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Abstract: Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that
can prevent onset or delay the progression of the disease. In this study, we developed a machine
learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the
current year (Y). The dataset for this study was collected at a private medical institute as electronic
health records from 2013 to 2018. To construct the prediction model, key features were first selected
using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant
features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid,
sex, smoking, drinking, physical activity, and family history. We then employed logistic regression,
random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based
on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based
on the experimental results, the performance of the prediction model proved to be reasonably good
at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians
and patients with valuable predictive information on the likelihood of developing T2D. The cross-
validation (CV) results showed that the ensemble models had a superior performance to that of the
single models. The CV performance of the prediction models was improved by incorporating more
medical history from the dataset.

Keywords: type 2 diabetes; machine learning; prediction

1. Introduction

Diabetes is a chronic metabolic disorder that is identified by an abnormal blood
glucose level, which is caused by either ineffective utilization or insufficient production
of insulin [1]. The prevalence of diabetes in 2010 was estimated to be 285 million people
worldwide (6.4% of adults). By 2030, that number is expected to rise to 552 million [2].
Based on the current growth rate of the disease, in 2040, one out of ten adults can be
expected to have developed diabetes [3]. The prevalence of diabetes in South Korea has
also increased dramatically; recent studies have shown that 13.7% of all South Korean
adults have diabetes, and nearly a quarter have prediabetes [4].

Because those with diabetes often lack knowledge about the disease or are themselves
asymptomatic, diabetes often remains undetected; nearly a third of diabetic patients are
not aware of their status [5]. Uncontrolled diabetes results in serious long-term damage to
several organs and body systems, including the kidneys, heart, nerves, blood vessels, and
eyes [1]. Thus, advanced detection of the disease enables those at risk to take preventive
action to inhibit the progression of the disease and improve quality of life [6].

To reduce diabetes’s effects and improve the quality of patient care, research has
been conducted in several different sectors, including machine learning (ML) and artificial
intelligence (AI) [3,7,8]. ML-based methods for diabetes occurrence prediction have been
reported in multiple studies [3,9–11]. These methods are of two types: current condition
identification (screening, diagnosis) and forward prediction approaches. Current condition
identification methods deal with the classification of current data instances; forward
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prediction methods forecast the incidence of diabetes ahead of time using current and
previous medical records [12].

In this study, we aim to develop a machine learning (ML) model to predict type 2
diabetes (T2D) occurrence in the following year (Y+1) using the feature values in the current
year (Y). The prediction models group the input data instance into the specified condition:
normal (non-diabetic), prediabetes, or diabetes. To build the prediction model, key features
were first selected using a data-driven feature selection technique composed of an analysis
of variance (ANOVA) test, a chi-squared test, and recursive feature elimination methods.
We compared the performance of the prediction models—logistic regression (LR), support
vector machine (SVM), random forest (RF), and XGBoost algorithms. We also utilized
ensemble techniques such as a confusion matrix-based classifier integration approach
(CIM), soft voting, and classifier stacking methods and compared the performance with
the single models [13–19].

2. Background
2.1. Related Works

The availability of large electronic medical record collections compiled from multiple
health facilities provides an opportunity within the current ML and AI trends to revolution-
ize diagnostic systems [12]. Despite some limitations in the reporting and interpretation of
the performance of these approaches, their diagnostic capability resembles that of health-
care professionals. Experts in these techniques can help clinicians understand what data is
optimal for solving targeted problems, such as screening and forecasting tasks, and how
and when that data can be obtained [12,20].

To facilitate early detection of T2D, numerous research studies employing ML tech-
niques have been conducted. These studies include the development of screening, diag-
nosis, and prediction tools to detect the occurrence of the disease and the likelihood of its
onset [5,21]. Screening methods for prediabetes using ML models for the South Korean
population are presented in [5], which developed an intelligence-based screening model for
prediabetes using a dataset from the Korean National Health and Nutrition Examination
Survey (KNHANES) [22]. The KNHANES 2010 dataset, with 4685 instances, was used to
train SVM and artificial neural network (ANN) based models, and the KNHANES 2011
dataset was used for validation. The authors claimed that the SVM model performed better
than the ANN model, with an area under curve (AUC) value of 0.73. The study was limited
to identifying a prediabetic condition only.

A model for predicting the onset of type 2 diabetes in non-diabetic patients with
cardiovascular disease is presented in [21]. The study reported a T2D prediction model
to forecast the occurrence of the disease within the follow-up period. The electronic
health records (EHRs) for the study were collected from Korea University Guro Hospital
(KUGH). The total number of features was 28, with 8454 subjects over five years of follow-
up. The authors claimed that they had achieved a value of 78.0 in AUC measure for the
logistic regression (LR) model. In this study, the dataset included only individuals with
cardiovascular risks.

A comprehensive study on machine learning techniques for diabetes identification
is presented in [23]. The study analyzed two essential data processors: PCA (Principal
Component Analysis) and LDA (Linear Discriminant Analysis) for various machine learn-
ing algorithms. Through an experiment, they identified the best data preprocessor for
each algorithm and conducted parameter tuning to find the optimum performance. Pima
Indian data set was utilized to examine the performance of the algorithms. The highest
accuracy obtained among the employed five algorithms (neural Network, Support Vector
Machine, Decision tree, Logistic regression, and Naïve Bayes) was 77.86% using 10-fold
cross-validation.

Machine learning algorithms also have been utilized to diagnose other types of chronic
diseases. The study presented in [24] utilized ML algorithms to predict treatment success
in a pediatric asthma cohort. The study predicted treatment outcomes in children with
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mild to severe asthma, based on changes in asthma control, lung function, and fractional
exhaled nitric oxide (FENO)values after six months of controller medication use. The
predictive possibilities were tested using the Random Forest (RF) and Adaptive Boosting
(AdaBoost) machine learning algorithms. The results of this study will help to enable
treatment optimization and implement the concept of precision medicine in pediatric
asthma treatment.

2.2. Type 2 Diabetes (T2D)

Diabetes mellitus is a group of metabolic abnormality identified by hyperglycemia
resulting from defects in insulin secretion, insulin action, or both [1]. According to the
American Diabetes Association (ADA) guidelines, T2D is defined by fasting plasma glucose
(FPG) levels above 125 mg/dL; the normal (non-diabetic) range is below 100 mg/dL [25].
It is highly affected by lifestyle activities, such as drinking, exercise, and dietary habits.
T2D diminishes quality of life and lowers life expectancy. Several studies have shown
that a combination of lifestyle improvement and medication intervention can prevent
complications from the disease. Both early diagnosis and treatment of T2D are thus critical
in preventing serious and potentially life-threatening complications in patients [21]. In this
study, T2D was diagnosed according to the ADA guidelines. T2D is defined by FPG levels
above 125 mg/dl; the normal range is below 100 mg/dL and between 100 and 125 mg/dL
is considered prediabetes.

2.3. Feature Selection Techniques

Feature selection is the process of selecting a subset of the most relevant features in the
dataset to describe the target variable. It improves computation time, generalization perfor-
mance, and interpretational issues in ML problems [26,27]. Feature selection techniques are
categorized as filter based, wrapper based, and embedded type. Filter-based techniques
screen out features based on some specified criteria. Wrapper-based methods use a model-
ing algorithm that is taken as a black box to evaluate and rank features. The embedded
methods have built-in feature selection approaches such as least absolute shrinkage and
selection operator (Lasso) and random forest (RF) feature selection methods [28]. There
are several types of feature selection techniques, including exhaustive search, Pearson
correlation technique, chi-squared technique, recursive feature elimination, Lasso, and tree-
based feature selection techniques. In this study, we used a data-driven feature extraction
technique, which combines the ANOVA test, chi-squared test, and a tree-based recursive
feature elimination technique.

2.3.1. Analysis of Variance

Analysis of variance (ANOVA) is a well-known statistical method to determine
whether there is a difference in means between two groups [29]. In this study, the ANOVA
test was utilized to select the significant numerical features in predicting the occurrence
of T2D. The ANOVA test uses the F statistic for feature ranking. The larger the value of
the F statistic, the better the discriminative capacity of the feature [30]. The F value is
calculated as:

F =

(
SSB
d fb

)
/
(

SSW
d fw

)
(1)

where SSB (sum of squares between groups) is the variation of group means from the total
grand mean, and SSW (sum of squares within groups) is the sum of squared deviations
from the group means and each observation. The degrees of freedom for mean square
between and within is defined by d fb and d fw, respectively [31]. For all numerical features
in the dataset, the F value was calculated using Equation (1) and the features with the
larger value were selected.
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2.3.2. Chi-Squared Test

The chi-squared test is a nonparametric statistical analyzing method. The technique
calculates the chi-squared value using Equation (2) and selects the top n features [32]. In
this work, the chi-squared test was employed to rank categorical features according to their
significance in identifying the target class. Equation (2) is expressed as

χ2 =
n

∑
i=1

(xi − Ei)
2

Ei
(2)

where xi is observed frequencies, Ei is expected frequencies, and n is the number of
categories in the contingency table. For all categorical features in the dataset, the chi-
squared value was calculated using Equation (1) and the features with the larger value
were selected.

2.3.3. Recursive Feature Elimination

Recursive feature elimination (RFE) is a recursive procedure to select features accord-
ing to the accuracy of the model. The metric determines the discriminative capacity of
features. At each iteration, the ranking score metric is calculated, and low-ranking features
are eliminated. The recursive procedure is repeated until the desired number of features
is achieved [33–35]. In this study, RFE was used as the final stage of the feature selection
procedure. The detail of the feature selection procedure is presented in Section 3.2.

3. Methods

This section describes the methods used to develop a prediction model to forecast the
occurrence of T2D in the following year. To generate the model, data preprocessing, feature
selection, hyperparameter tuning, training, testing, and model evaluation procedures
were performed.

3.1. Dataset

The dataset used in this research is a six-year electronic medical record collected
from 2013 to 2018 at a private medical institute called Hanaro Medical foundation in
Seoul, South Korea. It has 535,169 instances collected from 253,395 subjects and each
instance has 1444 features. The subjects in the dataset were included in the dataset without
any restrictions on occupation, sex, or gender. For privacy protection, the dataset does
not contain any personal data, including subjects’ names and personal identification
information. The average age of subjects is 41.2, with an age range of 18–108 and a sex ratio
(males/females) of 1.25. The feature values in the dataset are a combination of the blood
test (biochemical test), anthropometric measurements, and other diagnostic results. Also, It
contains a questionnaire responded to by the patient at the hospital during the examination.
Out of the total features, 140 of them were from the questionnaires. Subsequently, the
dataset is the combination of numerical values from laboratory diagnostic results and
categorical values from the questionnaire answers.

3.1.1. Dataset Selection for the Experiment

The dataset contains records of subjects who visited the medical institute for from
one to six years through the follow-up period. The total number of subjects used in this
study was 253,395. Subjects who had at least two years of continuous annual medical
check-ups during the follow-up period were selected as a target group for the experiment.
We excluded subjects who had already been diagnosed with diabetes, hyperlipidemia, or
hypertension, as well as those who took at least one medication for those diseases, because
the dataset for the experiment required a transition from normal to three states.
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3.1.2. Missing-Data Handling

Data preprocessing is one of the significant steps in ML and data mining. It improves
the quality of data and performance of ML models. The technique refers to cleaning and
transforming the raw data to make it more suitable to train and evaluate prediction models.
Data preprocessing includes data preparation, cleaning, feature selection, missing values
handling, and transformation of data. The result expected after data preprocessing is a final
dataset, that can be considered correct and useful for further data mining algorithms [36].

The collected EHRs were a high dimensional dataset. It is unlikely that all the fea-
tures were obtained during the medical check because the required measurements were
dependent on the subjects. To address the missing-values problem, several solutions were
considered, including omission of the row with null values and replacing the missing
values by mean, median, or mode values of the feature values [37]. Considering the large
size of the dataset, records with null feature values were excluded from the dataset.

3.1.3. Class Imbalance Problem

Most machine learning algorithms assume that the target classes share similar prior
probabilities. However, in numerous real-world applications, this assumption is violated.
When working with datasets that have a class imbalance, the machine learning classifier
tends to be more biased towards the majority class, causing bad classification of the
minority class. In such problems, most of the examples are labeled as one class, while fewer
examples are labeled as the other class [38,39].

In our dataset normal-class instances accounted for 68.1% of the dataset, diabetes
accounted for 4.3%, and prediabetes accounted for the remainder. The distribution of
these three classes showed an imbalance, which could have resulted in poor prediction
performance on the minority class for the prediction model [38]. To fix the problem,
majority under-sampling and synthetic minority over-sampling (SMOTE) methods were
utilized [40,41].

3.2. Data-Driven Feature Selection Procedure

This section presents a data-driven approach to select features for predicting T2D
occurrence using statistical and ML methods. The dataset obtained through the above
procedures contained both numerical variables from the diagnostic results and categorical
entities from the questionnaire answers. The feature selection aimed to find a set of optimal
features that could distinguish the three classes efficiently.

The feature selection procedure is shown in Figure 1. In the first step, the features set
is split in two, based on the data types: numerical and categorical. Then, the appropriate
metric was applied to rank the importance of the features. For numerical features, an
ANOVA test was employed as a metric to select numerical features, while a chi-squared
test was used for the categorical features. The selected features from both data types were
combined, and the RFE technique was employed. RFE was conducted until the desired
performance and number of features were achieved. On this technique, a tree-based
approach was used to rank the features based on their level of importance. Finally, the
most significant features were selected according to their importance, as shown in Figure 2.
The selected features were fasting plasma glucose (FPG), body mass index (BMI), Gamma
glutamyl transpeptidase (gamma-GTP), triglycerides, sex, age, uric acid, hemoglobin A1c
(HbA1c), smoking, drinking, physical activity, and family history. Smoking status was
divided into “currently smoking regularly”, “never smoked” and “had quit smoking”.
Physical activity indicates the number of days the subject has engaged in physical exercise
such as running, hillwalking, climbing stairs, jump roping for a minimum of 20 min. Family
history with diabetes considers only parents and siblings diagnosed with T2D and drinking
indicates the number of days the subject consumed alcoholic drinks.
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Figure 2. Feature importance ranking (FPG = fasting plasma glucose, HbA1c = hemoglobin A1c,
BMI = body mass index, gamma-GTP = gamma glutamyl transpeptidase).

The feature importance was computed as the node impurity which was weighted by
the probability of reaching the node. The node probability was defined by the ratio of the
number of samples that reach the node to the total number of samples [42]. The x-axis in
Figure 2 indicates the normalized value of the feature importance. The higher the value the
more important the feature. In general, the proposed data-driven feature selection method
specified the most important and relevant features to indicate the occurrence of diabetes,
and it is consistent with several studies [43–50].

3.3. Prediction Model

This section explains the flow of the proposed diabetes occurrence prediction model.
The proposed model had data preprocessing, training, and testing phases (Figure 3). The
data preprocessing phase dealt with data cleaning and features selection. The preprocessed
data was split into training and testing datasets. In the training phase, the prediction
model was trained using the labeled training data, and hyperparameter tuning was applied
to optimize the parameters of the model for better performance. To obtain the optimal
parameters, we employed a tenfold cross-validated grid search on the tunable parameters of
the models. First, we applied a general search with a wider range of parameters. Then, we
applied a finer grid search in the neighborhood of the first selection to find the best values
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for the hyperparameters. The performance of the classifier was evaluated in the testing
phase. RF, SVM, and XGBoost algorithms were utilized to generate prediction models.
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Multiple classifiers are generated using a different combination of feature sets and
aggregated to form the final predictor. Since the ensembled methods (CIM, ST, and SV)
use all available classifiers information, their performance is better and/or more robust
in most applications [51]. In this study, we utilized the classifier integration model with a
confusion table [52], soft voting [18], and stacking classifier models [19].

Three sets of experiments were conducted to investigate the performance of the
proposed prediction model. The first set of experiments dealt with the evaluation of
the models using the test dataset and the ten-fold cross-validation (CV) technique. The
CV technique randomly divided the dataset into ten subsets, and the experiments were
conducted ten times iteratively. On each iteration, one of the ten subsets was used as
test data, and the remaining nine subsets were used as a training set. The second set of
experiments were performed to investigate the performance of the prediction model in
comparison with the number of medical follow-up years used to train the prediction model.
The training dataset for the experiments was generated by concatenating the medical
records over the years. The number of years used to train the dataset ranged from two to
four. The last set of experiments presented the cross-validation performance comparison
between the selected 12-feature set and the well-known traditional predictors of T2D. The
detailed results of the experiments are presented in Section 4.

4. Results

This section presents the experimental results of the proposed models. RF, SVM, and
XGBoost algorithms were utilized to build the prediction models, and their performance
was evaluated using the accuracy, precision, recall, and F1-score metrics.

4.1. Evaluation Metrics

Evaluation metrics were used to evaluate the model’s performance. In this study,
we used accuracy, precision, recall, and F1-score for the metrics of the prediction. They
represent how close the actual values and predicted values were, and each definition is
shown in Table 1.



Int. J. Environ. Res. Public Health 2021, 18, 3317 8 of 14

Table 1. Evaluation metrics.

Metric Definition

Accuracy = TP+TN
TP+FP+FN+TN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1-score =
2∗( recall∗precision)

recall+precision

TP = true positive, TN = true negative, FP = false positive, FN = false negative.

4.2. Model Performance

This work developed a prediction model to forecast the occurrence of T2D in the
following year. The developed prediction model classified the input data instance as
normal, prediabetes, or diabetes. This study utilized previous medical records to generate
prediction models. The sizes of training and test datasets were 17,131 and 200, respectively,
for each class.

To demonstrate the effectiveness of the prediction model, we conducted experiments
using LR, RF, XGBoost, SVM, CIM, stacking classifier (ST), and soft voting (SV) algorithms.
The base classifiers for the ensemble techniques (CIM, ST, and SV) were generated using
different feature sets and the algorithms mentioned above. The comparative experimental
results of the prediction models, in terms of accuracy, precision, recall, F1-score, Matthews
Correlation Coefficient (MCC), and Cohen’s kappa score (KC) are presented in Table 2.

Table 2. Performance comparison of the generated prediction models on the test dataset

Accuracy Precision Recall F1-score MCC KC

LR 0.71 0.71 0.71 0.71 0.56 0.56
RF 0.73 0.74 0.73 0.74 0.60 0.60

XGBoost 0.72 0.74 0.72 0.73 0.58 0.58
SVM 0.73 0.74 0.74 0.74 0.60 0.60
CIM 0.73 0.73 0.73 0.73 0.59 0.59

Stacking classifier 0.72 0.75 0.72 0.73 0.58 0.58
Soft voting 0.73 0.74 0.73 0.73 0.59 0.59

LR = logistic regression, RF = random forest, SVM = support vector machine, CIM = confusion matrix-based
classifier integration approach, MCC = Matthews Correlation Coefficient, and KC = Cohen’s kappa score.

According to the experimental results, the performance difference among the single
models (LR, RF, SVM, and XGBoost algorithms) was negligible. The best accuracy achieved
for predicting the occurrence of diabetes was 73% on the test dataset, and the lowest was
71% from the LR model, which is considered as the existing statistical analysis approach.
The confusion matrix of the RF model is presented in Table 3. As can be seen from the
confusion matrix, the majority of the classification errors were from the prediabetes class.
The derived precision values from the confusion matrix for the normal, prediabetes, and
diabetes classes were 70%, 61%, and 90%, respectively. The lowest precision value was
from the prediabetes class, which resulted in diminished overall precision. The difficulty
of identifying the prediabetes class was a result of the overlap of the prediabetes class with
the normal and diabetes classes. As shown in Table 3, the highest false positive instances
in predicting both normal and diabetes classes were from prediabetes, with 58 and 16
instances, respectively. Furthermore, the model had the highest false positive instances
from the prediabetes class. Thus, the high degree of class overlap between the classes was
one of the main challenges that degraded the accuracy of the classifier.



Int. J. Environ. Res. Public Health 2021, 18, 3317 9 of 14

Table 3. Confusion matrix of the RF model.

Normal Prediabetes Diabetes

Normal 148 58 4
Prediabetes 51 126 29

Diabetes 1 16 167

To verify the cross-validation (CV) performance of the models, the experiments were
conducted 10 times, and the average and the standard deviation of the accumulated
accuracy, precision, recall, and F1-score values were used as evaluation metrics. Figure 4
depicts the box plot for the cross-validation results of the models. Based on the experimental
results, we see clearly that the performance difference among the algorithms was negligible.
However, the ensemble classifier approaches (CIM, ST, and SV) showed a performance
improvement on the cross-validation results as compared to the single models.
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To further investigate the accuracy of the prediction model with respect to the number
of medical follow-up years, we conducted experiments by increasing the number of years
used to train the prediction models. The number of years used to train the prediction
model ranged from one year (Y) to four years (Y, Y-1, Y-2, Y-3). Figure 5 shows the tenfold
cross-validation results. It is clear that as the number of years used to train the model
increased, the accuracy of the prediction models also increased.



Int. J. Environ. Res. Public Health 2021, 18, 3317 10 of 14
Int. J. Environ. Res. Public Health 2021, 18, x  10 of 14 
 

 

 

Figure 5. Accuracy comparison using a different number of years for training data (RF = random 

forest, XGB = XGBoost, SVM = support vector machine, Avg. = average). 

Figure 6 depicts the performance comparison between the selected 12-feature set 

and the well-known traditional predictors of T2D (5-feature set): FPG, HbA1c, BMI, age, 

and sex. The plot indicates the average accuracy comparison of the cross-validation re-

sults of the classifier models. Based on the experimental result, the accuracy of the mod-

els with the 12-feature set outperformed the traditional feature sets. The features added 

to the traditional predictors—triglycerides, gamma-GTP, uric acid, smoking, drinking, 

physical activity, and family history—improved the performance of the prediction mod-

els. Therefore, in addition to the traditional predictors of T2D, clinicians should pay at-

tention to the changes in gamma-GTP, uric acid, and triglycerides over the years. 

 

Figure 6. Accuracy comparison between the selected 12-feature set and the traditional predictors 

(5-feature set) using a different number of years for training data. 

5. Discussion 

This study proposed a machine learning model to predict the occurrence of T2D in 

the following year. While previous works in [21] and [53] developed a scheme for fore-

casting the occurrence of diabetes, this paper dealt with the possible transition among 

three classes: normal, prediabetes, and diabetes. Few studies have addressed the predic-

tion of prediabetes, as most research has been focused on the prediction of undiagnosed 

diabetes. 

In this study, a large dataset and ensemble ML techniques were employed to de-

velop the prediction models as compared to the studies mentioned above. Furthermore, 

the impact of the cumulated medical data on the prediction accuracy was also presented 

by changing the number of years used to train the models. A data-driven feature selec-

tion was employed to find predictors that were significant for detecting the distinct 

Figure 5. Accuracy comparison using a different number of years for training data (RF = random
forest, XGB = XGBoost, SVM = support vector machine, Avg. = average).

Figure 6 depicts the performance comparison between the selected 12-feature set and
the well-known traditional predictors of T2D (5-feature set): FPG, HbA1c, BMI, age, and
sex. The plot indicates the average accuracy comparison of the cross-validation results
of the classifier models. Based on the experimental result, the accuracy of the models
with the 12-feature set outperformed the traditional feature sets. The features added
to the traditional predictors—triglycerides, gamma-GTP, uric acid, smoking, drinking,
physical activity, and family history—improved the performance of the prediction models.
Therefore, in addition to the traditional predictors of T2D, clinicians should pay attention
to the changes in gamma-GTP, uric acid, and triglycerides over the years.
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5. Discussion

This study proposed a machine learning model to predict the occurrence of T2D in the
following year. While previous works in [21] and [53] developed a scheme for forecasting
the occurrence of diabetes, this paper dealt with the possible transition among three
classes: normal, prediabetes, and diabetes. Few studies have addressed the prediction of
prediabetes, as most research has been focused on the prediction of undiagnosed diabetes.

In this study, a large dataset and ensemble ML techniques were employed to develop
the prediction models as compared to the studies mentioned above. Furthermore, the
impact of the cumulated medical data on the prediction accuracy was also presented by
changing the number of years used to train the models. A data-driven feature selection
was employed to find predictors that were significant for detecting the distinct classes
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in the dataset. The resultant 12 features were FPG, HbA1c, triglycerides, BMI, gamma-
GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. FPG
and HbA1c were the most important predictors based on the information-gain criteria;
they were followed by gamma-GTP, BMI, triglycerides, and age. Compared to using the
traditional five predictors of T2D (FPG, HbA1c, BMI, age, and sex), the proposed models
employing the selected features showed a superior prediction performance. When four
years of data were utilized in training, the maximum CV accuracy was 81% for the selected
features and 77% for the traditional features. It can be concluded that the additional seven
features contributed to improved accuracy of prediction. We also note that in addition to
the traditional predictors, clinicians must pay attention to the changes in gamma-GTP, uric
acid, and triglycerides over the years.

The study presented in [5] reported the application of an ML model to identify the
occurrence of prediabetes in advance. In their study, they have indicated the difficulties
of predicting the prediabetes condition. The best accuracy presented was 69.9% for the
KNHANES dataset. Our experimental results have shown a better prediction performance
in predicting the occurrence of not only diabetes and normal but also the prediabetes
condition too. The highest CV classification accuracy observed was 78% by using last year’s
medical records as training data. However, the performance of the prediction model was
improved by increasing the number of years to train the models. The study presented in [53]
reported a comparison of three data mining models for predicting diabetes or prediabetes by
risk factors. The dataset for the study was collected from two communities in Guangzhou,
China: 735 patients confirmed to have diabetes or prediabetes and 752 normal controls. The
risk factors (predictors) used were age, family history of diabetes, marital status, education
level, work stress, duration of sleep, physical activity, preference for salty food, gender,
eating fish, drinking coffee, and body mass index. Three ML algorithms: logistic regression,
artificial neural networks (ANNs), and decision tree models were employed for predicting
diabetes or prediabetes using the predictors. The decision tree model (C5.0) had the best
classification accuracy (77.87%), followed by the logistic regression model (76.13%), and
the ANN gave the lowest accuracy (73.23%).

LR, RF, SVM, XGBoost, CIM, stacking classifier, and soft voting algorithms were
utilized to generate the prediction models. Experimental results showed that the generated
prediction models performed slightly better than the LR model, the existing statistical
analysis method. However, the performance difference among the algorithms was neg-
ligible on the test data. This can be explained by class overlap in the feature space. The
prediabetes class especially had a high degree of class overlap with normal and diabetes
classes. The confusion matrix results confirmed that most of the prediction errors were
from the prediabetes class. This lowered the overall performance of the prediction models
and limited the maximum accuracy to 73%.

The CV results showed a significant performance difference among the prediction
models. The ensemble models (CIM, ST, and SV) had a superior CV performance to that
of the single models including LR. The CV performance of the prediction models was
improved by incorporating more medical history from the dataset. Overall, the results of
the present study demonstrated that the generated prediction models performed better
than the existing clinical screening model (LR). The application of the developed prediction
models and findings of this study redound to the benefit of both clinicians and patients. The
models can be used as viable support in clinical decision-making and patient counseling
for practitioners. Furthermore, early prediction of the disease enables diabetes patients and
those at risk for diabetes to take preventive measures that can delay the progression of the
disease and its life-threatening complications.

This study has certain limitations. First, FPG level was the only measurement that was
used to define normal, prediabetes, and diabetes; HbA1c and oral glucose tolerance test
(OGTT) were not taken into consideration. However, the use of FPG level was consistent
with the model developed by [5,54]. Second, in this study 10-fold cross-validation was
utilized in the evaluation of the models. However, the development and validation of the
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models were conducted with only one dataset. Thus, it is compulsory to utilize additional
data sources to verify the models derived in this study.

Our study suggests two additional investigations that are worth pursuing. The first
would be to incorporate diverse datasets to mitigate the difficulty of classifying prediabetes,
which stems from the overlap with normal and diabetes classes. The second would be to
increase the accessibility of the prediction models and improve the user experience for web
and mobile applications.

6. Conclusions

In this paper, we proposed a T2D occurrence prediction model that can forecast the
occurrence of T2D in the following year (Y + 1) as normal, prediabetes, or diabetes. LR, RF,
XGBoost, SVM, and ensemble classifiers (CIM, ST, and SV) were utilized to generate the
prediction models. Feature selection was employed to select the most significant features
that can distinguish the three classes efficiently. The selected features were FPG, HbA1c,
triglycerides, BMI, gamma-GTP, gender, age, uric acid, smoking, drinking, physical activity,
and family history. Experimental results showed that the performance of the generated
prediction model was reasonably good at forecasting the incidence of T2D in the Korean
population. The model can provide both clinicians and patients with valuable information
on the incidence of T2D ahead of time, which would help patients take measures to mitigate
T2D risk, progression, and related complications. Furthermore, it can be used as a viable
support in clinical decision-making for practitioners and diabetes educators to improve the
quality of life of patients.
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