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Abstract: Anterior cruciate ligament (ACL) injuries are the most common ligament injury of the
knee, accounting for between 100,000 and 200,000 injuries among athletes per year. ACL injuries
occur via contact and non-contact mechanisms, with the former being more common in males and
the later being more common in females. These injuries typically require surgical repair and have
relatively high re-rupture rates, resulting in a significant psychological burden for these individuals
and long rehabilitation times. Numerous studies have attempted to determine risk factors for ACL
rupture, including hormonal, biomechanical, and sport- and gender-specific factors. However, the
incidence of ACL injuries continues to rise. Therefore, we performed a systematic review analyzing
both ACL injury video analysis studies and studies on athletes who were pre-screened with eventual
ACL injury. We investigated biomechanical mechanisms contributing to ACL injury and considered
male and female differences. Factors such as hip angle and strength, knee movement, trunk stability,
and ankle motion were considered to give a comprehensive, joint by joint analysis of injury risk and
possible roles of prevention. Our review demonstrated that poor core stability, landing with heel
strike, weak hip abduction strength, and increased knee valgus may contribute to increased ACL
injury risk in young athletes.

Keywords: ACL; knee; valgus; abduction; adduction; flexion; trunk; core

1. Introduction

Anterior cruciate ligament (ACL) injuries are the most common traumatic knee liga-
ment injuries, frequently affecting young athletes [1,2]. They typically occur via non-contact,
low-energy mechanisms and require significant intensive rehabilitation prior to resumption
of athletics [3,4]. Decelerating, cutting, and rotational moments performed by athletes,
especially during landing, are the most common mechanisms for ACL rupture. [4]. Current
evidence estimates the average incidence of ACL rupture to be approximately 1 in 3500
across athlete populations [1,2]. While male football players appear to have the highest
incidence of ACL injuries, these are typically due to direct contact mechanisms [5]. Females,
however, are at a higher risk of ACL injury from non-contact mechanisms. Additionally,
female injury rates per exposure are higher when compared to males, potentially due to
anatomic differences of the lower kinematic chain [6]. Females who participate in gymnas-
tics, soccer, or basketball appear to be at the highest risk of experiencing a non-contact ACL
injury [5,6].

Video analysis of ACL injuries and pre-screening athletes who go on to experience
an ACL injury are vital for understanding the biomechanics that predispose athletes to
sustaining these injuries. Additionally, these studies can help guide targeted training
programs to help improve athletic performance and decrease the risk of lower extremity
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injuries [7–11]. Various factors are thought to contribute to ACL injury incidence. Perhaps
the most widely considered risk factor is dynamic knee valgus, which places significant
tensile forces on the ACL especially during landing and cutting [12–14]. Knee valgus may
occur secondary to many factors, including but not limited to weak hip abductor strength,
poor hip musculature control, increased femoral anteversion/medial tibial torsion, wider
pelvis, increase midfoot mobility, and larger q-angle. Anatomically speaking, females have
wider hips, which predisposes them to larger q-angles and subsequent higher risk of ACL
injury than males [15,16]. Females also typically do not generate as much force as male
counterparts in the hip abductors, thus potentially subjecting them to dynamic knee valgus
moments [17].

Other potential risk factors that have been theorized for ACL injury include poor
postural control and more upright landings. Poor postural control may result in the inability
to appropriately respond to perturbations, which increases the stabilizing requirement
of the ACL during movements and play [18–20]. More upright landings prevent the
hamstrings from maximally restraining the anterior translation of the tibia on the femur,
thus theoretically placing the ACL under increased stress with load acceptance [21–23].

Due to the large volume of research on ACL injuries and numerous injury theories, a
comprehensive review of the relationship between kinematics, kinetics, and risk of injury
to the ACL is needed to summarize key findings. This is especially true when considering
the role that sex differences contribute to this presumed biomechanical risk. Therefore,
the purpose of this systematic review was to assess biomechanical factors that influence
risk of ACL rupture in males and females and to analyze if differences exist for those with
a documented ACL rupture. We also assessed the kinematic profile that increases ACL
injury risk for both sexes. Video analysis studies were utilized in order to analyze real life
injury situations as well as biomechanical pre-screened laboratory data to create the most
encompassing review of current literature.

2. Materials and Methods

Literature Search: A systematic review of the literature was performed from inception
through April 1, 2020 using Web of Science, CINHAL, PubMed, and Cochrane Collabora-
tion. The search criteria we used were as follows:

ACL Injur* OR Anterior Cruciate Ligament Injur* AND Video Analysis OR Motion
Analysis OR Movie OR Screen

The reference list from each included article was analyzed for additional articles.
However, all included articles were found from the original search criteria.

Selection Criteria: All articles populated by the search criteria were imported into
Rayyan, a web-based application that facilitates systematic review article screening, and
an initial screening was performed by one author (J.L.). Articles were initially screened
by the title and abstract and screened for more thorough analysis with the full-text article.
Another author (M.B.) was consulted for deliberation of articles that were difficult to
assess, with the most senior writers (C.F. and R.C.) making the final decision for inclusion.
Two article styles, pre-screened (PS) players and video analysis (VA) were included. Pre-
screening studies include those that take baseline measurements in a laboratory setting
(i.e., one-legged box jumps, mean knee flexion at initial impact, etc.) and longitudinally
follow athletes to assess factors that may increase athlete injury risk. Video analysis studies
largely focus on documented scenarios where injury was known to have occurred and
utilize computer programs to measure joint angles and follow bodily motion throughout
the movement. Once such measurements are taken, values are either compared to similar,
non-injury situations or known mean values to assess how injury situations typically differ
from non-injury situations. Articles were included if there was a documentation of primary
ACL rupture and mention of sex. In addition, articles were included if there was kinematic
assessment prior to injury documented for PS and if there was a kinematic analysis of
the video in which the ACL injury occurred for VA. Articles were excluded if subjects
had a primary ACL reconstruction prior to the study, study participants did not have a
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primary ACL injury, and if they were written in a language other than English or were
review papers.

Please see Supplementary Materials for a PRISMA flow diagram of the search.
Study Quality Assessment: Risk of bias assessment was performed using Melnyk et al.’s

hierarchy of evidence [24]. This hierarchy is commonly used to assess study quality in the
health care field. Studies are graded on a seven-tiered scale with lower numerical values
representing higher levels of evidence.

Data Extraction and Analysis: Full text of the articles that met inclusion criteria were re-
trieved and further assessed. Outcome data were extracted independently by one reviewer
(J.L.) and subsequently verified by the other reviewers. Additional data was collected from
one paper by directly contacting the corresponding author. Data extracted for VA and PS
can be found in Table 1. If data were presented that could not directly be compared among
the remaining papers, every effort was made to convert the data into compatible formats.
This was performed for one study in this review [11]. Dingenen et al. defined hip flexion
as “in the sagittal plane . . . the angle between the line formed by the acromioclavicular
joint and the greater trochanter, and a second line connecting the greater trochanter to the
lateral femoral epicondyle.” In all other included studies, hip flexion was defined as the
inverse of the aforementioned measurement. Therefore, hip flexion from the Dingenen et al.
study was subtracted from 180 which allowed direct comparison across all studies. Data
collected was directed at known factors that play roles in ACL injury and/or stabilization
such as hip flexion, hip abduction, knee flexion, knee abduction, ankle motion, and trunk
angle/lean.

Table 1. Demographic, Method, and Variable Breakdown by Studies Reviewed.

Primary Author Study
Quality Female/Male Sport Time Span

(Years) Method Analysis Main Variable of Interest

Video Analysis Studies

Koga 2010 [14] VI 10/0 Basketball,
Handball case series 2D analysis

knee valgus & flexion,
peak vertical

ground-reaction force

Krosshaug 2007 [15] VI 1/1 Basketball,
Handball cohort 3D analysis

knee valgus & flexion,
peak vertical

ground-reaction force,
medial knee displacement

Hewett 2005 [18] IV 205/0 Basketball,
Soccer 1.5 cohort 3D analysis

knee valgus, ground
reaction force, knee

loading

Boden 2009 [25] IV 33/23

Basketball,
Soccer, Handball,

Football, Gym-
nastics/Cheer

matched
cohort 2D analysis hip & knee motion

Koga 2018 [26] VI 10/0 Basketball,
Handball case series 2D analysis hip & ankle motion, COM

Montgomery 2018 [27] IV 0/73 Rugby matched
cohort 2D analysis ground contact angle,

knee & ankle motion

Sheehan 2012 [28] IV 26/14
Basketball,

Soccer, Handball,
Football

matched
cohort 2D analysis COM, limb angle, trunk

angle

Walden 2015 [29] VI 0/39 Soccer case series 2D analysis hip, knee, & ankle flexion

Olsen 2004 [30] VI 52/0 Handball case series 2D analysis knee valgus & flexion

Pre-Screen Studies

Dingenen 2015 [11] IV 50/0 Soccer, Handball,
Volleyball 1 cohort 2D analysis hip flexion, knee valgus,

lateral trunk motion

Krosshaug 2016 [12] IV 710/0 Soccer, Handball 7 cohort 3D analysis

knee valgus, & flexion,
vertical ground reaction

force, medial knee
displacement

Hewett 2009 [16] IV 16/7 Basketball matched
cohort 2D analysis trunk angle, knee valgus
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Table 1. Cont.

Primary Author Study
Quality Female/Male Sport Time Span

(Years) Method Analysis Main Variable of Interest

Pre-Screen Studies

Khayambashi 2015 [17] IV 138/363

Football, Soccer,
Volleyball,
Basketball,
Handball

1 cohort Dynamometer hip strength

Zazulak 2007 [19] IV 140/137 3 cohort Electromagnetic
sensor trunk displacement

Leppänen 2017 [31] IV 171/0 Basketball,
Floorball 3 cohort 3D analysis hip, knee, & ankle motion

Leppänen 2017 [32] IV 171/0 Basketball,
Floorball 3 cohort 3D analysis

knee valgus & flexion,
vertical ground-reaction

force, medial knee
displacement

Numata 2018 [33] IV 291/0 Basketball,
Handball 3 matched

cohort 2D analysis knee valgus

Duprey 2016 [34] IV 112/166

Football,
Volleyball, Field

Hockey,
Lacrosse,

Basketball,
Soccer

3.1 cohort Force
platform TTS score

Table 1 displays the demographic data, timeline, method of analysis, and variables of interest for all studies considered in this review, when
appropriate. Studies are described by primary author last name and publication date, and separated by video-analysis or pre-screen style
of investigation. COM = center of mass, and TTS = time to stabilization (measure of postural stability).

3. Results

After duplicates were removed, our search criteria yielded 1880 total articles. After
thorough analysis of each of these articles, our review featured eighteen studies that met
inclusion criteria. Of those included, nine were video analysis studies and nine were
pre-screening studies (Table 1). The majority of injuries in the video analysis studies
occurred while athletes were on offense (47%), had the ball (29%) or were performing
a cutting motion (20%). Additionally, injuries observed via VA reviewed in this paper
featured mostly basketball (47%), handball (24%), and rugby (13%) players, with soccer
(12%), American football (3%), and gymnastics (1%) being less represented. Injuries seen in
pre-screening studies mostly occurred while athletes were participating in floorball (34%),
basketball (33%), handball (20%), American football (12%), and volleyball (1%).

Hip Flexion: Hip flexion was considered in nine studies (2 PS, 7 VA) [11,15,18,25–29,31].
Higher degrees of hip flexion at initial contact in female patients sustaining ACL injuries
versus control subjects were found in two out of five studies (Table 2) [15,25–27,31]. Boden
et al. found that although degree of hip flexion was significantly higher during early stages
of initial contact for both male and females who sustained ACL injury, it only remained
significantly different through the end of the landing phase in female athletes [25]. They
also reported a trend towards higher degree of peak hip flexion in injured participants
versus non-injured (55.2◦ versus 41.2◦, respectively) (Table 2) [25]. In addition, Koga et al.
reported that mean hip flexion degree (51◦) was sustained through the early stages of initial
contact in injured athletes versus uninjured [26]. Krosshaug et al. found that mean hip
flexion angles at initial contact (27◦ vs. 19◦, p = 0.043) and 50 ms into loading (33◦ vs. 22◦,
p = 0.020) were significantly higher in females compared to males who suffered an ACL
injury [15].
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Table 2. Hip Angle Variables Reported by Studies Reviewed.

Hip Flexion_IC (Degrees) Peak Hip Flexion Moment (N·m) Hip Abduction (Degrees)

Injured Control p-Value Injured Control p-Value Injured Control p-Value

Hewett 2005 [18] NS NS 147.9 ± 33.5 106.8 ± 45.3 <0.01 NS NS

Boden 2009 [25] 50.1 ± 13.2 25.8 ± 14.7 0.0003 NS NS 29.9 ±
11.0

25.7 ±
12.7

Koga 2018 [26] 51 NS NS 21 NS

Montgomery 2018 [27] 26.5 ± 15.99 * 43.3 ± 24.8 * 0.26 NS NS NS NS

Sheehan 2012 [28] 48 ± 12 31 ± 22 NS NS NS NS

Walden 2015 [29] 15 NS NS NS NS NS

Leppänen 2017 [31] 45.4 ± 10.7 43.5 ± 9.2 0.43 134.7 ± 42.4 122.9 ± 40.0 0.24 NS NS

Table 2 displays the mean hip angle/moment ± standard deviation (when available) of ACL injured vs. control subjects (those that were
not injured). IC = initial contact; NS = not studied. * Data collected from direct communication with author.

While some studies reported high degrees of hip flexion in both males and females
during injury (≥40◦) [15,25] Incorrect order of references, you skipped reference [31]. Please
revise so all references appear in numerical order [29,31], other studies contradicted this
finding [11,27]. Leppänen et al. found no significant relationship for pre-injury peak hip
flexion moment between injured and non-injured groups [31]. Despite this, they found
that a stiffer landing (i.e., less hip flexion) was significantly associated with ACL injury
(HR for each 10◦ increase in hip ROM, 0.61 [95% CI, 0.38–0.99]; p < 0.05) [31]. Montgomery
et al. found no significant difference between the degree of hip flexion at initial contact
and ACL injury susceptibility in males [27]. In these instances, uninjured male patients
had a trend toward less hip flexion than ACL injured males at initial contact (43◦ ± 24◦

versus 26◦ ± 15◦, p = 0.26) (Table 2) [27]. Digenen et al found no significant difference
between pre-screened peak hip flexion angle for ACL injured subjects when compared to
their uninjured counterparts (48.2◦ ± 14.1◦ versus 50.7◦ ± 10.5◦, p = 0.585) [11]. Hewett
et al. showed that peak external hip flexion moment was greater during ACL injury versus
uninjured controls (147 ± 33 N·m versus 106 ± 45 N·m; p < 0.01) (Table 2) [18].

Hip Abduction: Hip abduction during ACL injury was directly evaluated in four VA
studies [15,25,26,29]. Koga et al. analyzed ten cases of ACL injuries in female basketball
players, all of whom were on offense at the time of injury with seven performing a cutting
motion [26]. The mean hip abduction angle in these patients was 21◦ at initial contact
which decreased by 6◦ through early loading [26]. Boden et al. specifically analyzed
differences in hip abduction during the first 40 ms after initial contact, within which ACL
injury likely occurred, between injured and non-injured males and females. They found
no significant difference in mean hip abduction between injured and uninjured subjects,
although injured subjects tended towards overall more hip abduction at the time of injury
with a mean difference of 3.7◦ ± 11.7◦ (Table 2) [25]. They also found no significant sex
differences regarding mean hip abduction between injured and non-injured athletes [25].
Another study reported high degrees of hip abduction (<20◦) at initial contact was found
to contribute to ACL injury in cutting and jumping/landing maneuvers [29]. Similarly, in a
video analysis study on male American National Football League players, Johnston et al.
reported that the most common position of the hip was abducted during initial contact
for those sustaining an ACL injury in 43 out of 50 cases reviewed [35]. Krosshaug et al.
found no significant difference between ACL-injured male and female athletes regarding
hip abduction angle at landing and 50 ms after landing [15].

Khayambashi et al. compared isometric hip abduction strength via handheld dy-
namometer to assess its relation to ACL injury risk in both male and female athletes [17].
This group showed that non-injured athletes had significantly greater external hip rotation
strength (p = 0.003) and hip abduction strength (p < 0.001) versus injured athletes. They
suggested that there was a statistically significant risk of ACL injury corresponding to
decreased hip abduction strength. Additionally, they found that male participants had
greater hip abduction strength as a percentage of their total body weight when compared
to their female peers [17].
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Knee Flexion: Knee flexion degree was analyzed in seven VA studies and one PS
study (Table 3) [12,15,18,25,27,28,30,32]. All studies included male and female subjects
except Montgomery et al. which included only male subjects. In this study, they found
that less knee flexion angle (≤20◦) at initial contact was associated with increased risk of
non-contact ACL injuries in males (Table 3) [27]. In their PS study, Leppänen et al. found
no statistically significant difference in knee flexion angle at initial contact between injured
and non-injured athletes [32]. They did report that a higher peak knee flexion angle over
the duration of a vertical drop-jump test decreased the risk of subsequent ACL injury [32].
Additionally, they found that an increased knee flexion moment contributed to an increased
risk of ACL injury with a hazard rate of 1.21 for each 10-N·m increase in knee moment
(95% CI, 1.04–1.40, p < 0.07) [32]. They, as well as Olsen et al., suggested that reduced
knee flexion coupled with greater knee moment (i.e., stiff landings) may be a risk factor for
increased ACL injury [30,32]. While three studies found no difference in mean knee flexion
at initial contact in movements that resulted in ACL injury [12,25,32], two studies found
peak degree of knee flexion angle to be smaller in those that suffered ACL injury than their
non-injured counterparts (Table 3) [18,25]. Interestingly, Krosshaug et al. found that mean
knee flexion angle at initial contact (15◦ vs. 9◦, p = 0.034) and 50 ms into loading (27◦ vs.
19◦, p = 0.042) was significantly higher in ACL-injured females compared to ACL-injured
male athletes in this cohort [15]. As reported previously, the same study showed hip flexion
angles at initial contact and 50 ms into loading were higher in females signifying that
despite less stiff landings, females were at a higher risk.

Table 3. Knee Flexion Angle Values of Studies Reviewed.

Knee Flexion IC (Degrees) Peak Knee Flexion (Degrees) Knee Abduction IC (Degrees) Peak Knee Abduction Moment
(N·m)

Injured Control p-Value Injured Control p-Value Injured Control p-Value Injured Control p-Value

Krosshaug
2016 [12]

−2.2 ±
4.7

−1.7 ±
4.1 0.51 92.2 ±

13.8
90.8 ±

14.9 0.62 −2.2 ±
4.7

−1.7 ±
4.1 0.51 21.2 ±

12.2
20.9 ±

11.0 0.91

Hewett
2005 [18] 71.9 ± 12 82.4 ±

8.0 <0.05 −45.3 ±
28.5

−18.4
± 15.6 <0.001

Boden
2009 [25]

21.8 ±
7.0

18.3 ±
7.5 0.2504 17.6 39.3 0.0001 5.5 ± 6.0 5.6 ± 6.7 0.96 NS NS

Montgomery
2018 [27]

13.6 ±
3.63 **

23.6 ±
17.3 ** <0.001 ** NS NS NS NS NS NS

Olsen
2004 [30]

15.8 ±
5.8 NS NS NS 13.15 NS 12.6 NS

Leppänen
2017 [32]

30.2 ±
11.7

27.6 ±
9.0 0.29 81.5 ±

10.0
84.6 ±

10.3 0.25 0.9 ± 5.8 −1.8 ±
6.7 0.12 37.1 ±

24.9
31.2 ±

22.0 0.32

Numata
2018 [33] NS NS NS NS 2.1 ± 2.4 * 0.4 ± 2.2 * 0.006 8.3 ± 4.3 5.1 ±

4.1 0.007

Table 3 displays the mean knee flexion angle, reported as degrees ± standard deviation (when available) of ACL injured vs. control subjects
(those that were not injured). IC = initial contact; NS = not studied. * reported in cm. ** Data collected from direct communication with
author.

Knee Abduction: Four PS studies analyzed knee abduction angle at initial contact in
reference to risk of ACL injury (Table 3) [12,18,32,33]. Of these, two reported no statis-
tically significant association between knee abduction at initial contact and ACL injury
(Table 3) [32,33]. Conversely, Hewett et al. found that injured females had 8.4 degrees
greater knee abduction at initial contact and 7.6 degrees higher at maximum versus female
controls (p < 0.01) [18]. The group also demonstrated that injured females had statisti-
cally significant increases in stance phase peak knee abduction moment versus control
(−45.3 ± 28.5 N·m vs. −18.4 ± 15.6 N·m, p < 0.001) (Table 3) [18]. Similarly, Numata et al.
and Olsen et al. reinforced these findings by demonstrating that dynamic knee valgus
is a potential risk factor for ACL injury in female athletes [30,33]. Specifically, Numata
et al. found that dynamic knee valgus was significantly higher at initial contact in injured
athletes versus non-injured at initial hallux-ground contact (2.1 ± 2.4 vs. 0.4 ± 2.2 cm,
p = 0.006) (Table 3) [33]. Krosshaug et al. conducted a longitudinal study of elite female soc-
cer and handball players via motion analysis of a drop-jump landing [12]. Unlike Hewett
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et al., they found no difference in knee abduction angle or moment at initial contact [12].
Although knee abduction angle and moments were not increased, they did find that greater
medial knee displacement during the contact phase of the drop-jump increased injury risk
by approximately 40% for a 1.2 cm increase in medial knee displacement (−2.2 ± 4.7◦ vs.
1.7 ± 4.1, p = 0.51) (Table 3) [12].

Three VA studies were included that analyzed knee abduction [15,25,33]. One study
found no associated risk in peak knee abduction angle at initial contact in regards to ACL
injury [25]. In this study, as the movement progressed, knee abduction angle remained more
consistent in non-injured groups versus injured groups, with injured subjects progressing
towards more significant knee abduction [25]. This progressive difference in knee abduction
became significant at the third frame out of five (37.7 ± 21.0 degrees and 9.0 ± 17.1 degrees
for injury versus controls) (Table 3) [25]. Additionally, this same study found that by the
fifth frame of the sequence, females that sustained ACL injury had significantly higher knee
abduction than their male injury counterparts [25]. Two different VA studies found that
female ACL-injured athletes had significantly greater knee abduction on landing versus
male ACL-injured athletes [15,33]. Krosshaug et al. found no significant gender differences
in knee abduction at initial contact but did find an increased risk of valgus knee collapse
(8◦ vs. 4◦, p = 0.018) during load acceptance in female athletes when compared to their
male counterparts (RR = 5.3; p = 0.002) [15]. These findings suggest that dynamic knee
valgus may play a role in non-contact ACL injury and for the disparities among risk for
female and male athletes.

Ankle Motion: Four VA studies [25–27,29] and one PS study [36] included analysis
of ankle motion in consideration of ACL injury risk factors (Table 4). Boden et al. re-
ported after jumping or stepping when initially contacting the ground the that mean ankle
plantarflexion was significantly less in injured subjects at initial contact versus controls
(10.7◦ ± 9.6◦ versus 22.9◦ ± 10.1◦) (Table 4) [25]. They also demonstrated that injured
athletes did not transition into dorsiflexion to the same extent as the controls. By foot-flat,
control athletes had achieved 18.2◦ of dorsiflexion whereas injured athletes only had 9.4◦

(p < 0.0001). [25]. They suggest that the lack of ankle range at landing shows abnormal
absorption of ground reaction forces by the gastrocnemius-soleus complex (Table 4) [25].
No significant difference was found between male and female subjects [25]. Similar find-
ings were reported by Koga et al., who showed that all players in their case series of ten
subjects landed in a heel-strike position with a mean dorsiflexion of 2◦ at initial contact and
transferred to a flat-foot position over the next 20 ms by increasing the plantarflexion angle
by an average of 12◦ [26]. Montgomery et al. also showed that male ACL injuries tended to
occur more with heel strike at initial contact with median ankle plantar flexion being 10◦ in
injury cases and 0◦ in non-injury cases [27]. Additionally, while their findings were not
conclusive, Walden et al. found that the majority of injured players in their video analysis
study landed either in heel strike or flat foot versus on the toe (18◦ vs. 9◦, respectively) [29].

Table 4. Ankle Motion Values of Studies Reviewed.

Ankle PF_IC (Degrees)

Injured Control p-Value

Boden 2009 [25] 10.7 ± 9.6 22.9 ± 10.1 0.0059
Koga 2018 [26] −2.5 ± 18.6 NS

Montgomery 2018 [27] −2.5 ± 13.6 * 0 * 0.033 *
Leppänen 2017 [31] 7.4 ± 8.4 9.8 ± 9.6 0.26

Table 4 displays the values of mean measured ankle motion ± standard deviation (when available) of ACL injured
vs. control subjects (those that were not injured). IC = initial contact; PF = plantarflexion; NS = not studied. * Data
collected from direct communication with author.

One PS study analyzed ankle plantarflexion in association with ACL injury predis-
position [31]. They found no significant difference in ankle plantar flexion moment at
initial contact or throughout the range of motion between female injury and non-injury
participants [31]. Landing in a heel-strike position with lower degrees of dorsiflexion (i.e.,
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more stiff) may contribute to an increased risk of ACL injury although the literature is
limited and somewhat conflicting.

Trunk Angle and Lean: One VA study [34] and four PS studies [11,16,19,28] accounted
for trunk angle and lean as contributors to ACL injury (Table 5). Hewett et al. found that
female basketball players had significantly higher mean lateral trunk angle at the time of
injury than their male counterparts (mean 11.1◦ ± 2◦ vs. −5.5◦ ± 9.5◦ p = 0.04, respectfully)
(Table 5) [16]. There was also a trend towards higher mean lateral trunk angle at injury
between injured and non-injured female athletes [16]. In this study, injured female athletes
also had less forward lean at the time of injury versus non-injured females (1.6◦ ± 9.3◦

versus 14.0◦ ± 7.3◦ p = 0.005, respectfully), but showed no difference from injured males
(Table 5) [16]. Sheehan et al. found that injured athletes had positioned their center of
mass (COM) more posterior than non-injured athletes at initial impact during one-legged
landing maneuvers, indicating less forward trunk lean for injured subjects (Table 5) [28].
This finding was consistent between male and female athletes analyzed in this study. These
studies suggest that landing with more upright posturing may increase ACL injury risk.

Table 5. Trunk Angle and Motion Values of Studies Reviewed.

Female Lateral Trunk Angle (Degrees) Male Lateral Trunk Angle (Degrees) Female Forward Trunk Lean (Degrees)

Injured Control p-Value Injured Control p-Value Injured Control p-Value

Hewett 2009 [16] 11.1 ± 2 4.2 ± 9.6 0.29 −5.5 ± 9.5 NS 0.04 1.6 ± 9.3 14.0 ± 7.3 <0.01
Sheehan 2012 [28] 4 ± 14 15 ± 13 6 ± 17 18 ± 14 NS NS

Table 5 displays the mean trunk motion ± standard deviation (when available) of ACL injured vs. control subjects (those that were not
injured). NS = not studied.

Zazulak et al. found that trunk displacement in response to sudden unloading yields
significant predictive value of future ACL injury [19]. Specifically, female injured athletes
demonstrate higher peak trunk displacement and trunk displacement after force unloading
versus injured male athletes and non-injured female athletes at initial contact. However,
no significant differences were found for male injured or non-injured athletes. Similarly,
in collegiate athletes, DuPrey et al. found a significant correlation between the time it
takes athletes to stabilize their core following impact to ACL injury risk [34]. In their study,
injured athletes had an average time to stabilization following a backward single legged
jump of 0.49 s longer than non-injured athletes [34]. This trend was also observed for
forward, medial, and lateral jumps, but was nonsignificant [34]. Dingenen et al. found an
increase in combined dynamic knee valgus and lateral trunk motion in the direction of
the stance limb during a pre-screened single-leg drop landing in ACL injured subjects [11].
These findings suggest that increased core stability and postural control may decreased
ACL injury risk especially in female athletes.

4. Discussion

Despite the biomechanical, kinematic, and translational research on ACL injury risk
factors, little consensus has been reached regarding the specifics of such factors and how
they translate between the sexes. A recent systematic review found that females were at
increased risk of non-contact ACL injury compared to male athletes, with the disparity
being especially prevalent at the amateur level of competition [6]. Such injuries normally
result in long absences from competitive sports and impose a high degree of financial
burden on amateur athletes, many of whom are not receiving compensation or coverage
for their participation in sporting events [37,38]. This finding furthers the need to better
understand the factors contributing to ACL injury in order to better tailor training programs
in the way of injury prevention and recovery [39,40].

Previous studies have highlighted the importance of malignant movement patterns
regarding hip and pelvic positioning, knee angle, ankle positioning, and tibial rotation
during certain athletic maneuvers [41,42]. Some have sought to attribute the disparity in
relative risk between male and female athletes to hormonal differences [43–45] and neuro-
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muscular control [20,46–48]. Yet, despite the clear association between female athletes and
relatively higher risks of non-contact ACL injury in comparison to male athletes [6], specific
malignant movement patterns have seldom been documented in the literature for those
with confirmed ACL rupture. This review aimed not only to investigate biomechanical risk
factors with high associations to ACL injury, but also to draw comparison between male-
and female-specific risk factors, with the hope that future studies may be better aimed
to expand our knowledge of how these variables play a role in certain individuals ACL
injuries.

Hashemi et al. proposed that restricted hip flexion during landing may contribute to
risk of ACL injury due to increased anterior tibial translation [49]. This increased tibial
translation is likely the result of poor biomechanical advantage of the hamstrings with
the knee in a more extended position, thus allowing increased forward motion of the
tibia relative to the femur [21,23]. The increased anterior tibial translation contributes to
escalating level of tension on the ACL complex which predisposes to higher incidence
of rupture [50]. Subsequent studies have concluded that the hip musculature is critical
for proximal control of the knee joint during athletic maneuvers [18,23,51]. Of the studies
considered in this review that analyzed hip movement, the majority reported increased
degree of hip flexion upon landing in injured athletes [25,26,28], and trends towards more
hip abduction (Table 2) [25,29,35]. Multiple studies included in this review found injured
athletes to have decreased hip mobility throughout load acceptance, higher degree of hip
flexion at the end of loading and small changes in abduction versus uninjured athletes
(Table 2) [25,26,31]. In contrast to mean hip flexion at initial contact, there was debate on
whether peak hip flexion increased ACL injury risk (Table 2) [12,18,31]. While there was
mixed evidence on the role of peak hip flexion motion on ACL injury risk, weaker hip
abduction strength was found to be associated with increased ACL injury risk [17]. This is
likely due to the increased hip adduction motion that results in dynamic valgus at the knee
which predisposes the ACL to higher levels of shear force [15,18,52].

Despite the controversy on peak hip flexion, it is apparent that movement and strength
at the hip contributes to ACL risk susceptibility. This may be a significant contributing
factor to why females have a higher risk of non-contact ACL injury than males. In three
studies reviewed, females not only had a propensity to land with higher degrees of hip
flexion, but they also sustained their flexion angle longer compared to injured males and
uninjured athletes [15,25,36]. This finding represents a significant and inherent difference in
risk factors between male and female athletes and is an area that future research into ACL
injury mechanisms should be focused. Additionally, females were found to have less hip
abductor strength, by percentage of body weight, and delayed vastus medialis activation
during a single leg drop jump than male athletes [17,36]. These findings may be due to
inherent anatomical differences in the pelvic bone structure, differences in neuromuscular
movement patterns, different training regimens, or a multitude of other reasons. Regardless
of the origin, this difference seems to contribute to the increased relative risk female athletes
face with ACL injuries.

Knee joint kinematics and biomechanics have been widely studied in regard to the
risk they impose on ACL injury. Previous studies have shown that both forces applied
to extended knee joints [53–55] as well as high degree of knee valgus [12–14] has been
linked to ACL injury. In this review, both knee flexion and knee abduction were considered.
Results on knee flexion at initial contact were mixed with one reporting decreased [27], and
four reporting no statistically significant association to ACL injury (Table 3) [18,25,32,33].
However, three studies reported increased peak degree of knee flexion (Table 3) [12,27,33],
and one study reported progression towards higher levels of knee abduction during
movement contributed to ACL injury [25]. This discrepancy in knee joint findings may
have to do with the maneuver athletes were performing at the time of analysis and/or
additional predisposing factors. Athletes landing with higher degree of hip flexion may
have been predisposed to higher ACL strain and subsequent rupture, despite the angle of
the knee, due to the hips’ role in knee stabilization [18,23,51]. Alternatively, movements
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with a high propensity to precipitate knee valgus could have a more significant impact on
ACL injury than abduction and flexion, resulting in injury despite the sagittal angle.

Previous studies have shown that increased transition to an abducted knee posi-
tion during movement may predispose to ACL injury [25]. Additionally, others have
shown female injured athletes had higher degree of knee abduction on landing than in-
jured males [15,16]. This combination of findings helps to demonstrate the importance of
longevity for female athletes. As athletes get older, it may be important to focus training
programs on consistently maintaining safe habits of low degrees of knee abduction and
landing in less stiff positioning during athletic maneuvers. This finding may also help
to combat injuries at younger ages through early intervention [7,8]. In fact, one cohort
study of over 1000 female athletes between the ages of 14 and 18 years old found that
extensive neuromuscular and proprioceptive training reduced the two-year ACL injury
risk by 74% [8]. Considering the potential benefit of injury prevention programs, training
young female athletes in a way that combats increasing knee abduction with fatigue and
age may decrease the propensity to develop such habits and may reduce lifetime risk of
ACL injury.

All studies reviewed in this paper considering ankle kinematics showed that landing
with a heel strike (i.e., less plantarflexion on initial contact) was associated with ACL
injury in athletes (Table 4) [26–28,31]. This pattern has been widely associated with the
inability of the gastrocnemius to absorb the force when athletes land in a heel-strike pattern,
resulting in the force being translated directly to the knee [25]. Additionally, one study
found that injured athletes remained in a more plantarflexed position after initial contact for
longer periods of time, while uninjured athletes more quickly transitioned to a dorsiflexed
position [25]. This finding may further the idea that a lack of gastrocnemius ability to
absorb landing force on ground strike contributes to ACL injury as it seems those that
were injured had less movement around the ankle joint. In addition, less ankle motion
likely results in less knee and hip motion during landing and predisposes these patients
to landing in more stiff positioning. This absence of movement has been hypothesized to
be a result of a lack of the lower kinematic chain to properly function, and thus further
contributes to ACL injury [25].

Trunk stability is a relatively recent concept that some have suggested may contribute
to safety and stability while performing a wide variety of athletic maneuvers. Specifically,
it has been shown that trunk displacement can predict ACL injury risk with high degrees
of specificity and sensitivity in female athletes [19]. However, this trend has not held
up for male athletes [19]. This difference may be attributed to different hip-musculature
activation patterns [56] and/or differences in interpretation of incoming sensory input
contributing to bodily adjustments and knee stability [18,20,57,58] between men and
women. All studies that considered trunk stability showed a propensity for female athletes
to take longer to stabilize [34], hold their center of mass more posteriorly versus their base
of support [16,28], and demonstrated higher mean lateral trunk angles (Table 5) [16,34]
during athletic movements. Although these appeared to be significant contributors to
female ACL injury, there was a significant difference from male counterparts in only two
studies that found that females had higher mean lateral trunk angles [16,34] than their
male counterparts. Nonetheless, core stability and trunk deviation are areas that may be
improved with proper training [9–11]. These findings demonstrate the potential benefit
of tailoring biomechanical training programs for athletes, in particularly female athletes,
towards stability and agility in the way of injury prevention.

Future studies on ACL injury mechanisms should seek to further elucidate the dif-
ference between male and female athlete injury risk factors. Larger-scale pre-screening
studies may be beneficial to further understand biomechanical factors that predispose
young athletes to ACL rupture. Ultimately, the implementation of a screening program
for young athletes could be utilized to extrapolate patients into low, medium, and high-
risk groups for ACL injury to guide need for early intervention and education on injury
risk. Additionally, future studies should seek to analyze the benefit of strength training
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programs targeting known and suspected risk factors (i.e., higher degrees of hip flexion,
landing in heel strike, trunk stabilization, etc.) to assess difference in relative risk of future
ACL injury.

5. Conclusions

The current literature is mixed in regard to biomechanical risk factors for ACL injury.
However, some trends have emerged. In this review, we found that stiff landings, poor
core stability, weak hip abduction strength, increased knee valgus, knee longevity over
time, and landing in a heel strike position may increase the risk of ACL injury. All of these
factors appear to significantly contribute to ACL injury, and are particularly prevalent
in female athletes compared to males. This risk seems to be particularly pronounced
in amateur female athletes. Young male and female athletes may benefit from targeted
training programs, specifically those focusing on hip abductor strength, core stability,
knee stability, and ankle positioning on landing for future injury prevention. Despite the
wealth of knowledge about ACL injury risk, larger studies are needed to determine specific
biomechanical factors predisposing patients to ACL injury. Future studies should also be
directed at elucidating the benefits of targeted training programs to decrease the incidence
of ACL injury in young athletes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18073826/s1. Figure S1: PRISMA 2009 Flow Diagram.

Author Contributions: Conceptualization, J.L. and C.F. Methodology, J.L., C.S. and M.B. Validation,
C.F. and R.S.C. Formal Analysis, C.S., J.L., C.F. and R.S.C. Data Curation, R.S.C. and J.L. Writing—
Original Draft, C.S. and J.L. Writing—Review and Editing, C.F., R.S.C., J.L. and C.S. Supervision, C.F.
Project Administration, C.F. and R.S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data in this study are available on PubMed and other repositories.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Daniel, D.M.; Stone, M.L.; Dobson, B.E.; Fithian, D.C.; Rossman, D.J.; Kaufman, K.R. Fate of the ACL-injured patient. A

prospective outcome study. Am. J. Sports Med. 1994, 22, 632–644. [CrossRef]
2. Muneta, T.; Sekiya, I.; Yagishita, K.; Ogiuchi, T.; Yamamoto, H.; Shinomiya, K. Two-bundle reconstruction of the anterior cruciate

ligament using semitendinosus tendon with endobuttons: Operative technique and preliminary results. Arthroscopy 1999, 15,
618–624. [CrossRef] [PubMed]

3. Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of
literature. Am. J. Sports Med. 1995, 23, 694–701. [CrossRef] [PubMed]

4. Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23,
573–578. [CrossRef]

5. Agel, J.; Rockwood, T.; Klossner, D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury
Surveillance System Data Update (2004–2005 Through 2012–2013). Clin. J. Sport Med. 2016, 26, 518–523. [CrossRef]

6. Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s my risk of sustaining an
ACL injury while playing sports?” A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [CrossRef]

7. Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W., Jr.
Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female
athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [CrossRef] [PubMed]

8. Pflum, M.A.; Shelburne, K.B.; Torry, M.R.; Decker, M.J.; Pandy, M.G. Model prediction of anterior cruciate ligament force during
drop-landings. Med. Sci. Sports Exerc. 2004, 36, 1949–1958. [CrossRef] [PubMed]

9. Kiani, A.; Hellquist, E.; Ahlqvist, K.; Gedeborg, R.; Michaëlsson, K.; Byberg, L. Prevention of soccer-related knee injuries in
teenaged girls. Arch. Intern. Med. 2010, 170, 43–49. [CrossRef]

https://www.mdpi.com/article/10.3390/ijerph18073826/s1
https://www.mdpi.com/article/10.3390/ijerph18073826/s1
http://doi.org/10.1177/036354659402200511
http://doi.org/10.1053/ar.1999.v15.0150611
http://www.ncbi.nlm.nih.gov/pubmed/10495178
http://doi.org/10.1177/036354659502300611
http://www.ncbi.nlm.nih.gov/pubmed/8600737
http://doi.org/10.3928/0147-7447-20000601-15
http://doi.org/10.1097/JSM.0000000000000290
http://doi.org/10.1136/bjsports-2016-096274
http://doi.org/10.1177/0363546504272261
http://www.ncbi.nlm.nih.gov/pubmed/15888716
http://doi.org/10.1249/01.MSS.0000145467.79916.46
http://www.ncbi.nlm.nih.gov/pubmed/15514512
http://doi.org/10.1001/archinternmed.2009.289


Int. J. Environ. Res. Public Health 2021, 18, 3826 12 of 13

10. Knapik, J.J.; Bullock, S.H.; Toney, E.; Wells, J.D.; Hoedebecke, E.; Jones, B.H. Influence of an injury reduction program on injury
and fitness outcomes among soldiers. Inj. Prev. 2004, 10, 37–42. [CrossRef] [PubMed]

11. Dingenen, B.; Malfait, B.; Nijs, S.; Peers, K.H.; Vereecken, S.; Verschueren, S.M.; Staes, F.F. Can two-dimensional video analysis
during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study. Clin. Biomech.
2015, 30, 781–787. [CrossRef]

12. Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen,
L.; Bahr, R. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A
Prospective Cohort Study of 710 Athletes. Am. J. Sports Med. 2016, 44, 874–883. [CrossRef]

13. Koga, H.; Bahr, R.; Myklebust, G.; Engebretsen, L.; Grund, T.; Krosshaug, T. Estimating anterior tibial translation from model-
based image-matching of a noncontact anterior cruciate ligament injury in professional football: A case report. Clin. J. Sport Med.
2011, 21, 271–274. [CrossRef] [PubMed]

14. Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact
anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J.
Sports Med. 2010, 38, 2218–2225. [CrossRef] [PubMed]

15. Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of
anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [CrossRef]
[PubMed]

16. Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury
in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med.
2009, 43, 417–422. [CrossRef] [PubMed]

17. Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament
Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2015, 44, 355–361. [CrossRef]

18. Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van den Bogert, A.J.; Paterno, M.V.; Succop, P.
Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in
female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [CrossRef]

19. Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee
injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [CrossRef]

20. Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin.
Orthop. Relat. Res. 2002, 402, 76–94. [CrossRef]

21. Li, G.; Rudy, T.W.; Sakane, M.; Kanamori, A.; Ma, C.B.; Woo, S.L. The importance of quadriceps and hamstring muscle loading on
knee kinematics and in-situ forces in the ACL. J. Biomech. 1999, 32, 395–400. [CrossRef]

22. Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M.H. Strain within the anterior cruciate ligament during hamstring
and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [CrossRef] [PubMed]

23. Hewett, T.E.; Ford, K.R.; Xu, Y.Y.; Khoury, J.; Myer, G.D. Effectiveness of Neuromuscular Training Based on the Neuromuscular
Risk Profile. Am. J. Sports Med. 2017, 45, 2142–2147. [CrossRef] [PubMed]

24. Melnyk, B.M.; Gallagher-Ford, L.; Fineout-Overholt, E. Implementing the evidence-based practice competencies in health-care. In
A Practical Guide for Improving Quality, Safety, & Outcomes; Sigma Theta Tau International: Indianapolis, IN, USA, 2016.

25. Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and
ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [CrossRef]

26. Koga, H.; Nakamae, A.; Shima, Y.; Bahr, R.; Krosshaug, T. Hip and Ankle Kinematics in Noncontact Anterior Cruciate Ligament
Injury Situations: Video Analysis Using Model-Based Image Matching. Am. J. Sports Med. 2018, 46, 333–340. [CrossRef]

27. Montgomery, C.; Blackburn, J.; Withers, D.; Tierney, G.; Moran, C.; Simms, C. Mechanisms of ACL injury in professional rugby
union: A systematic video analysis of 36 cases. Br. J. Sports Med. 2018, 52, 994–1001. [CrossRef]

28. Sheehan, F.T.; Sipprell, W.H., 3rd; Boden, B.P. Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am. J.
Sports Med. 2012, 40, 1068–1074. [CrossRef]

29. Walden, M.; Krosshaug, T.; Bjørneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in
non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J.
Sports Med. 2015, 49, 1452–1460. [CrossRef]

30. Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball:
A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [CrossRef]

31. Leppänen, M.; Pasanen, K.; Krosshaug, T.; Kannus, P.; Vasankari, T.; Kujala, U.M.; Bahr, R.; Perttunen, J.; Parkkari, J. Sagittal
Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthop. J.
Sports Med. 2017, 5, 2325967117745487. [CrossRef]

32. Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.;
et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J.
Sports Med. 2017, 45, 386–393. [CrossRef] [PubMed]

33. Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion
analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury.
Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 442–447. [CrossRef]

http://doi.org/10.1136/ip.2003.002808
http://www.ncbi.nlm.nih.gov/pubmed/14760025
http://doi.org/10.1016/j.clinbiomech.2015.06.013
http://doi.org/10.1177/0363546515625048
http://doi.org/10.1097/JSM.0b013e31821899ec
http://www.ncbi.nlm.nih.gov/pubmed/21487293
http://doi.org/10.1177/0363546510373570
http://www.ncbi.nlm.nih.gov/pubmed/20595545
http://doi.org/10.1177/0363546506293899
http://www.ncbi.nlm.nih.gov/pubmed/17092928
http://doi.org/10.1136/bjsm.2009.059162
http://www.ncbi.nlm.nih.gov/pubmed/19372088
http://doi.org/10.1177/0363546515616237
http://doi.org/10.1177/0363546504269591
http://doi.org/10.1177/0363546507301585
http://doi.org/10.1097/00003086-200209000-00008
http://doi.org/10.1016/S0021-9290(98)00181-X
http://doi.org/10.1177/036354658601400114
http://www.ncbi.nlm.nih.gov/pubmed/3752352
http://doi.org/10.1177/0363546517700128
http://www.ncbi.nlm.nih.gov/pubmed/28441059
http://doi.org/10.1177/0363546508328107
http://doi.org/10.1177/0363546517732750
http://doi.org/10.1136/bjsports-2016-096425
http://doi.org/10.1177/0363546512437850
http://doi.org/10.1136/bjsports-2014-094573
http://doi.org/10.1177/0363546503261724
http://doi.org/10.1177/2325967117745487
http://doi.org/10.1177/0363546516665810
http://www.ncbi.nlm.nih.gov/pubmed/27637264
http://doi.org/10.1007/s00167-017-4681-9


Int. J. Environ. Res. Public Health 2021, 18, 3826 13 of 13

34. DuPrey, K.M.; Liu, K.; Cronholm, P.F.; Reisman, A.S.; Collina, S.J.; Webner, D.; Kaminski, T.W. Baseline Time to Stabilization
Identifies Anterior Cruciate Ligament Rupture Risk in Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1487–1491. [CrossRef]
[PubMed]

35. Johnston, J.T.; Mandelbaum, B.R.; Schub, D.; Rodeo, S.A.; Matava, M.J.; Silvers-Granelli, H.J.; Cole, B.J.; ElAttrache, N.S.;
McAdams, T.R.; Brophy, R.H. Video Analysis of Anterior Cruciate Ligament Tears in Professional American Football Athletes.
Am. J. Sports Med. 2018, 46, 862–868. [CrossRef]

36. Marotta, N.; Demeco, A.; de Scorpio, G.; Indino, A.; Iona, T.; Ammendolia, A. Late Activation of the Vastus Medialis in
Determining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport Rehabil. 2020, 29, 952–955. [CrossRef]

37. De Loës, M.; Dahlstedt, L.J.; Thomée, R. A 7-year study on risks and costs of knee injuries in male and female youth participants
in 12 sports. Scand. J. Med. Sci. Sports. 2000, 10, 90–97. [CrossRef]

38. Mather, R.C., 3rd; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach, B.R., Jr.; Spindler, K.P.; MOON Knee Group.
Societal and economic impact of anterior cruciate ligament tears. J. Bone Joint Surg. Am. 2013, 95, 1751–1759. [CrossRef]

39. Noyes, F.R.; Barber Westin, S.D. Anterior cruciate ligament injury prevention training in female athletes: A systematic review of
injury reduction and results of athletic performance tests. Sports Health 2012, 4, 36–46. [CrossRef] [PubMed]

40. Padua, D.A.; DiStefano, L.J.; Hewett, T.E.; Garrett, W.E.; Marshall, S.W.; Golden, G.M.; Shultz, S.J.; Sigward, S.M. National
Athletic Trainers’ Association Position Statement: Prevention of Anterior Cruciate Ligament Injury. J. Athl. Train. 2018, 53, 5–19.
[CrossRef]

41. Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective.
J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [CrossRef] [PubMed]

42. Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther.
2010, 40, 42–51. [CrossRef] [PubMed]

43. Arendt, E.A.; Bershadsky, B.; Agel, J. Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J.
Gend. Specif. Med. 2002, 5, 19–26. [PubMed]

44. Slauterbeck, J.R.; Hardy, D.M. Sex hormones and knee ligament injuries in female athletes. Am. J. Med. Sci. 2001, 322, 196–199.
[CrossRef] [PubMed]

45. Wojtys, E.M.; Ashton-Miller, J.A.; Huston, L.J. A gender-related difference in the contribution of the knee musculature to
sagittal-plane shear stiffness in subjects with similar knee laxity. J. Bone Joint Surg. Am. 2002, 84, 10–16. [CrossRef] [PubMed]

46. Hewett, T.E. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention.
Sports Med. 2000, 29, 313–327. [CrossRef]

47. Lloyd, D.G. Rationale for training programs to reduce anterior cruciate ligament injuries in Australian football. J. Orthop. Sports
Phys. Ther. 2001, 31, 645–654, discussion 661. [CrossRef] [PubMed]

48. McLean, S.G.; Lipfert, S.W.; van den Bogert, A.J. Effect of gender and defensive opponent on the biomechanics of sidestep cutting.
Med. Sci. Sports Exerc. 2004, 36, 1008–1016. [CrossRef] [PubMed]

49. Hashemi, J.; Breighner, R.; Chandrashekar, N.; Hardy, D.M.; Chaudhari, A.M.; Shultz, S.J.; Slauterbeck, J.R.; Beynnon, B.D. Hip
extension, knee flexion paradox: A new mechanism for non-contact ACL injury. J. Biomech. 2011, 44, 577–585. [CrossRef]

50. Jayaraman, V.M.; Sevensma, E.T.; Kitagawa, M.; Haut, R.C. Effects of Anterior-Posterior Constraint on Injury Patterns in the
Human Knee During Tibial-Femoral Joint Loading from Axial Forces through the Tibia. Stapp. Car Crash J. 2001, 45, 449–468.
[PubMed]

51. Hewett, T.E.; Myer, G.D. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc.
Sport Sci. Rev. 2011, 39, 161–166. [CrossRef]

52. Dix, J.; Marsh, S.; Dingenen, B.; Malliaras, P. The relationship between hip muscle strength and dynamic knee valgus in
asymptomatic females: A systematic review. Phys. Ther. Sport. 2019, 37, 197–209. [CrossRef]

53. Beynnon, B.D.; Fleming, B.C. Anterior cruciate ligament strain in-vivo: A review of previous work. J. Biomech. 1998, 31, 519–525.
[CrossRef]

54. Beynnon, B.D.; Fleming, B.C.; Johnson, R.J.; Nichols, C.E.; Renström, P.A.; Pope, M.H. Anterior cruciate ligament strain behavior
during rehabilitation exercises in vivo. Am. J. Sports Med. 1995, 23, 24–34. [CrossRef]

55. Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states
that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [CrossRef] [PubMed]

56. Huxel Bliven, K.C.; Anderson, B.E. Core stability training for injury prevention. Sports Health 2013, 5, 514–522. [CrossRef]
[PubMed]

57. Granata, K.P.; Orishimo, K.F.; Sanford, A.H. Trunk muscle coactivation in preparation for sudden load. J. Electromyogr. Kinesiol.
2001, 11, 247–254. [CrossRef]

58. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D.
The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions:
Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [CrossRef] [PubMed]

http://doi.org/10.1177/0363546516629635
http://www.ncbi.nlm.nih.gov/pubmed/26920429
http://doi.org/10.1177/0363546518756328
http://doi.org/10.1123/jsr.2019-0026
http://doi.org/10.1034/j.1600-0838.2000.010002090.x
http://doi.org/10.2106/JBJS.L.01705
http://doi.org/10.1177/1941738111430203
http://www.ncbi.nlm.nih.gov/pubmed/23016067
http://doi.org/10.4085/1062-6050-99-16
http://doi.org/10.2519/jospt.2003.33.11.639
http://www.ncbi.nlm.nih.gov/pubmed/14669959
http://doi.org/10.2519/jospt.2010.3337
http://www.ncbi.nlm.nih.gov/pubmed/20118526
http://www.ncbi.nlm.nih.gov/pubmed/11974671
http://doi.org/10.1097/00000441-200110000-00008
http://www.ncbi.nlm.nih.gov/pubmed/11678515
http://doi.org/10.2106/00004623-200201000-00002
http://www.ncbi.nlm.nih.gov/pubmed/11792773
http://doi.org/10.2165/00007256-200029050-00003
http://doi.org/10.2519/jospt.2001.31.11.645
http://www.ncbi.nlm.nih.gov/pubmed/11720297
http://doi.org/10.1249/01.MSS.0000128180.51443.83
http://www.ncbi.nlm.nih.gov/pubmed/15179171
http://doi.org/10.1016/j.jbiomech.2010.11.013
http://www.ncbi.nlm.nih.gov/pubmed/17458758
http://doi.org/10.1097/JES.0b013e3182297439
http://doi.org/10.1016/j.ptsp.2018.05.015
http://doi.org/10.1016/S0021-9290(98)00044-X
http://doi.org/10.1177/036354659502300105
http://doi.org/10.1002/jor.1100130618
http://www.ncbi.nlm.nih.gov/pubmed/8544031
http://doi.org/10.1177/1941738113481200
http://www.ncbi.nlm.nih.gov/pubmed/24427426
http://doi.org/10.1016/S1050-6411(01)00003-7
http://doi.org/10.1371/journal.pmed.1000100
http://www.ncbi.nlm.nih.gov/pubmed/19621070

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

