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Abstract: The 2019–2020 summer wildfire event on the east coast of Australia was a series of major
wildfires occurring from November 2019 to end of January 2020 across the states of Queensland,
New South Wales (NSW), Victoria and South Australia. The wildfires were unprecedent in scope and
the extensive character of the wildfires caused smoke pollutants to be transported not only to New
Zealand, but also across the Pacific Ocean to South America. At the peak of the wildfires, smoke
plumes were injected into the stratosphere at a height of up to 25 km and hence transported across
the globe. The meteorological and air quality Weather Research and Forecasting with Chemistry
(WRF-Chem) model is used together with the air quality monitoring data collected during the
bushfire period and remote sensing data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites
to determine the extent of the wildfires, the pollutant transport and their impacts on air quality and
health of the exposed population in NSW. The results showed that the WRF-Chem model using Fire
Emission Inventory (FINN) from National Center for Atmospheric Research (NCAR) to simulate
the dispersion and transport of pollutants from wildfires predicted the daily concentration of PM2.5

having the correlation (R2) and index of agreement (IOA) from 0.6 to 0.75 and 0.61 to 0.86, respectively,
when compared with the ground-based data. The impact on health endpoints such as mortality
and respiratory and cardiovascular diseases hospitalizations across the modelling domain was then
estimated. The estimated health impact on each of the Australian Bureau of Statistics (ABS) census
districts (SA4) of New South Wales was calculated based on epidemiological assumptions of the
impact function and incidence rate data from the 2016 ABS and NSW Department of Health statistical
health records. Summing up all SA4 census district results over NSW, we estimated that there were
247 (CI: 89, 409) premature deaths, 437 (CI: 81, 984) cardiovascular diseases hospitalizations and
1535 (CI: 493, 2087) respiratory diseases hospitalizations in NSW over the period from 1 November
2019 to 8 January 2020. The results are comparable with a previous study based only on observation
data, but the results in this study provide much more spatially and temporally detailed data with
regard to the health impact from the summer 2019–2020 wildfires.
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1. Introduction

As a dry continent, Australia has been prone to having frequent wildfires as part of
the landscape ecology at least since the Middle Eocene (~40 million years ago) [1]. Some
flora species have adapted to wildfire conditions, such as Banksia, B. serrata on the east
coast and B. candolleana in south-western Australia, to be able to survive them [2]. These
species also need fires to regenerate. As natives to the land, the Aboriginals were the first
to practice wildfire management to reduce the impact of wildfires on the environment and
communities. Since the European settlement in the 18th century, agriculture and urban
growth have changed the landscape, while wildfires continue and affect the communities
more often [3]. Currently, hazardous reduction burnings (HRBs) to reduce fuel load during
late boreal autumn and winter amount to the main tool to manage wildfires which occur
frequently in late spring and summer, especially in El-Niño years when dry and less rainy
conditions occur over most of Australia [3,4].

The state of New South Wales (NSW) and most of eastern Australia was in drought
from 2018 to the end of 2019. In October 2019, spring rain then relieved part of western
NSW (Figure 1b). This resulted in increasing vegetation growth which increased the
likelihood of fires during the subsequent summer due to more fuel load available and
when meteorological conditions were more favorable to ignite fires. As shown in Figure 1,
the change in vegetation cover from October (Figure 1a) when dry bare land covered much
of western NSW to November (Figure 1b) after spring rain was significant. After the rain,
the drought was then only confined to far western NSW and higher vegetation growth
occurred throughout much of the rest of NSW and Victoria.
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Figure 1. Vegetation cover over southeastern Australia in October (a) and November 2019 (b) (source: Australia monthly
cover. Available online: http://www-data.wron.csiro.au/remotesensing/MODIS/products/public/v310/australia/
monthly/cover/, accessed on 27 March 2021). In November, the rain alleviated the drought condition in midwestern NSW
and promoted the green growth with increased vegetation cover along the coast of NSW and Victoria.

The soil moisture map for the months of November, December 2019 and January 2020
(as shown in Figure S1 in the Supplementary Materials) revealed that the upper soil and
root zone soil moisture as a fraction of fullness was low in most of NSW, northwestern
Victoria and South Australia, especially in December 2019. Wildfires in the northern NSW
and central Queensland occurred earlier in austral spring from 7 September to the end of

http://www-data.wron.csiro.au/remotesensing/MODIS/products/public/v310/australia/monthly/cover/
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the month at a small scale. However, more favorable conditions, such as high temperature,
low humidity, low soil moisture taking the Forest Fire Danger Index (FFDI) to a dangerous
level, occurred in the summer 2019 in eastern Australia.

With low soil moisture and high fuel load along the coast, the occurrence of high
temperature and low humidity in late spring and early summer of 2019 caused wildfires to
start and the fires gradually consumed much of the southeastern coastal areas of Australia
where relatively high fuel load was concentrated. This convergence of extreme events or
conditions (low soil moisture, high fuel load, high temperature and low humidity) over
the large region of the southeastern coast of Australia resulted in a compound megafire
event consisting of many wildfires lasting from early November 2019 to mid-January 2020.
This compound extreme climate event can be expected to occur more frequently in the
future under climate change scenarios of a global warming due to increasing anthropogenic
greenhouse emissions.

For NSW, the late austral spring and summer wildfires started in the northern part of
the state and the Blue Mountains near Sydney in late October, November, December 2019
followed by early January 2020 and onwards in the southern part of the state to the border
with Victoria, with large areas near the coast on fire. Victoria and South Australia also had
many fires during January starting from 3–5 January 2020. The progress of the wildfires
can be seen from remote sensing data (Figure S2 in the Supplementary Materials) which
show the monthly vegetation cover loss from November to December 2019 due to wildfires
(vegetation cover in December subtracted from November 2019) and from December 2019
to January 2020 over Australia and over NSW. The progress of the summer 2019–2020
wildfires can be divided into two stages: north coast of NSW, Blue Mountains in November
and December 2019 and the south coast toward Victoria, Victorian East Gippsland, the
Mallee region west of Bendigo, South Australia and Kangaroo Island and southwestern
Australia in January 2020. The summer 2019–2020 wildfires were unprecedented in scale as
the fires occurred in several states and the burning area in NSW alone was 5.68 million ha,
in Victoria—1.58 million ha [5]. Thirty-three people lost their lives due to this summer
2019–2020 wildfires [6].

The 2019–2020 summer wildfires were so intense and widespread that it is now
known as the Black Summer wildfires. Figure 2 shows the total area burned for NSW
after the summer 2019–2020 bushfire event. The intensity of the wildfires caused smoke
plumes and emitted air pollutants to be dispersed over a wide region in the east coast
of Australia and across the Tasman Sea to New Zealand in January 2020. Plumes of
smoke and pollutants injected high into the atmosphere, into the upper troposphere
and at times into the stratosphere caused smoke particles to be transported across the
Pacific to South America (Argentina and Chile) and beyond [7]. The effect of the wildfires
on the environment and population exposure to emitted air pollutants were studied by
many authors [8–14]. Wildfire-emitted pollutants deteriorate ambient air quality affecting
people’s health. Deposition of fire pollutants, such as Fe, on water body surfaces like the
ocean also stimulates the growth of phytoplankton. After dust deposition, pyrogenic (fires
and anthropogenic combustion) Fe is the second largest source of Fe deposition on the
surface of the ocean and is a significant contributor to daily, seasonal and interannual
variability of Fe in the ocean basins [15].

It was estimated the wildfires released 400 megatons of carbon dioxide (CO2) into the
atmosphere, equal to three-quarters of Australian industry emissions in 2018–2019 [16].
Besides greenhouse gas CO2, wildfires emitted a wide range of pollutants such as nitrogen
oxides (NOx), particles (PM10, PM2.5), various species of hydrocarbons. These pollutants
can cause serious health effects in the exposed population, especially in the susceptible
people such as children and the elderly. In 2018, Knibbs et al. [17] showed exposure of
NO2 in children results in reduced lung function and in asthmatic conditions in susceptible
children. Increase in PM2.5 concentration was shown to have an impact on a number of
health endpoints of the exposed population, such as the increase in mortality rate and
respiratory and cardiovascular diseases hospitalizations [8]. Health costs of population
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exposure to smoke particles from wildfire events in Tasmania between 2010 and 2019 were
estimated to be AUS$ 16 million annually on average, but for extreme wildfires, this figure
increased up to AUS$ 34 million [18].

Figure 2. Total burned areas in NSW in the summer 2019–2020 bushfire event (Source: Department
of Planning, Industry and Environment, DPIE).

A number of studies has been recently conducted to estimate the impact of the 2019–
2020 wildfires [9,19]. A review of the effect of wildfires on a number of health endpoints
including respiratory, chronic obstructive pulmonary disease (COPD), cardiovascular and
asthma hospital admissions was also published [8]. As the summer 2019–2020 wildfires
were unprecedented in temporal duration and spatial scale and affecting most of the
populated east coast of Australia covering three states, Queensland, New South Wales
and Victoria, and air quality monitoring data is sparse across this large domain and
not adequate to determine the exposure accurately for health impact, this study used
a modelling approach to calculate the ground pollutant concentration at high spatial
resolution for air quality and health impact investigation.

Previous studies used air quality models such as Conformal Cubic Atmospheric Model-
Chemical Transport Model (CCAM–CTM) [10] and Weather Research and Forecasting-
Community Multiscale Air Quality Modeling System (WRF-CMAQ) [20,21] to assess the
impact of fires on air quality by determining the dispersion and transport of emitted pollutants
across the study domain. In our study, to determine the impact of wildfires on air quality and
health due to population exposure to particulate pollutants, the WRF-Chem air quality model
was used to predict the increase in PM2.5 concentration over NSW due to wildfires during
the summer 2019–2020 wildfires. The increase in PM2.5 at each grid point in the modelling
domain due to wildfires was used to assess the impact on health endpoints. The results from
the model were also evaluated using observed meteorological and air quality data from the
NSW DPIE monitoring data network and remote sensing data from the MODIS Aqua/Terra
and CALIPSO lidar satellites.

2. Materials and Methods

As the focus of the study was on fine particle concentrations (PM2.5) due to wildfires
and their impact on health, air quality monitoring data, especially PM2.5, for the wildfires
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period were obtained from the Department of Industry, Planning and Environment (DPIE)
of New South Wales’s air quality monitoring network. The monitoring data were used to
assess the impact of wildfires on air quality and to validate the model prediction. Figure 3b
shows the monitoring stations in NSW. During the wildfires period, additional monitoring
stations, such as Port Macquarie station, were deployed in the northern NSW.

Figure 3. (a) WRF-Chem domain configuration over eastern Australia; (b) DPIE air quality monitoring stations in the
Greater Metropolitan Region (GMR) of Sydney which is defined as domain d03 (the red rectangle in (a)).

In addition to the ground-based monitoring data, the satellite data were used for
comparison with the model prediction and to determine the extent of pollutant transport.
Satellite data of hot spots, smoke plumes and aerosol optical depth (AOD) were obtained
from the MODIS Aqua/Terra satellites while aerosol vertical profiles came from the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the CALIPSO satellite.
These data provided daily spatial distribution of aerosols and smoke plumes over the east
coast of Australia from Victoria to New South Wales and Queensland while vertical aerosol
profiles from the CALIOP lidar provided the aerosol structure above the ground at one- or
two-day intervals over the bushfire regions. Output from the MERRA-2 (Modern-Era Retro-
spective Analysis for Research and Applications, Version 2) reanalysis system developed by
NASA was used to determine the concentration distribution of PM2.5. MERRA-2 is an air
quality model with data assimilation from various observation sources, including satellites.

For higher resolution output, we used WRF-Chem with emissions from the Fire Emis-
sion Inventory from NCAR (FINN) to model the air quality over eastern Australia. The
FINN is based on the hot spots (thermal anomalies) detected by MODIS Terra/Aqua satel-
lites and on the vegetation type assigned to each fire pixel based on the MODIS Collection
5 Land Cover Type (LCT) product based on 16 land cover/land use (LULC) classes from
the IGBP (International Geosphere–Biosphere Program) land cover classification. Fuel
load density at each active fire location was determined using the MODIS Vegetation
Continuous Fields (VCF) product. The emission factors of emitted species from fires for
each of the vegetation types were obtained from previously published studies, such as
from [22] for savanna and grassland and crop residue types. The maximum burned area at
each fire pixel was assumed to be 1 km2 but scaled to the VCF fuel cover data if present
for that pixel. Finally, the fraction of the biomass assumed to burn at each fire point was
assigned as a function of tree cover [23]. From the information above, the emissions from
fire pixels was then calculated. The FINN provides emissions of species suitable for air
quality models [23]. The datasets are provided on the daily basis with 1-h time resolu-
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tion and approximately 1 km2 spatial resolution globally for three different air chemistry
mechanisms: GEOS-CHEM (Goddard Earth Observing System-Atmospheric Chemistry),
MOZART-4 (Model for OZone and Related chemical Tracers 4) and SAPRC99 (State-wide
Air Pollution Research Center, Version 1999). The datasets can be downloaded from the
NCAR Atmospheric Chemistry Observations and Modeling website. In this study, the
MOZART/GOCART (Goddard Chemistry Aerosol Radiation and Transport) option for
chemistry was chosen for the WRF-Chem simulation.

As for meteorological drivers used in WRF-Chem, the National Center for Environ-
mental Prediction (NCEP) final analysis (FNL) reanalysis data provided the boundary and
initial meteorological conditions for WRF-Chem to downscale to the modelling domain. In
this study, the modelling domain was based on the Lambert projection with 386 × 386 grid
points at the resolution of 12 km × 12 km. There were 32 model vertical sigma levels. The
central reference coordinate was at 150.994◦ longitude and −33.921◦ latitude.

Figure 3 shows the WRF-Chem simulation domain and the air quality monitoring
stations in the GMR of Sydney. The data from these stations were used to validate the
prediction from the model as well as determine the effect of wildfires on air quality. Table S1
in the Supplementary Materials shows some of the WRF-Chem physical and chemical
configuration options as defined in WRF-Chem to be used in this study.

Validation of the model simulation was performed by comparing the meteorological
prediction and air quality prediction with observations at many monitoring sites in the
DPIE NSW’s air quality monitoring network (as shown in Figure 3b) and the remote
sensing data from satellites.

The simulation of air quality over eastern Australia allowed us to determine the
ground concentration of PM2.5 due to wildfires across NSW. In the simulation, biogenic
emissions were included but anthropogenic emission sources were turned off, so that only
the effect of wildfires could be determined. Thus, the exposure and health impact on the
population could be estimated. Health impact for different health endpoints (mortality,
hospitalizations for cardiovascular and respiratory diseases) is based on the impact function
(IF) calculated as follows:

IF = RR∆X/10 (1)

where RR is the relative risk of a health endpoint from an increase of 10 µg/m3 PM2.5
pollutant concentration and is determined from epidemiological studies. After that, the
attributable number (AN) of the impact on a health endpoint due to an increase of ∆X
concentration in a population (Pop) with a known incidence rate of the health endpoint is
calculated as follows:

AN = (IF − 1) × Pop × incidence rate. (2)

We focused on the simulation period from 1 November 2019 to 8 January 2020 when
the wildfires mostly concentrated in New South Wales (NSW), Australian Capital Territory
(ACT) and Victoria (VIC) where the majority of population in southeastern Australia
live. The 2016 population data and the mortality rate for each of the census district (SA4
level) were obtained from the Australian Bureau of Statistics (ABS). As the ABS does not
provide hospitalization data, the incidence rates for cardiac diseases hospitalizations were
obtained from the NSW Department of Health for each of the local government areas
(LGAs), for respiratory diseases hospitalizations—for each of the local health districts
(LHDs). The average of the incidence rates in three years (2016, 2015 and 2014) for cardiac
and respiratory diseases hospitalizations were used in this study. The predicted daily PM2.5
concentration grids were superimposed on the SA4s shapefiles to obtain the average PM2.5
concentration in each of the SA4s. Incidence rates for cardiac and respiratory diseases
hospitalizations were projected to each of the SA4s from the LGA and LHD shapefiles
and calculated as the average of the rates of intersected LGAs or LHDs with the SA4. The
attributable number (AN) was calculated for each of the health endpoints based on the
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incidence rates in SA4s. These ANs were then summed over all of the SA4s in NSW to
estimate the effect of increased PM2.5 from wildfires on population health.

The RR values for premature mortality and cardiovascular diseases hospitalization
health endpoints used in this study were based on the World Health Organization’s (WHO)
Health Risks of Air Pollution in Europe project (HRAPIE) recommendations (2013) [24]
regarding short-term concentration response coefficients for mortality and CVD diseases.

RR (mortality) = 1.0123 (CI: 1.0045, 1.0201)

RR (CVD) = 1.0091 (CI: 1.0017, 1.0201)

where CI is the confidence interval.
The RR value (1.23%) for mortality above corresponds to those in Xu et al. (2020) study.

In their study, they reviewed the effect of wildfire events in literature and reported that the
daily increase of 10 µg/m3 of the PM2.5 level is associated with an increase of 0.8–2.4% in
the risk of death from any cause or nonaccidental death for up to 4 days after the exposure

For respiratory hospitalizations, the RR of PM2.5 of 1.03 (CI: 1.01, 1.04) based on a
study of the 2003 California wildfires [11] was used in this study. This value was also used
in [10,12] for wildfires or biomass hazardous reduction burnings (HRBs) in Australia.

Of the three RRs above (mortality, cardiovascular and respiratory diseases hospitaliza-
tions), the RR value for CVD is the smallest and reflects that the effect of PM2.5 on CVD
hospitalizations is smaller than on mortality and respiratory diseases hospitalizations.

3. Results
3.1. Meteorology and Transport of Wildfire Pollutants

The wildfires started in late October, November mainly in northern NSW and the
Blue Mountains. In 2020, Filkov et al. [25] reported that the Gospers Mountain fire in the
Blue Mountains started on 26 October 2019 while the fires in northern NSW started in the
beginning of November and lasted for more than a month. Remote sensing data provided
an overall view of the beginnings of the fires, their progress and endings. The MODIS
Aqua/Terra satellite data of hot spots and smoke plumes reveal the extent of the wildfires
from early November to early December as shown in Figure 4.

From the remote sensing data and simulation results based on the meteorology and
air quality dispersion model WRF-Chem, the progress of the Black Summer 2019–2020
wildfires across southeastern Australia in terms of meteorological drivers, emissions and
transport of air pollutants from wildfire sources is summarized below.

3.1.1. November and December 2019 Period

Wildfires started in the first week of November in northern NSW. But it was not until
7 November 2029 that the effect on air quality became severe in the nearby coastal town
of Port Macquarie for the following 16 days when peak PM2.5 concentrations were above
100 µg/m3 (>1000 µg/m3 for 2 days). The predicted surface wind pattern for the first week
of November (as shown in Figure 5) showed a southeasterly wind flow across the east coast
of Australia, hence, it dispersed the pollutants offshore. However, upper wind patterns at
925 mb, 850 mb (as shown in Figure A1 in the Appendix A) were different from those on
the surface. The plume after being injected into the upper atmosphere drifted down south
above the ground and then intruded down causing high concentration of pollutants such
as PM2.5 on the ground as shown in Figure 5c. On 1–5 December 2019, the wind pattern
at the ground level and above the ground was mostly southwesterly from the Southern
Ocean and, after crossing the mountains of the Great Dividing Range, would become more
westerly. This can be seen by the direction of smoke plumes as detected by the MODIS
Aqua/Terra satellites shown in Figure 4c and the fire location corresponds with the FINN
emission spatial pattern of BC in Figure 4g. The animation clip of the wind flow and
PM2.5 concentration from 1 December 2019, 00:00 UTC, to 5 December 2019, 00:00 UTC, is
provided in the Supplementary Materials.
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Figure 4. Cont.
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Figure 4. Fires started in northern NSW and the Blue Mountains (northwest of Sydney) as seen by the MODIS Aqua/Terra
satellite on 6 November 2019 (a) and 7 November 2019 (b). From early December to the end of the month, fires were more
intense in the Blue Mountains and the south coast: 5 December 2019 (c), 18 December 2019 (d). By early January, fires were
mainly in the south coast and the border region with Victoria on 4 January 2020 (e) and the East Gippsland (Victoria) toward
the end of January 31 January 2020 (f). Emission of BC (black carbon) as a marker of wildfires from the FINN on 5 December
2019, 12:00 UTC, (g) and on 4 January 2020, 12:00 UTC (h).

3.1.2. January 2020 Period

Simulation using WRF-Chem for the period from 01/01/2020 to 08/01/2020 based on
FINN emission fluxes from fires detected by satellites as hot spots shows the pattern of air
pollutants dispersion in eastern Australia. The wildfire emission pattern corresponds with
the hot spots as detected by MODIS Aqua/Terra satellites as shown in Figure 4e,f. The
predicted surface wind fields over the simulation period of 1 to 8 January 2020 showed that
at the beginning, from 1 January 2020, 00:00 UTC, to 3 January 2020, 07:00 UTC, moderate
southwesterly wind at ~5 m/s flowed over Victoria and NSW and gradually changed to
westerly wind over Victoria and then NSW from 3 January 2020, 16:00 UTC. The westerly
and northwesterly wind then dominated from 4 January 2020, 16:00 UTC, to 5 January
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2020, 14:00 UTC, over the eastern Australia domain. From 5 January 2020, 16:00 UTC, to
7 January, 08:00 UTC, more westerly wind bringing hot air from inland to the coast which
was already subsumed under intense fires. The upper air movement was more complex
with air circulation occasionally occurred to and from the coast and is not shown here.
Figure S3 in the Supplementary Materials shows some of the surface wind on selected days.

Figure 5. Predicted surface wind and temperature on (a) 2 November 2019, 06:00 UTC, and (b) 3 November 2019, 00:00
UTC. (c) Predicted PM2.5 on 1 November 2019, 10:00 UTC, with marine aerosols dominating over the coast and offshore. (d)
CO concentration on the ground with a high concentration to the southwest of the fires on 1 November 2019 at 10:00 UTC.

The AOD as predicted using the WRF-Chem simulation on 3 January 2019 in this
study is compared with the AOD as predicted using a global model called WACCM (Whole
Atmosphere Community Climate Model) from the NCAR ACOM (Atmospheric Chemistry
Observations and Modeling) group in the US. The AOD predictions from the WRF-Chem
and WACCM models were remarkably similar. This was not surprising as both models
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used the same fire emission data from the FINN. The AOD prediction also corresponded
well with the AOD observation as measured by MODIS Terra/Aqua satellites (see Figure S4
of the Supplementary Materials).

The markers for wildfires are the emissions of carbon monoxide (CO) and black
carbon (BC). The prediction of ground concentration of these species from the WRF-Chem
simulation on 3 January 2019 showed the wildfires were concentrated in the east coast of
Victoria near the NSW border. The simulation results on this day for PM2.5 also showed
the contribution of dust aerosols from the dust storm in central Australia to the ground
PM2.5 concentration loading in addition to the smoke from the wildfires (see Figure S5 and
S5c in the Supplementary Materials).

The dispersion of smoke and dust plumes into the atmosphere allowed the pollutants
to be transported farther from the emission sources. Aerosol layers formed from the
dispersion and transport of smoke in the atmosphere could be studied using the WRF-
Chem simulation. Observation data from the CALIPSO lidar’s vertical profile were used
to verify the prediction from WRF-Chem in the upper atmosphere. Figure 6 shows the
CALIPSO aerosol profile on 4 January 2020 at 2:36 UTC and 4:14 UTC and the WRF-
Chem-predicted PM2.5 concentration along the satellite path. The CALIPSO satellite path
on 4 January 2020 at 4:14 UTC passed above central Australia and the satellite’s aerosol
vertical profile showed thick dust layers above the dust sources in the Lake Eyre Basin
(LEB). This showed that the dust event in central Australia happened in early January 2020
when the wildfires on the east coast of Australia were at their peak before subsiding toward
late January 2020. WRF-Chem simulation used the Air Force Weather Agency (AFWA)
GOCART dust emission scheme and the prediction of dust concentration corresponded
reasonably well with the CALIPSO observations.

Similarly, for the CALIPSO profile on 7 January 2020, the WRF-Chem prediction was
able to capture the vertical distribution of smoke aerosols. By this time, the wildfires
subsided on the ground and the worst of the fires were over. Figure A2 of Appendix A
shows the vertical profile on 7 January 2020. Dispersion of smoke aerosols at the peak of
the wildfires from earlier January to mid-January as shown by the CALIPSO satellite lidar’s
vertical profile in the Tasman Sea between Australia and New Zealand on 15 January 2020
was so extensive that the smoke aerosols penetrated into the upper troposphere at 15 km
and into the stratosphere at ~25–30 km south of New Zealand. Figure A3 in Appendix A
shows the lidar profile of different types of aerosols on the satellite path in the Tasman
Sea on this date. The smoke layers at the upper troposphere height would travel farther
beyond New Zealand.

The agreement between the prediction of PM2.5 dispersion as well as spatial patterns
due to wildfires with observation from satellites shows that the WRF-Chem model with the
FINN fire emission data could be used to predict the effect of wildfires on air quality such
as the PM2.5 concentration across NSW and hence the impact on health due to population
exposure of air pollutants could be estimated.

3.2. Effect on Air Quality

The soil moisture data provided by the Australian Landscape Water Balance AWRA-
L (Australia Water Resource Assessment) model (root zone and upper soil moisture)
and the vegetation cover data from the CSIRO from October to February were used to
determine the fire risk. The spatial extent of the wildfires could be ascertained using
the MODIS Terra/Aqua hot spots and the AOD and CALIPSO lidar satellite data. The
air quality data from the DPIE’s air quality monitoring network was analyzed to assess
the impact of wildfires on air quality and health. The time series of temperature and
relative humidity in the GMR from 2019 December to January 2020 showed that when
there was very high temperature, the relative humidity was usually low. Figure S6 in
the Supplementary Materials shows the time series of temperature and relative humidity
measured at Randwick and Liverpool. On 19 December 2019, the peak temperature
reached 38.8 ◦C and 41.1 ◦C in Randwick and Liverpool and the relative humidity was
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very low at 18.2% and 12.5%, respectively. Similarly, on 31 December 2019, 4 January 2020
and 23 January 2020, peak temperatures measured at these sites were accompanied by
low humidity.

Figure 6. CALIPSO satellite path (a) and aerosol profile (b) over the Coral Sea and New Zealand on 4 January 2020 at 2:36
UTC. The CALIPSO aerosol profile (c) and WRF-Chem prediction of transect of dust along the satellite path (d) and spatial
distribution of PM2.5 concentration at the ground (e) and the height ~1765 m (f) on 4 January 2020, 4:00 UTC. CALIPSO
aerosol profile identifies 10 aerosol subtypes: marine, dust, polluted continental/smoke, clean continental, polluted dust,
elevated smoke, dusty marine, PSC (polar stratospheric cloud) aerosols, volcanic ash and sulfate/others.

With low soil moisture, high temperature and low humidity, the risk of fires increased.
In northern NSW and in the Blue Mountains west of Sydney, Central Coast, wildfires
continued from 6 November 2019 until 4–7 December 2019 when fires were more intense
and widespread. In November, fires were intense and widespread in northern NSW and
caused a very high concentration of PM2.5 as measured at Armidale and Port Macquarie
monitoring stations with the peak concentration of 1269.3 µg/m3 on 15 November 2019 at
Port Macquarie and 917.6 µg/m3 on 20 November 2019 at Armidale as shown in Figure 7.



Int. J. Environ. Res. Public Health 2021, 18, 3538 13 of 27

Elsewhere, fires in the Blue Mountains caused a high concentration in west Sydney and
central Sydney with the peak concentration of 790 µg/m3 on 19 November 2019 at Rouse
Hill and 677 µg/m3 on 19 November 2019 at Prospect, respectively, but elsewhere the
peak PM2.5 concentration was only about 250 µg/m3 in South Western Sydney (Liverpool
and Campbelltown West), 245 µg/m3 in Central Coast and Lower Hunter (Wyong) and
about 100 µg/m3 in Illawarra (Kembla Grange). Illawarra was the least affected region
in November.

Figure 7. PM2.5 concentration at monitoring sites in South West Sydney (a), west Sydney (b), central Sydney (c), Illawarra
(d), Hunter (e) and northern NSW (f) from 1 November 2019 to 30 November 2019.

From early December, the fires caused an elevated concentration of PM2.5 up to
273.7 µg/m3 (6 December 2019, 08:00) as measured at Port Macquarie. High PM2.5 concen-
trations from 200 µg/m3 up to above 400 µg/m3 were measured at a number of stations in
Sydney (Bringelly, Camden, Liverpool, Oakdale, Campbelltown West, Rozelle, Randwick,
Parramatta North, Chullora, Earlwood, Macquarie Park and Prospect) and in the Lower
Hunter–Central Coast region (Wallsend, Newcastle, Beresfield and Wyong) from 3 Decem-
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ber 2019 to 6 December 2019. Figure 8 shows a MODIS Aqua/Terra satellite image of the
fires and the AOD (aerosol optical depth) caused by the fires on 3 December 2019.

Figure 8. MODIS Terra/Aqua thermal hot spots image on 3 December 2019, 00:00 UTC, (a) and the
AOD image from the MODIS Terra satellite, land and ocean (b).

Figure 9 shows the time series of PM2.5 from 1 December 2019 to 30 January 2020
as measured at the monitoring sites in the GMR of Sydney and northern NSW. On 10
December 2019, at Rozelle, the PM2.5 concentration was 533.5 µg/m3 at 13:00, at Macquarie
Park, 610.6 µg/m3 at 12:00, at St Marys, 608.7 µg/m3 at 13:00, at Rouse Hill, 531.6 µg/m3

at 12:00 and at Wollongong, 299.7 µg/m3 at 10:00. The concentrations were then falling
until 19 December 2019 when peak PM2.5 concentrations were detected at level about and
above 300 µg/m3 at Parramatta North, Macquarie Park, Camden, Rouse Hill, Wollongong,
Kembla Grange. A High concentration on 29, 30 and 31 December 2019 from 300 to above
600 µg/m3 also occurred at Bargo.

In January 2020, high PM2.5 concentrations were detected at Camden, St Marys,
Oakdale and Kembla Grange on 5 January 2020, at Randwick, Wollongong, Kembla Grange
and Albion Park on 8 January 2020 and at Wollongong, Kembla Grange and Albion Park
on 10, 11 and 12 January 2020. From early January, the wildfires were more intense in the
south coast of NSW and in eastern and northwestern Victoria.

Like PM2.5, ozone follows a similar pattern described herein. In early December and
mid-December, high ozone concentrations were detected in Lower Hunter and Sydney,
then from early January, when the wildfires shifted to the south, Illawarra detected elevated
concentration of ozone. Figure S7 in the Supplementary Materials shows the ozone concen-
tration time series during December 2019 and January 2020 at Sydney, Lower Hunter and
Illawarra sites. Ozone levels exceeded the NSW air quality goal (10 pphm) at many sites
during the wildfire period. In Randwick, ozone was 11.2 pphm on 5 December 2019, 14:00,
a level that had not been seen at this long-term site since the 1970s. On 10 December 2019,
the levels were 17.9 (12:00), 17.6 (12:00), 15.7 (12:00), 15.7 (13:00), 14.4 (13:00), 12.3 (13:00),
12 (13:00) and 11.6 pphm (13:00) in Earlwood, Chullora, Liverpool, Parramatta North,
Bringelly, St Marys, Bargo and Richmond, respectively.

On 19 December 2019, peak ozone concentrations were detected at levels of 17.9 (12:00),
15.7 (12:00), 13.2 (11:00), 11.4 (12:00), 15.4 (12:00) and 11 pphm (13:00) in Rozelle, Earlwood,
Parramatta North, Liverpool, Chullora and Bringelly, respectively, and on 21 December
2019, high ozone levels of 10.6 pphm (14:00), 10.3 pphm (15:00) and 10.6 pphm (15:00) were
observed in Liverpool, Bringelly and Oakdale. High levels of 11.2 (30 December 2019,
15:00), 10.6 (31 December 2019, 10:00), 11.4 (31 January 2020, 17:00), 11.6 (31 January 2020,
16:00) and 10.1 pphm (31 January 2020, 15:00) were detected in Richmond, Oakdale, Bargo,
Oakdale and Bringelly, respectively.
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Figure 9. PM2.5 concentration at sites in South West Sydney (a), west Sydney (b), central Sydney (c), Illawarra (d), Hunter
(e) and northern NSW (f) from 1 December 2019 to 31 January 2020.

In Lower Hunter and Central Coast, high levels of ozone above 10 pphm were mea-
sured in Newcastle (10.2 pphm (5 December 2019, 13:00) and 10.4 pphm (19 December 2019,
12:00)), in Wallsend (10.5 pphm (19 December 2019, 13:00)) and in Beresfield (12.6 pphm
(21 December 2019, 15:00)). In Illawarra, a high level of ozone occurred in Wollongong
(11.1 pphm (19 December 2019, 13:00)). Overall, 10 December 2019 and 19 December 2019
were the two worst ozone days in the GMR of Sydney.

Evaluation of the WRF-Chem wildfires simulation using the FINN emission data
and the NCEP reanalysis meteorological data sets was performed by comparing some of
the predicted meteorological variables such as wind and temperature and the predicted
concentration of PM2.5 with observed data at the monitoring stations. Figure A4 in the
Appendix shows the results of the comparison at a number of sites in the GMR. Considering
the 12 km by 12 km grid resolution used in the model, the prediction at hourly intervals as
compared with point observations was rather good for temperature and wind direction
with temperature correlation and IOA (index of agreement) of ~0.83 and ~0.75, respectively
(for three sites, Richmond, Liverpool and Beresfield). The predicted wind speed and
PM2.5 concentration were also reasonable (R2 and IOA from 0.62 to 0.67 and from 0.70
to 0.73, respectively, for wind speed, from 0.2 to 0.25 and from 0.33 to 0.45, respectively,
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for PM2.5). As we used only the predicted daily average of PM2.5 to study the impact of
2019–2020 summer wildfires on population health, the predicted PM2.5 at the daily scale as
compared to the observed daily average was much better than at the hourly scale (R2 and
IOA from 0.6 to 0.75 and from 0.61 to 0.86, respectively, for daily PM2.5). Figure 10 shows
the predicted daily average PM2.5 as compared to the observations at many sites in NSW.

3.3. Population Exposure to Wildfire Particulates and Health Effects

The increase in ground concentration of PM2.5 in ambient air as a result of wildfires
increases the mortality and morbidity rates of the exposed population. The spatial pattern
of daily average PM2.5 concentration changes with time and space. The peak increases
in PM2.5 concentration over NSW due to wildfires occurred in early December (7 to 10),
mid-December (18 to 21) and toward the end of December 2019 (from 28 to 31 December)
with high predicted ground PM2.5 concentration as shown in Figure 11.

Figure 10. Cont.
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Figure 10. Predicted and observed daily average PM2.5 concentrations in Wyong, Bringelly, Port MacQuarie, Beresfield,
Earlwood, Liverpool, Chullora, Camden and Richmond.

Figure 11. Cont.
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Figure 11. Cont.
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Figure 11. Predicted increase in daily average PM2.5 due to wildfires over the Australian Bureau of Statistics (ABS) level
4 census districts (SA4) across southeastern Australia for some selected days in December 2019: 3 (a), 5 (b), 10 (c), 14 (d),
18 (e), 22 (f) 26 (g) and 30 (h) December 2019. Note: the PM2.5 scale is increasing toward the end of December.

Figure 11 shows the spatial plots of predicted daily average PM2.5 across the states
of NSW and Victoria in southeastern Australia due to wildfires for a few selected days in
December 2019. The boundaries of the census districts (SA4s) are shown in the map. The
corresponding spatial plots for January 2010 are shown in Figure S8 in the Supplementary
Materials. Based on Equations (1) and (2) as described in the Methodology section, the
effect of an increase in daily average PM2.5 concentration in each of the SA4s on mortality,
cardiovascular and respiratory diseases hospitalizations was calculated for each day of
the wildfires simulation period (from 1 November 2019 to 8 January 2020). Summing up
the attributable numbers (ANs) over all SA4s in NSW for each health endpoint gave a
daily time series of mortality and hospitalizations as shown in Figure 12 for November,
December 2019 (Figure 12a,b) and January 2020 (Figure 12c).

Figure 12d contains time series for the complete simulated period and shows that
December 2019 had the most impact on population health. The total mortality estimate
for the period from 1 November to 8 January 2020 was about 247 (CI: 89, 409) premature
deaths, 437 (CI: 81, 984) cardiovascular diseases hospitalizations and 1535 (CI: 493, 2087)
respiratory diseases hospitalizations. In 2020, Borchers Arrigada et al. [9] estimated in
their study of the health impact due to this 2019–2020 wildfire event in eastern Australia
that for NSW, the mortality, cardiovascular and respiratory hospital admission rates were
approximately 219, 577 and 1050, respectively. Their period of study from 1 October 2019
to 10 February 2020 was longer than that in our study. The extra time range as compared
with the period in our study is whole of October 2019 and from 11 January to 10 February
2020. The impact of wildfires in the extra time ranges is not significant as the PM2.5
concentration due to wildfires was low before 1 November 2019 and after 11 January 2020
when the wildfires subsided significantly. The population-weighted PM2.5 levels were
below 15 µg/m3 in these time ranges as presented in Figure 1 of their study. The results
from our study correspond with those of [9] for mortality while our cardiovascular diseases
hospitalization estimate is smaller than that estimated in their study, but our respiratory
diseases hospitalization rate is higher.
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Figure 12. Daily time series of increase in PM2.5 over all the census districts (SA4s) in NSW and the rates of mortality and
hospitalizations (due cardiovascular and respiratory diseases) due to wildfires in November 2019 (a), December 2019 (b),
1 to 9 January 2020 (c) and in the combined period from 1 November 2019 to 9 January 2020 (d).

4. Discussion

This study used an air quality modelling tool, WRF-Chem, and the global fire emission
data (FINN) derived from remote sensing by satellites to assess the extent of the effect
of Black Summer 2019–2020 wildfires on the southeast coast of Australia on air quality
and health. Monitoring data from ground-based stations and from satellites were used
to corroborate the modelling prediction of meteorological and air quality variables. The
prediction from the model allowed understanding the evolution of the effect of the wildfires
in terms of pollutant transport and dispersion and assessing the air quality impact, in
particular the PM2.5 concentration over the modelling domain, in the east coast of Australia
where the majority of the population lives. This high spatial resolution prediction of air
quality concentration also made it possible to estimate the health impact on population
exposure in urban, rural and remote locations to PM2.5 from wildfires more accurately than
by assigning exposures from central monitoring stations [26]. This is especially important
when no monitoring data are available over potentially large geographic areas and hence
assuming no spatial variability or interpolation of nearby monitoring datapoints to different
areas can introduce an exposure error or misclassification and biased epidemiologic effect
estimates [27]. In 2020, Lehtomäki et al. [28] reviewed various studies of mortality from air
pollutants (PM2.5 and O3) and found that there is a wide range of mortality results obtained
using different health assessment tools and concentration–response functions in Nordic
countries. They reported that sensitivity analysis showed that high spatial resolution is
necessary to avoid underestimation of exposure and health effects.

We decided to use WRF-Chem rather than WRF-CMAQ as the high-resolution (1 km
by 1 km) daily global FINN emission dataset is available for WRF-Chem with the MOZART
chemistry mechanism. The fire radiative power as detected from satellites indicates the
intensity of the fire and hence can be scaled to modulate the emission. The emission of
pollutants from the flaming and smothering stages of fires is therefore incorporated in the
radiative power which the FINN dataset considers. In 2018, Wilkins et al. [20] showed in
their study of wildfire effect using ground-based statistical datasets on air quality (ozone
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and particulates) from 2008 to 2012 in the US using the CMAQ model that the performance
of the CMAQ model largely depends on the type of wildfires and emission estimates. In
their study, the use of statistical datasets compiled by various organizations featured large
uncertainties in emission estimates. We use a single consistent FINN dataset which relies
on satellite sensor detection for fires and their radiative power.

Even though the summer 2019–2020 wildfires did not cause as many deaths as the
Black Saturday wildfires in Victoria in 2009 or the Ash Wednesday in 1983 in Victoria
and South Australia, the costs thereof is much more significant than of those previous
wildfires. The costs include the economic loss of properties and businesses in many regional
towns and villages and the health impact due to persistent high particle concentration
and exposure of people in major population centers over a long period and large affected
areas. However, technology also helped people to reduce their exposure to smoke. In
2020, Campbell et al. [29] reported the survey results based on 13% of responses from
more than 13,000 people who used AirRater, a free smartphone application that reports air
quality and track user’s symptoms in near real-time and helped them to reduce exposure to
smoke during the 2019–2020 wildfires. Respondents provided feedback that the application
was very useful in helping them to make decisions to avoid or minimize exposure such
as staying indoors (76%), rescheduling or planning outdoor activities (64%), changing
the location to less affected areas (29%). During the peaks of wildfires, the number of
people visiting a general practitioner (GP) actually dropped and the largest decreases in
GP attendance claims were seen in the affected regions during the weeks when air quality
was recorded as particularly poor and this drop in GP attendance may also have been
influenced by health advice to stay indoors [6].

Health alerts to the public from the NSW Department of Health which worked in
conjunction with other agencies such as the Department of Planning, Industry and En-
vironment (DPIE) or the Rural Fire Services (RFS) of NSW also helped people to take
actions to reduce their exposure to smoke. These interventional actions reduced population
exposure and hence theoretically affected the calculation of the estimated exposure and
health effects using the method chosen for this study which assumes that the ambient
concentration of PM2.5 directly and fully affects people. In 2020, Mueller et al. [13] found
in their study of ambient air pollution and health effect in northern Thailand including
the period when there was intense agricultural biomass burning in March that the risk
ratio (RR) between daily PM10 and outpatient visits was elevated most on the same day as
exposure for chronic lower respiratory disease (CLRD) with RR = 1.020 (95% CI: 1.012 to
1.028) and cerebrovascular disease (CBVD) with RR = 1.020 (95% CI: 1.004 to 1.035), but
there was no association with ischemic heart disease (IHD) with RR = 0.994 (95% CI: 0.974
to 1.014). They also found that there was no evidence that the high PM10 concentration
on biomass burning days showed a clear exposure response effect for CLRD and CBVD
visits. They suggested that two possible reasons for this result were that particulates from
biomass burning may be less harmful than those from other sources and that at higher
PM concentrations identified as occurring due to biomass burning, the risk decreases.
But the other factor that can influence the results is that people during episodic events of
pollution seek shelter or take measure to reduce their exposure to harmful pollutants in the
ambient air.

In addition to uncertainty in RR for each health endpoint, another source of uncertainty
in the estimated results is the uncertainty in the WRF-Chem model. The accuracy of the
WRF-Chem air quality model depends on uncertainties of the emission input and the
uncertainty of the WRF-Chem model itself (its meteorological and chemical components).
Even though the FINN provides the most detailed emission data on both the temporal
scale and the spatial scale and its estimates are comparable to other emission datasets such
as GFEDv3, the uncertainty assigned to the FINNv1 estimates is about a factor of 2 due to
various assumptions such as land cover classifications, estimated burned area, fuel loading
and consumption and emission factors [23]. Low-cost sensors could be used to increase the
availability of air quality measurement data in areas where standard monitoring network
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stations are lacking, and modelling output data can then be used to blend with these data
using techniques such as the Bayesian method to increase the accuracy of the estimated
pollutant concentration for health impact calculations. In 2020, Robinson [30] used low-cost
sensor data in addition to the data from the DPIE monitoring station in Armidale (northern
NSW) to show the spatial variability of PM2.5 and thus help to improve the accuracy of
exposure and health impact estimates due to wood heater use during winter in this region.

Another approach to estimate the PM2.5 concentration from wildfires at grid points is
the use of machine learning or an AI method instead of the physical modelling method as
in this study using WRF-Chem. In 2018, Yao et al. [26] used machine learning to estimate
hourly exposure to PM2.5 for urban, rural and remote populations during wildfire seasons.

In this study, we only focused on the daily scale effect based on the predicted daily
average concentration. However, the health effect of PM2.5 exposure during wildfire
seasons can be seen on a sub-daily scale as Yao et al. (2020) [14] reported in their study that
increased PM2.5 concentration was associated with some respiratory and cardiovascular
outcomes within 1 h following exposure. Sub-daily scale population health impact analysis
can be performed if the accuracy of the current modelling technology to predict the
pollutant concentration is much improved. The current WRF-Chem air quality model
does not take into account the fire spread and fire behavior on this time scale. The studies
and methodology of [31,32] on short- and long-distance fire spotting can be implemented
in the air quality modelling system such as WRF-Chem to take into account fire behavior
and propagation.

The other effect of wildfires on people’s welfare-being that should be addressed is
the effect on mental health. During the summer 2019–2020 wildfires event, many people
became anxious and worried about the wildfires and made calls to the Lifeline crisis
support hotline. As a result of this increase in call numbers, a telephone line for people
affected by the bushfires was introduced to address the situation [6]. The costs of the Black
Summer 2019–2020 wildfires in terms of physical property damage, biodiversity, people
health and the economy were significant. Prescribed burning is essential for managing
these wildfires. With wildfires increasing in frequency and scope in southeastern Australia
and globally [33] due to climate change, in 2020, Morgan et al. [3] found in their study on
the history of prescribed burnings in southeastern Australia that even though significant
progress of fire and ecosystem science had been achieved in the previous 50 years, the
current fire management can neither sustain the full range of ecosystem processes and
biodiversity nor reduce to an acceptable level the impact of wildfires on human lives and
property. They suggested more investment in training, human capacity and resources to
safely and effectively deploy prescribed burning more widely to reduce future wildfire risks
and that the potential negative impacts of prescribed burning can be managed effectively
with clear communication of the benefits of prescribed burning to the public. However,
in 2021, Handmer et al. [34] stressed that for large-scale wildfires, a systemic approach to
mitigate and manage fire risks has to be considered. The approach pays special attention
to the increased risk of large-scale and extreme fires from tail dependence and spatial
dependence. Tail dependence, in which extreme conditions (at the tail of each distribution)
such as high temperature and low rainfall can occur concurrently or one extreme condition
can enhance the risk of occurrence of the other condition, makes the fires caused by
compound events more likely and more extreme. Spatial dependence, on the other hand,
reflects the fact that fire risk in one area can be connected with other areas due to extreme
dryness occurring everywhere over a large region with available fuel load. Fires over
a local area in this situation can ignite or spread to faraway areas through fire spotting
or occur simultaneously and then connect to form megafires. Both tail dependence and
spatial dependence conditions were present in the Black Summer 2019–2020 wildfires in
eastern Australia. There are methods available for assessing the tail dependence and spatial
dependence [34]. Importantly, the Black Summer wildfires highlighted the role of climate
change on the increasing number and scale of wildfires in eastern Australia and therefore
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efforts to mitigate the effect of climate change or reduce greenhouse emissions should be
considered seriously.

5. Conclusions

The wildfires event in the austral summer of 2019–2020 on the east coast of Australia
from late October 2019 to mid-January 2020 was studied in detail using an air quality
model and observation data from ground-based and remote sensors. The effect of the
wildfires on air quality and population exposure was widespread over New South Wales,
Australian Capital Territory and Victoria. Ozone and PM2.5 particle levels exceeded the
NSW air quality goal at many metropolitan monitoring sites in the Greater Metropolitan
Region of Sydney, especially in December. The health effect due to PM2.5 as predicted
from modeling on the exposed population in each of the ABS census districts (SA4) of
New South Wales was estimated based on epidemiological assumptions of the impact
function and incidence rates from the 2016 ABS and NSW Department of Health statistical
health records. Summing up all SA4 census district results over NSW, we estimated that
there were 247 (CI: 89, 409) premature deaths, 437 (CI: 81, 984) cardiovascular diseases
hospitalizations and 1535 (CI: 493, 2087) respiratory diseases hospitalizations in NSW over
the period from 1 November 2019 to 8 January 2020.
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Appendix A

Figure A1. Predicted wind and temperature at 925 mb and 850 mb on 2 November 2019, 06:00 UTC,
and 3 November 2019, 00:00 UTC.

Figure A2. CALIPSO satellite path (a) and aerosol profile (b) over the Coral Sea and New Zealand
on 7 January 2020 at 2:51 UTC. Smoke aerosols (black) over the Tasman Sea in the troposphere at the
height of ~3 km to ~5 km.
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Figure A3. CALIPSO lidar’s profile of aerosols on 15 January 2020 along the CALIPSO satellite path
from southern New Zealand to the Tasman Sea and the Coral Sea off Queensland (a) and distribution
of aerosol types above the ground (b). Smoke aerosols (black) in the upper troposphere (10–15 km)
and the stratosphere (25–30 km) over the Tasman Sea and southern New Zealand.

Figure A4. Predicted and observed hourly PM2.5 (a), daily average PM2.5 (b), hourly PM10 (c), temperature (d), wind speed
(e) and wind direction (f) at Richmond in the north west of Sydney in December 2019.
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