuation of 5.7 Log (99.9998%) was
measured at an irradiation time of 10 min, for all the repetitions, regardless of direct or
reflected UV radiation hitting the virus samples in the device.
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