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Online Text S1 
Sampling design and corrections of seroprevalence. To obtain reliable and representative estimates of SARS-CoV-

2 seroprevalence in the Munich population, we corrected the observed (crude) seroprevalence in our data, i.e. the 
number of positive cases divided by the sample size, for two characteristics: the sampling design underlying our cohort, 
and the sensitivity as well as specificity of tests used. 

The population-based prospective cohort study KoCo19 is located in the city of Munich, Germany. From 5 April 
to 12 June 2020, we carried out the initial fieldwork in randomly selected households, using a two-stage sampling 
design. The initial study population of KoCo19 consists of the Munich general population 14 years and older. 

The first stage of the sampling procedure refers to the selection of the 100 out of 755 constituencies. This selection 
was done via a rejective sampling design [1], initially with equal probabilities for each constituency to be included in 
the sample (~13%). The sample of 100 constituencies was checked to be a representative sample of the Munich 
population regarding the age structure, the percentages of the population with migration background, of households 
with children and households with only one member. A sample was considered representative if the respective mean 
fractions in the sample differed from the mean fractions across all 755 Munich constituencies by less than 10 percent 
points. Only samples of 100 constituencies that fulfilled these requirements had a non-zero probability to be selected. A 
Monte Carlo simulation using 5000 iterations for random samples of 100 constituencies showed inclusion probabilities 
at the constituency level ranging from 12%–15% (Figure S8), indicating that the rejection step does not induce 
considerable bias. Moreover, the regression estimator (which is equivalent to the calibrated estimator, see below) for 
the rejective sample (with inclusion probabilities between 12% and 15%) has similar properties to the regression 
estimator for the original selection procedure (simple random sampling with inclusion probabilities ~13%) [2], which 
facilitates the calculation of the variance and the associated confidence interval. 

The second stage of the sampling procedure consists in the selection of approximately 30 households for each of 
the 100 drawn constituencies, totalling around 3000 households in the sample. These households were obtained via 
random routes starting in each selected constituency (which could be assimilated to a systematic sampling with equal 
probabilities3 or to a simple random sampling). The random routes often crossed the borders of the constituencies, 
which means that a household could be included in the sample via its own constituency or via a neighbouring one. To 
account for these multiple ways to be included in the sample, we considered the first and second order neighbours 
(neighbours of a neighbour) for each selected constituency and applied a generalized weight share method4 for the 
weights of the households. 

Finally, all members 14 years and older were asked to donate blood samples. If participants refused to give blood 
samples, the sampling weights of the consenting participants within the same household were increased to represent 
the other members. In case the age of one or more members in the household was missing, we accounted for household 
structure (number of members, age of the members, etc.) to impute the missing age(s) by its mode (i.e. by the case with 
the most occurrences). This results in considering that in households with two members, the missing age is almost 
always one of another adult in the household, while in households with three or more members, the missing ages are 
usually concerning children in the household. 

Once the sampling weights for all participants were computed, they were calibrated in order to fit to the Munich 
population regarding the sex and age structure, the percentages of the population with migration background, of 
households with children and single-person households (auxiliary information). Here, we employed the calibration 
technique by Deville et al [5]. The resulting calibrated estimator (e.g. the seroprevalence for the Munich population 
using calibrated weights) is asymptotically equivalent to the regression estimator. 

The variance associated to this calibrated estimator can then be derived thanks to linearisation6 and residual5,6 
techniques. In short, the variance of the calibrated estimator is asymptotically equivalent to the variance of the total of 
the residuals of a linear regression using the linearized variable as response and the auxiliary variables used in the 
calibration process as covariates. This variance estimation accounts for the different stages of the sampling design 
(inference on finite population), i.e. 𝑉 = 𝑉 + 𝑉  with 𝑉  the variance associated to the selection of the constituencies and 𝑉  the one associated to the selection of the households. 95% confidence intervals could then be calculated. The 
normality of the Horvitz-Thompson estimator in case of a two-stage sampling design has been proven by Chauvet et al 
[7]. 

In Figure S4, we compare the estimated SARS-CoV-2 seroprevalence (and the associated 95% confidence interval) 
obtained according to the sampling design (using calibrated weights as described above) to the one without considering 
any weighting strategy. The variance associated to the weighted estimator was calculated as described above. For the 
variance of the unweighted estimator we used the classical formula 𝑃(1 − 𝑃)/𝑛 (inference on infinite population). To 
account for the fact that the target variable within households is correlated, the population size used for this variance 
was n = 2994, that is the number of households in the sample rather than n = 5313, the number of participants. 
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In addition to accounting for the sampling design, we also consider the probabilities of the laboratory tests to yield 
false negatives or false positive results. Following Sempos and Tian [8], we calculate the adjusted seroprevalence as (�̂� + 𝑠𝑝 − 1)/(𝑠𝑒𝑛 + 𝑠𝑝 − 1), where �̂� is the crude seroprevalence (fraction of positive cases among the observed 
population), 𝑠𝑝 the estimated specificity and 𝑠𝑒𝑛 the estimated sensitivity. Whilst (𝑝 + 𝑠𝑝 − 1)/(𝑠𝑒𝑛 + 𝑠𝑝 − 1) with true 
probability 𝑝 for a positive test result and true sensitivity and specificity 𝑠𝑒𝑛 and 𝑠𝑝 is an exact formula for the true 
seroprevalence, it is only approximate if �̂�, 𝑠𝑝 are 𝑠𝑒𝑛 are calculated and plugged in independently. For that reason, the 
case �̂� + 𝑠𝑝 ≤ 1 can occur. In this case, the above formula would yield a negative adjusted seroprevalence estimate. For 
our data, this happened for EI-S1-IgG. Instead of reporting a negative adjusted seroprevalence, we set the value to zero 
although positive test results have been observed. This estimate has to be considered with care since the standard 
adjustment method is not fully applicable [9]. 

To summarize, we report SARS-CoV-2 seroprevalence in this manuscript calculated in four different ways: 
- weighted: correcting for the sampling design for our study cohort using calibrated weights, 
- unweighted: not correcting for the sampling design, 
- adjusted: correcting for false positives and false negatives based on a test’s sensitivity and specificity, 
- unadjusted: not correcting for false test results. 
Applying the weighted and adjusted Ro-N-Ig seroprevalence (1.82%; 95% CI: 1.28-2.37%) to the number of 

inhabitants aged 14 and older living in Munich (1,369,444) allows us to estimate the number of individuals who 
developed SARS-CoV-2 antibodies (24,990; 95% CI 17,584-32,396; using more than two digits for seroprevalence). The 
underreporting factor from Figure 3C varies depending on the share of the 6,293 officially registered PCR-positive cases 
in Munich who are living in private households. The calculation of the infection fatality ratio is similar, using the 
estimated number of infections and assuming a share of the 216 registered COVID-19 related deaths in Munich 
occurring in private households (see Figure 3F). 

According to RKI, around 13% of the reported cases for COVID-19 in Germany occurred in institutions until the 
end of the study period [10]. We can thus consider that 87% of the infections occurred in private households. Assuming 
that this percentage is the same for Munich leads to an underreporting factor of 4.5. In this calculation we use the entire 
population size as an approximation for the number of people living in private households since only a small number 
lives in institutions and an adjustment does not change the rough estimate of 4.5. If all cases were registered in private 
households, this factor would be approximately equal to 4. The same calculation was done for the number of registered 
deaths: 46% of COVID-19 related deaths in Germany occurred in institutions as reported by RKI [10]. Assuming that 
54% of the registered deaths in Munich occurred in private households leads to an IFR of 0.47%. If all deaths had 
occurred in private households, the IFR would be approximately equal to 0.86%. 

In our survey, we asked participants about already known (and thus registered) SARS-CoV-2 infection status. 
Based on this information, we estimate 4367 (95% CI 1,952–6783) officially reported cases in private households in 
Munich. Using these numbers allows us to estimate the share of the 6,293 officially reported cases that occurred in 
private households (69%; 95% CI 31–100%) for Munich. Assuming that 69% of the registered cases occurred in private 
households leads to an underreporting factor of 5.7. 

To facilitate reproducibility and reuse, the code used to perform the analyses and generate the figures was made 
available on GitHub (https://github.com/koco19/lab_epi) and has been uploaded to ZENODO 
(http://doi.org/10.5281/zenodo.4300922, accessed on 28 March 2021) for long-term storage. 
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Online Text S2 
Details on cut-offs and validation. To assess the robustness of the seropositivity estimate obtained based on the 

Ro-N-Ig assay with an optimised cut-off, we compared it to seropositivity estimates obtained using other classifiers: 
Ro-N-Ig assay with the manufacturer’s cut-off, EI-S1-IgG and EI-S1-IgA each with an optimised and the manufacturer’s 
cut-off, and two machine learning techniques—namely a support vector machine and a random forest—using 
information from Ro-N-Ig, EI-S1-IgG and EI-S1-IgA. Detailed descriptions of the cut-off optimisation for the three 
assays, the training of the support vector machine and the random forest, as well as the estimation of the specificities 
and sensitivities of all classifiers are provided by Olbrich et al [11]. In short, an optimised cut-off for a single assay is the 
median of the cut-offs that classify best in 10000 bootstrap samples, each sampled with replacement from our set of 1266 
individuals with known seropositivity status. In each bootstrap replication, the respective best cut-off is used to predict 
the serological status of the observations not included in the bootstrap sample (out-of-bag observations). After 
averaging the predictions for each observation over all bootstrap replications, the majority votes are chosen and 
compared to the true serological status to calculate specificity and sensitivity. For the support vector machine and the 
random forest, a similar approach is employed: After having optimised the tuning parameters, 2000 bootstraps and 
respective out-of-bag estimations are used to calculate specificity and sensitivity. The manufacturer’s cut-off for a single 
assay is determined by the manufacturer based on its own data, and specificity and sensitivity are computed by us by 
comparing the true serological status to the predictions based on the cut-off for the entire sample of 1266 individuals. 
Bootstrapping this sample and predicting out-of-bag observations is also used to optimise the tuning parameters and 
estimate specificities and sensitivities of the support vector machine and the random forest. 

Classification of test results according to optimized cut-offs are reported in Figures S1 and S2. Table S4 reports 
resulting test-sensitivity and -specificity for all classifiers. For the classifiers based on a single assay and the cut-off 
provided by the manufacturer, also one specificity and two sensitivities using manufacturer’s information are given. In 
particular, the specificity chosen is the average specificity over all cohorts investigated by the manufacturer, while for 
the sensitivity scenarios of low sensitivity (assuming the time elapsed from a positive PCR test to the antibody test to 
be intermediate) and high sensitivity (using the highest category of elapsed time reported) are considered. This allows 
the assessment of the variability of the seroprevalence estimates when different measures of test performance are 
applied. As it is typical for low-prevalence settings, even small differences in specificity lead to fundamentally different 
results, as can be seen for both Euroimmun assays. Despite the variability in the results and independent of the 
application of weights, all classifiers indicate a low seropositivity with all point estimates and most of the upper bounds 
of the 95% bootstrap percentile confidence intervals being below 2.5% (Figure S4). 
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Online Text S3 
Handling of missing data and risk factor analysis. The data collected in this study contained gaps. Overall, the 

data table was filled to 94.1%. Most missing values (5.9%) were due to non-response on the personal questionnaires. 
The serological data were complete for Ro-N-Ig, and there was only one missing observation for E1-S1-IgA/G. The 
missingness pattern and frequencies are illustrated in Figures S5 and S6. To handle the missing data, we performed 
multiple imputation as a way of sensitivity analysis and compare it to scenarios where imputation is not performed. 

The standard method for analysis of binary outcomes for risk factor analysis is the framework of generalized linear 
models (GLM), in particular logistic regression analyses. However, in our study, the participants were clustered within 
the households as a sampled unit, and thus, we use the generalized linear mixed models (GLMM) [12,13]. 

We assume the missingness in our data to be missing at random (MAR), where the specification of a dropout model 
is not necessary. This allows us to make valid inference which is based on the likelihood function conditional on the 
observed data alone (complete case analyses). The GLMM is valid under the above conditions since the estimates are 
obtained by maximum likelihood. In the case of non-likelihood marginal models, the semi-parametric method of 
generalized estimating equations (GEE) is popularly used to model correlated non-Gaussian outcomes including 
missing outcomes. However, GEE would require the stronger condition of missingness completely at random (MCAR) 
and is not performed here [12,14]. 

We performed the imputation of the missing covariates to compare our estimates after imputation with the GLMM 
estimates. For this imputation of covariates under the assumption of the base model, we used the Joint Analysis and 
Imputation of Incomplete Data Framework (JointAI) in R to obtain the updated OR estimates and standard errors 
[12,14,15]. Under this framework, the estimation process is sequentially fully Bayesian, by modelling the GLMM of 
interest jointly with the incomplete covariates information. Joint analysis and imputation are performed simultaneously 
to allow for consistency in the parameter estimation process without the requirement for any pooling steps for the 
imputed data. One of the major advantages of the Bayesian approach is that the joint distribution of all data allows for 
the use of all available information of the outcome in the imputation of the incomplete covariates particularly in complex 
setups of clustered data analysis where covariates can be present in multiple levels of hierarchy. 

For Table S2 we allowed for 100 burn-in/adaption samples followed by 500 MCMC iterations for each of the models 
considered. For Table S3 we allowed for 3000 burn-in/adaption samples and 12,000 MCMC iterations, respectively. 
Within each iteration, there is an imputed data set created and the regression coefficient(s) for the corresponding risk 
factor(s) of interest are estimated. The hyperparameters (non- informative) for the fixed effect regression coefficients are 
assumed to be Gaussian with mean 0 and standard deviation 0.01 whereas the variance components (1/sigma) are 
assumed to be Gamma distributed with shape and rate parameter being equal to 0.001. 
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Online Text S4 
Influence of household size and household clustering. In total 93 participants of the KoCo19 study were tested 

positive. These individuals lived in households of different sizes, and there were 82 households in which at least one 
infection was observed. As household members below 14 years of age were excluded and as some household members 
did not agree to participate, only 76% of the members of all households were tested. While we had a large number of 
households with more than two household members, in most households only two persons were tested. 

Interestingly, we observed that members of 1-person households were more likely to be tested positive than 
members of households of size 2, 3 and 4, while for large households the fraction of positive tests was again increasing 
(Table S2). This is in agreement with the OR of 1.54 computed by the risk factor analysis for 1-persons households, and 
might point towards different habits (Table S3). Yet, despite the higher infection risk in 1-person households, out of the 
93 individuals with a positive test result, 22 lived in a household with another individual which was tested positive. 
Furthermore, out of the 66 households with more than one inhabitant in which at least one individual was tested 
positive, 33.33% had a second individual who was tested positive. Due to the low overall prevalence, both is unlikely 
in the absence of transmission within households. Accordingly, it indicates a substantial fraction of within-household 
transmissions. 

To further study the household clustering, we performed a risk factor analysis using the GLMM framework (which 
used a logistic model). Using a likelihood ratio test (LRT), we investigated whether the additional variance component 
(random effect) due to the clustering within households in the GLMM compared to the GLM was significantly different 
from zero. We considered the null hypothesis 𝐻 ∶  𝐷 =  0 versus the alternative 𝐻 ∶  𝐷 =  𝑑  for some non-negative 
scalar 𝑑 , where 𝐷 is the variance of the random effect. The hypotheses were evaluated using the asymptotic null 
distribution for the difference between the likelihoods of the two models, −2 (ln 𝜆  − ln 𝜆  ) → 𝜒 :  (mixture of 𝜒  
and 𝜒  with equal weights 0.5) [12,16,17]. 𝜆   is the likelihood under the GLM without any random effect, whereas 𝜆   is the corresponding likelihood under the GLMM with one random effect for the intra-household clustering. For 
the analysis described in Table S3 under the frequentist framework we obtained the value for −2 (ln 𝜆  −ln 𝜆  ) = 278.85, and when compared to the mixture of 𝜒  and 𝜒 , we obtain a p-value less than 0.001. This implied 
again that we have a significant clustering within households. In addition to this, in the Bayesian framework we 
estimated the random effect variance to be 7.13 with 95% Credible Interval from 3.4 to 12.4. All this evidence favoured 
the presence of positive clustering within households. 
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Online Figure S1. Validation of classifier based on Ro-N-Ig results. The subplots depict the results of the Ro-N-Ig and 
EI-S1-IgG results for 5313 participants. (A) Prediction of classifier based on Ro-N-Ig results using optimised threshold 
derived by Olbrich et al., (B) results using cPass test, (C) results of the neutralisation test, and (D) results of a PCR test [11]. 
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Online Figure S2. Comparison of primary test results (Ro-N-Ig vs EI-S1-IgG) with other tests. All plots show the same 
measurements of Ro-N-Ig values vs. EI-S1-IgG values on a continuous scale. Lines indicate whether they lie below or 
above the optimized (dashed) or the manufacturer’s (dotted) cut-off for Ro-N-Ig (vertical) and EI-S1-IgG (horizontal). In 
each plot, colors represent the binary result of the test indicated in the respective title: blue for negative, orange for positive 
and grey for non-performed analysis of the respective test. 
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Online Figure S3. Number of participants per city district (A), unweighted (upper figure) and weighted (lower figure) 
prevalence (%) of Ro-N-Ig seropositive samples per city district (B) with lower (C) and upper (D) 95% Confidence Intervals 
(CI). 95% CI were calculated based on the Poisson Counts for the number of positives among the numbers tested in the 
district. 
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Online Figure S4. SARS-CoV-2 seroprevalence obtained by different classifiers for different specificities and 
sensitivities. Seroprevalence estimates accounting for the sampling design (right) and not accounting for sampling design 
(left). Values are adjusted (orange, blue and grey) or unadjusted (black) for the tests’ sensitivities and specificities, which 
are specified in Table S4. In the main manuscript, we report weighted and adjusted Ro-N-Ig seroprevalence with optimised 
cut-off. 
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Online Figure S5. Missing patterns observed in our complete analysis data. We observe 4081 out of 5313 individuals 
have complete information. Our primary serological test (Ro-N-Ig) along with age, sex and the type of housing has 
complete information for 5313 observations and one individual has missing information on E1-S1-IgG/IgA. Number of 
positive symptoms is a derived variable based on selection among a list of symptoms mentioned in the questionnaire. 
Majority of the non-response can be attributed to non-answering of the questionnaire for household and individual 
characteristics. Missing education level of the participants was the biggest contributor to the missing data. 
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Online Figure S6. Missing patterns observed in our multiple regression analysis data with important covariates only. 
For this subset of data, we observe 4460 out of 5313 observations have complete information, which is used for obtaining 
the regression estimates without any imputation (Table S3). 
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Online Figure S7. Roche N pan-Ig seroprevalence in the KoCo19 study population unweighted (top) and weighted 
(bottom). The values are either unadjusted (left) or adjusted (right) for sensitivity and specificity of the test method. The 
weekly seroprevalence estimates are in all scenarios crude estimates without weighting and adjustment for sensitivity and 
specificity. The 95% confidence interval for the weekly seroprevalence was computed assuming a Poisson distribution to 
estimate the rate of positive cases. 
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Online Figure S8. Sampling probabilities for Munich constituencies. Given the rejection sampling approach for the 
selection of the constituencies (see Text S1), we estimated the real probability for each constituency in Munich to be 
included in the set of 100 starting constituencies for the random walks using a Monte Carlo simulation. Within the samples 
of 100 constituencies that fulfilled the representativeness requirements, we repeated 5000 times the selection of one sample 
and computed the sampling probabilities as the percentages of how often a constituency was included in the 5000 Monte 
Carlo samples. The figure shows that all probabilities are estimated to be in a rather narrow range (between 0.12 and 0.15) 
and thus approximately equal. The rejection sampling procedure does not induce considerable bias. 
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Online Figure S9. Fraction of individuals with positive Ro-N-Ig result for different household sizes. The total number 
of tested household members (cyan) and the total number of household members (red) was taken as basis. 
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Online Table S1. Individual characteristics of the KoCo19-study participants comparing telephone interviewees to those 
answering the online questionnaire. 

Characteristics KoCo-19 Online Questionnaire KoCo-19 Telephone Interview Test for Significance a 
 Individual characteristics 

N 4902 411  
 nmissing n % nmissing n % p-value 

Sex 0   0   0.006 b 
Female  2525 51.5  241 58.6  

Age 0   0   0.002 c 
0–19 years  261 5.3  6 1.5  

20–34 years  1322 27.0  24 5.8  
35–49 years  1505 30.7  37 9.0  
50–64 years  1233 25.2  73 17.8  
65–79 years  504 10.3  172 41.8  
80+ years  77 1.6  99 24.1  

Country of birth 465   0   0.035 b 
Outside Germany  761 17.2  88 21.4  

Level of education 685   16    
Still in school  97 2.3  3 0.8 0.002 c 

<12 years  1103 26.2  283 71.6  
≥12 years  3017 71.5  109 27.6  

Employment status 575   1   0.002 c 
Employed  2825 65.3  86 21.0  

Self-Employed  445 10.3  26 6.3  
Not workingd  970 22.4  288 70.2  

Otherse  87 2.0  10 2.4  
Risk employment f 470   0   0.001 b 

Yes  3757 84.8  178 43.3  
General health 466   0   0.002 c 

Fair or poor  150 3.4  56 13.6  
Good  1485 33.5  232 56.4  

Very good  2042 46.0  84 20.4  
Excellent  759 17.1  39 9.5  

Loss of the sense of smell or taste        
Yes 498   0   0.002 c 

  40 0.9  13 3.2  
Respiratory allergies 537      0.012 b 

Yes  1283 29.4  96 23.5  
Smoking status 575   1   0.002 c 
Never smoker  2363 53.5  177 43.1  

Ex-smoker  1258 28.5  153 37.2  
Current smoker  794 18.0  81 19.7  
Face mask use 469   0   <0.001 b 
Almost always  3080 69.5  374 91.0  

a  Significance test comparing fractions among telephone interviewees to participants who answered the online survey. 
b  Fisher’s exact test for count data. c Pearson’s chi-squared test with simulated p-value (based on 500 replicates); d 
 Not working includes unemployed, retired, parental leave, sabbatical, students; e Others includes voluntary social 
year, military service, part-time jobber, reduced working hours; f  Considered as risk employment for SARS-CoV-2 
seropositivity were employees in the: healthcare sector, emergency service, senior homes, airport, public transport, 
education, sales, social work and other risk jobs. These also include individuals who have been working for the past year 
at lea.st 
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Online Table S2. Prevalence of Roche N pan-Ig seropositivity and risk factor analysis adjusted for age and sex using three 
different methods by individual, household and health characteristics of the KoCo19 study population. The count n 
represents the number of positives in the specific covariate group and the % symbol denotes the crude prevalence 
percentage in that group. 

Characteristics Prevalence Crude  
(GLM) 

Adjusted for 
Clustering  
(GLMM) 

Bayesian Model Adjusted for Clustering with Multiple 
Imputation  

(GLMM) 
Individual Characteristics 

 n % ORf 95% CIf ORf 95% CIf ORf 95% CIf 

Sex 
Male 45 1.8 1   1   1   

Female 48 1.7 0.980.65 1.48 0.99 0.45 2.20 0.92 0.58 1.50 
Age 

0–19 years 4 1.5 0.720.21 1.84 1.61 0.17 12.50 0.59 0.14 1.90 
20–34 years 28 2.1 1   1   1   
35–49 years 29 1.9 0.900.53 1.53 2.75 0.64 13.60 0.84 0.43 1.49 
50–64 years 19 1.5 0.700.38 1.24 0.84 0.17 3.97 0.64 0.33 1.21 
65–79 years 12 1.8 0.850.41 1.64 3.25 0.51 20.60 0.79 0.36 1.79 
80+ years 1 0.6 0.270.02 1.27 0.01 0.00 3.20 0.13 0.01 1.15 

Adjusted for Age (continuous) and Sex 
Country of Birth 

Germany 67 1.7 1   1      
Outside 

Germany 
14 1.6 0.990.53 1.72 0.54 0.09 2.33 0.87 0.41 1.70 

Level of Education 
Still in school 2 2.0 0.740.11 2.83 0.30 0.01 4.08 0.33 0.04 2.12 

<12 years 25 1.8 1   1   1   
≥12 years 53 1.7 0.840.52 1.40 0.62 0.17 2.39 0.72 0.36 1.33 

Employment Status 
Employed 47 1.6 1   1      

Self-Employed 13 2.8 1.890.97 3.48 1.20 0.23 5.30 1.80 0.87 3.70 
Not working a 19 1.5 1.030.58 1.75 0.92 0.26 3.02 0.91 0.47 1.70 

Others b 2 2.1 1.210.20 3.99 1.64 0.04 19.50 1.06 0.13 5.75 
Risk Employment c 

No 61 1.5 1   1      
Yes 20 2.4 1.530.89 2.50 2.68 0.81 8.71 1.53 0.80 2.79 

Household Characteristics 
Housing Type: Building with 

1–2 aps 27 1.9 1   1   1   
3–4 aps 3 0.8 0.440.10 1.24 0.50 0.00 11.60 0.35 0.05 1.38 
≥5 aps 63 1.8 0.920.59 1.48 1.10 0.23 7.68 0.88 0.45 1.64 

Others d 0 0.0          
Household Type 

Single 12 1.8 1.260.61 2.50 1.88 0.16 18.20 1.40 0.33 3.77 
Couple 24 1.4 1   1   1   
Family 33 1.7 1.110.65 1.94 1.04 0.13 8.92 1.19 0.42 3.19 
Otherse 14 2.9 1.900.93 3.75 1.92 0.09 22.40 3.03 0.93 9.63 

Number of Household Members 
1 16 2.0 1   1   1   
2 33 1.6 0.750.42 1.40 0.50 0.07 4.06 0.67 0.21 1.81 

3-4 30 1.5 0.680.37 1.31 0.46 0.06 3.99 0.59 0.18 1.69 
5+ 14 3.1 1.350.63 2.86 0.83 0.03 10.50 1.96 0.51 8.18 

Living area per Inhabitant (Quartiles) 
≤ 30 m2 27 1.6 1   1   1   

30-40 m2 28 2.3 1.570.92 2.71 1.57 0.18 14.30 2.19 0.94 5.11 
40-55 m2 9 0.9 0.650.28 1.36 0.67 0.02 8.90 0.69 0.27 1.88 
>55 m2 19 2.1 1.670.87 3.16 2.13 0.23 20.70 2.65 0.95 7.27 
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Net Family Income (Quartiles) 
≤ 2500 € 10 1.7 2.000.77 5.57 2.13 0.04 312 2.49 0.18 11.5 

2500-4000 € 7 0.9 1   1   1   
4000-6000 € 19 1.6 1.870.82 4.82 2.11 0.10 272 3.27 0.27 11.1 

6000+ € 20 1.8 2.130.94 5.45 1.99 0.08 262 3.28 0.33 14.1 
Health Status  

General Health 
Fair or poor 4 1.9 1.580.42 4.82 1.45 0.08 18.90 0.97 0.22 3.66 

Good 26 1.5 1.140.59 2.41 0.97 0.18 5.85 0.79 0.31 1.79 
Very good 39 1.8 1.270.68 2.56 0.76 0.16 4.19 0.94 0.37 1.86 
Excellent 12 1.5 1   1   1   

Respiratory Allergies 
No 53 1.6 1   1      
Yes 26 1.9 1.200.73 1.90 3.25 1.10 10.30 1.21 0.67 2.16 

Skin Allergies 
No 67 1.6 1         
Yes 13 2.0 1.200.63 2.13 3.17 0.81 12.00 1.28 0.62 2.64 

COPD 
No 70 1.6 1   1      
Yes 9 2.3 1.480.68 2.84 2.81 0.57 11.80 1.58 0.64 3.72 

Autoimmune Disease 
No 75 1.7 1   1   1   
Yes 6 1.8 1.100.42 2.35 1.15 0.14 6.43 0.98 0.30 2.75 

Diabetes 
No 75 1.6 1      1   
Yes 3 1.4 1.090.26 3.06 0.39 0.01 6.04 0.78 0.15 3.17 

CVD 
No 65 1.7 1   1   1   
Yes 15 1.7 1.240.64 2.31 1.01 0.21 4.20 1.16 0.53 2.28 

Obesity 
No 75 1.7 1   1   1   
Yes 6 2.2 1.400.54 3.02 0.51 0.03 4.67 1.12 0.35 3.14 

Cancer 
No 78 1.7 1   1   1   
Yes 3 1.2 0.810.20 2.27 0.56 0.04 4.80 0.64 0.14 2.34 

Loss of the sense of smell or taste 
No 70 1.5 1   1   1   
Yes 10 18.9 16.37.40 32.60 41.3 6.70 231 28.2 9.25 90.22 

Health Behaviour 
Smoking status 

Never 46 1.8 1         
Ex 21 1.5 0.870.50 1.47 0.68 0.18 2.32 0.71 0.37 1.29 

Current 14 1.6 0.890.47 1.59 1.12 0.25 4.41 0.74 0.34 1.49 
Use of facemask 

<Almost surely 27 1.9 1.200.74 1.92 1.68 0.53 5.27 1.25 0.71 2.21 
Almost surely 53 1.5 1   1   1   

a  Not working includes unemployed, retired, parental leave, sabbatical, students; b  Others includes voluntary 
social year, military service, part-time jobber, reduced working hours; c  Considered as risk employment for SARS-
CoV-2 seropositivity were employees in the: healthcare sector, emergency service, senior homes, airport, public transport, 
education, sales, social work and other risk jobs. These also include individuals who have been working for the past year 
at least; d  Other types of housing include tents, caravans, or the like; e  Other household types include shared 
apartments by e.g., students, subleasing, and assisted accommodation; f OR: odds ratio; 95% CI: 95% credible 
intervals (Bayesian analyses) / 95% confidence intervals (frequentist GLMM). 
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Online Table S3. Multivariate risk factor analysis for SARS-CoV-2 seropositivity mutually adjusted for all variables in the 
table. 

Characteristics Adjusted for Clustering  
(GLMM) 

Bayesian Model Adjusted for Clustering with Multiple Imputation  
(GLMM) 

 
N = 4460 N = 5313 

OR 95% CI ORc 95% CIc 

Sex 
Male 1   1  

Female 1.00 0.39 2.59 0.93 0.56 1.54 
Age (continuous) 1.01 0.97 1.04 0.99 0.97 1.01 
Risk Employment a 

No 1     
Yes 1.95 0.52 6.72 1.83 0.90 3.73 

Household Type 
Single 1.54 0.09 21.10 1.07 0.35 3.27 

Couple 1   1  
Family 1.10 0.11 12.20 1.29 0.55 3.08 
Othersb 1.81 0.05 27.10 2.87 0.91 9.27 

Living Area per Inhabitant (Quartiles) 
≤ 30 m2 1   1  

30-40 m2 1.40 0.12 16.2 2.18 0.91 5.32 
40-55 m2 0.68 0.01 11.9 0.74 0.24 2.22 
>55 m2 1.77 0.10 28.0 2.84 0.92 8.98 

Respiratory Allergies 
No 1   1  
Yes 2.70 0.90 8.55 1.30 0.70 2.45 

a  Considered as risk employment for Covid-19 infections were employees in the: healthcare sector, emergency service, 
senior homes, airport, public transport, education, sales, social work and other risk jobs. b  Other household types 
include shared apartments by e.g., students, subleasing, and assisted accommodation; c OR: odds ratio; 95% CI: 
95% credible intervals (Bayesian analyses) / 95% confidence intervals (frequentist GLMM). 
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Online Table S4. Classifier’s specificity and sensitivity depending on the manufacturer’s or the optimised cut-offs. 

Classifier Cut-off Specificity 
Manufacturer 

Specificity Evaluated 
on the Data 

Sensitivity Manufacturer 
(Low High) 

Sensitivity Evaluated 
on the Data 

EI-S1-IgA 
(Manufacturer’s cut-off) 

1.100 0.924 0.933 0.917/1.000 0.648 

EI-S1-IgA 
(Optimised cut-off) 

1.080  0.926  0.648 

EI-S1-IgG 
(Manufacturer’s cut-off) 

1.100 0.993 0.980 0.875/1.000 0.772 

EI-S1-IgG 
(Optimised cut-off) 

1.101  0.978  0.798 

Ro-N-Ig 
(Manufacturer’s cut-off) 

1.000 0.998 0.998 0.853/0.995 0.855 

Ro-N-Ig 
(Optimised cut-off) 

0.422  0.997  0.886 

Random Forest   0.998  0.886 
Support Vector Machine   0.998  0.845 
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Online Table S5. Overview on the household size distribution, the number of tested individuals per household and the 
number of positive tests. Seropositivity is with respect to Ro-N-Ig with optimised threshold. 

Number of 
Inhabitants of the 

Household 

Number of Tested 
Individuals in 

Household 

Number of Households 
In Which 

no Test was Positive 
In Which 

1 Test was Positive 
In Which 

2 Tests were Positive In Total 

1 1 768 16 0 784 

2 
1 223 3 0 226 
2 918 24 3 945 

3 
1 60 0 0 60 
2 287 8 1 296 
3 120 2 1 123 

4 

1 44 0 0 44 
2 230 5 2 237 
3 63 2 0 65 
4 51 3 1 55 

5 

1 12 0 0 12 
2 52 1 1 54 
3 23 0 0 23 
4 19 1 1 21 
5 14 3 0 17 

6 

1 4 0 0 4 
2 6 0 0 6 
3 6 0 1 7 
4 2 0 0 2 
5 0 1 0 1 
6 2 1 0 3 

7 

2 2 0 0 2 
4 1 0 0 1 
5 1 0 0 1 
7 1 1 0 2 

8 4 1 0 0 1 
9 1 1 0 0 1 
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